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1. Let F be a non-Archimedean local field. Let n > 1 be an integer and D a central F-division
algebra of dimension n?. We denote by op the discrete valuation ring in D and by pp the maximal
ideal of op. Let U}J denote the group 1+ pp of principal units in D: this is a compact, open, normal
subgroup of the locally profinite group D* = GL;(D). We denote by A;(D) the set of equivalence
classes of irreducible smooth representations of GL;(D) and by .A{(D)g the set of m € .A;(D) such
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On the other hand, let G,(F) denote the set of equivalence classes of semisimple, smooth Weil-
Deligne representations of F of dimension n. Let GJ(F) denote the subset of G,(F) consisting of
classes of indecomposable representations. A Weil-Deligne representation p = (o, n) is of level zero if
the linear component o is trivial on the wild inertia subgroup of the Weil group of F. We denote by
Gn(F)o the subset of G,(F) consisting of classes of representations of level zero, and put G (F)o =
Sn(F)o N G5 (F).

2. The Jacquet-Langlands correspondence [1,25] is a canonical bijection

Jj: A1(D) — Ay (F),

where A7 (F) denotes the set of equivalence classes of irreducible smooth representations of the
group GL,(F) which are essentially square-integrable modulo the centre F* of GL,(F). Following cus-
tom and practice, we refer to the elements of AJ(F) as the discrete series of GL,(F).

Let A;;(F) be the set of equivalence classes of irreducible smooth representations of GL;(F). The
Langlands correspondence [21,15,16] is a canonical bijection

L: Ay (F) — Gn(F)

which, one knows, satisfies I(A}(F)) = G7(F). Composing, we get a bijection 1j : A{(D) — Gy (F)
which, we shall see, induces a bijection

(%) lj: A1(D)g — S;(F)o.

This paper revolves around the fact that each of the sets GJ(F)o, A1(D)o admits a canonical, explicit
parametrization in terms of the same set of objects. It is therefore practical, and interesting, to seek
an explicit description of the bijection (x).

3. These parametrizations are in terms of admissible tame pairs. An admissible tame pair over F
consists of a finite unramified field extension E/F and a tamely ramified character 6 of E* such that
the conjugates 0%, y € Gal(E/F), are distinct. We denote by T(F; n) the set of isomorphism classes of
admissible tame pairs (E/F, ) for which [E : F] divides n.

A well-known construction, going back to [14] and reviewed in 1.5 below, yields a canonical bijec-
tion

TJ(F;n) — A1(D)o,
(E/F,0) —> mp(0).

On the other hand, a variation on a standard procedure, reviewed in 1.4 below, yields a canonical
bijection

T(F;n) — G, (F)o.
(E/F,0) —> pn(6).
The objective of the paper is to prove the following.

Main Theorem. Let e, f be positive integers such that ef =n. Let (E/F, 6) be an admissible tame pair such
that [E : F] = f. If ng is the unramified quadratic character of E*, then

1imp®) = pu(nf! V).
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This result is required in work [22] of D. Prasad and D. Ramakrishnan on the self-dual representa-
tions of groups D*. We have written this paper in response to their questions on the matter.

4. A key component of our method is provided by work [30] of A. Silberger and E.-W. Zink. As part
of a more general programme, they produce a canonical bijection

T(F;n) — Ay (F)o,

3 (E/F,0) —> mn(E/F,0),

where A7 (F)o is the set of m € AJ(F) which are “of level zero” in a sense explained in Section 3
below. They show that the Jacquet-Langlands correspondence gives a bijection Aq(D)o — Af (F)o
and work out the relation between the maps 7, jo mp: it is quoted as Theorem 1 in 6.1 below.
That result, it must be remarked, is effectively unprecedented. Practically all other work on explicit
Jacquet-Langlands correspondences, notably [6,10], deals only with representations corresponding to
cuspidal representations of GL,(F).

For this paper, it remains only to compute the relationship between p, and I o 7. This is given as
Theorem 2 in 6.3.

5. The resolution of this rather simple question seems to require a substantial technical apparatus,
concerned with the structure theory for the discrete series A7 (F) of GL,(F). This theory has two
main aspects, to which we have to add a third.

First, one may describe the representations 7 € AJ(F) in terms of parabolic induction. We refer
to Jacquet and Shalika [18] for the main results and an overview of the literature. The earlier sur-
vey article [24] of Rodier may also be found helpful. The second aspect relies on the theory of simple
types in GL,;(F) developed in [11]. The isomorphisms of Hecke algebras attached to such types reduce
the study of A (F) to the case of representations with Iwahori-fixed vector. That may be treated “by
hand” or viewed as an instance of more general ideas in [2,19]. The basis of this approach is Sec-
tion 7.7 of [11], supplemented by the discussion in [12, 8.3]. We use results and insights from both
aspects.

We also introduce a third, and more novel, approach. In [30], Silberger and Zink show, at least in
a relevant special case, that discrete series representations may be parametrized by certain extended
simple types. This generalizes the description [11] of cuspidal representations as induced from ex-
tended maximal simple types. The construction of the bijection (f) proceeds via a parametrization of
the extended simple types in terms of admissible tame pairs. Our task is to relate this approach to
the first aspect above, using the second, along with the general theory of types and covers set out
in [13].

6. The initial formulation of the problem in Section 1 is quite straightforward. In Section 2, we
review the theory of simple types in GL,(F) and their Hecke algebras. We can confine ourselves to
the level zero case, so avoiding much of the general apparatus of [11]. We then specify some particular
elements of Hecke algebras and work out relations between them. This level of details goes beyond
what is directly available from [11].

In Section 3, we review as briefly as possible the theory of the discrete series and its relation
with the simple types. We introduce the extended simple types of [30] in Section 4, and use the
special functions of Section 2 to connect them with the standard classification of the discrete series.
In Section 5, we give the connection between admissible tame pairs and extended simple types. We
then apply the general machinery of the earlier sections to prove the Main Theorem in Section 6. By
that stage, it has been reduced to a simple check of certain numerical parameters.

A reader familiar with the general theories mentioned above will notice that practically everything
we do is susceptible of substantial generalization. Certainly there is no difficulty treating general
simple types in GL,(F). Using the more recent work of Sécherre [26-28] and his paper [29] with
Stevens, the potential for handling all simple types in any inner form of GL,(F) is equally clear. As
we have no direct application in mind, we have avoided straying into these areas.

Comment. The relation between p, and l o, (6.3, Theorem 2 below) is also the subject of a spec-
ulative aside in [30, Remark, p. 182]. The estimate given there is incorrect, but it has no functional
relation with the main material of [30], and so has no effect on the validity of its results.
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1. Tame admissible pairs and representations

Throughout, F denotes a non-Archimedean local field with discrete valuation ring or. We let pf
be the maximal ideal of of and kr = of/pr the residue field. We set |kr| =q. We write Uf for the
group oy of units of of and U} for the group 1+ pr of principal units.

We give a more detailed account of the concept of admissible tame pair used in the introduction.
We show how it can be used to parametrize two of the three classes of representations in which we
shall be interested.

11. A tame pair over F consists of a finite unramified field extension E/F and a character 6 of E*
which is tamely ramified, in that it is trivial on the group U}E =1+ pE.

A tame pair (E/F,0) is said to be admissible if the conjugates 6%, y € Gal(E/F), are distinct.

Two tame pairs (E;/F,6;), i =1,2, are deemed to be F-isomorphic if there is an F-isomorphism
o :E1 — E; such that 61 =6, o .

The degree of a tame pair (E/F, 6) is the degree [E : F] of the extension E/F. We denote by T (F)
the set of F-isomorphism classes of admissible tame pairs over F of degree f.If n is a positive integer,
we also write

T(F;n) =T (F).
fln

Remark. A tame pair (E/F,6) is admissible if and only if the restricted characters 67 |y,, y €
Gal(E/F), are distinct.

1.2. We choose a separable algebraic closure F/F of F, and let Wf denote the Weil group of F/F.
We write x > ||x|| for the homomorphism W — g% c R* which is trivial on the inertia subgroup
of Wr and maps a geometric Frobenius element to g~ 1.

Let p = (0, n) be a semisimple Weil-Deligne representation of F. (See [8, Chapter 7] for an intro-
duction to this concept.) Thus o is a linear representation of Wg, say o : W — Autc(V), which is
finite-dimensional, smooth and semisimple, while n is a nilpotent endomorphism of V satisfying

o@nox) ' =|x|n, xeWk. (1.2.1)

Defining equivalence in the obvious way and setting dim p = dimo, we denote by G,(F) the set of
equivalence classes of semisimple Weil-Deligne representations of F of dimension n.

We also write G7(F) (resp. 92(1’)) for the set of indecomposable (resp. irreducible) elements
of Gy (F).

For an integer e > 1, let Sp.(F) denote the special Weil-Deligne representation of F of dimen-
sion e. We recall the definition. The underlying vector space V has basis vg, v1, ..., Ve—1. We define
a nilpotent endomorphism n, of V by

neVi=Viy1, O0<i<e—1,
NeVe—1 =0.
We define a semisimple smooth representation ¢, of W on V by
Sevi = X[ 2y, 0<i<e—1.

The pair (ge, ne) is then a semisimple Weil-Deligne representation of F, and is what we denote by
Spe (F).
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If o is an irreducible smooth representation of Wg, say o : W — Autc(X), we may form the
semisimple Weil-Deligne representation

Spe(0) =0 @ Sp.(F) = (0 ® Ge, 1x @ 1e). (1.2.2)
We summarize the basic properties of this construction [8, 31.2].

(1.2.3).

(1) The representation Sp, (o) of (1.2.2) is indecomposable.

(2) Let p € G (F). There is a positive divisor f of n and an irreducible, f-dimensional, smooth representa-
tion o of W such that p = Sp, (o), ef = n. The equivalence class of o is uniquely determined by the
equivalence class of p.

13. Let p=(o,n) € G,(F). We say that p is of level zero if ¢ is trivial on the wild inertia subgroup
of Wg. We let G,,(F)o denote the set of p € G, (F) which are of level zero, and set

G (F)o =G (F) N Gu(F)o, G2(F)o = Gn(F) N Gn(Fo.
In the context of (1.2.3), surely Sp, (o) has level zero if and only if o € 9(}(F) has level zero.

14. Let (E/F,0) be an admissible tame pair of degree f. We choose an F-embedding of E in F
and use it to identify E with a subfield of F. The subgroup of W which fixes E is then open and may
be identified with the Weil group Wg of F/E. Composing with the Artin Reciprocity map Wg — E*
(normalized to take geometric Frobenius elements to prime elements), 6 yields a smooth character
of Wi which we again denote by . We form the smoothly induced representation

o) = lndm 0 (14.1)

of We. Straightforward arguments yield the following result: see, for example, [7, 2.2 Proposition].

(1.4.2).

(1) The representation o (9) of (1.4.1) is irreducible and of level zero. Its equivalence class depends only on the
isomorphism class of (E/F, 0).
(2) The map

Tr(F) — G} (F)o,
(E/F,0)— o0 (0),
is a bijection.

Let e, f be positive integers, n =ef. If (E/F,8) € T¢(F), we set

pn(0) =5pe (0 (0)). (143)
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Proposition 1. Let n > 1. The map

T(F;n) — Gy (Fo,
(E/F,0) — pn(0),

is a canonical bijection.
Proof. The result follows on combining (1.2.3) with (1.4.2). O

15. We consider a second family of representations. We fix the integer n > 1 and a central F-
division algebra D of dimension n%. We write op for the discrete valuation ring in D and pp for the
maximal ideal of op. We set UL =1+ pp.

An irreducible smooth representation 7t of D* is of level zero if U}, C Kermr. We write Aq(D) for
the set of equivalence classes of irreducible smooth representations of D* and A1(D)g for the subset
of A1(D) consisting of classes of level zero.

Let (E/F,0) be an admissible tame pair of degree f dividing n, and set n = ef. There exists an
F-embedding E — D, unique up to conjugation by an element of D*. We choose such an embedding
and use it to identify E with an F-subalgebra of D. Let B denote the D-centralizer of E. Thus B is a
central E-division algebra of dimension e2.

Let Nrdg : BX — E* be the reduced norm map. It satisfies Nrdg(U}) = U}, while U} = BN U}.
These two properties allow us to define a smooth character A of the group J = BXU}J by

A(bu) =6(Nrdgh), beB*, ueU}.
In particular, A is trivial on U}.

Proposition 2.

(1) The representation

mp(©) =Ind)" A (1.5.1)
is irreducible, smooth and of level zero. Its equivalence class depends only on the isomorphism class
of (E/F,0).
(2) The map
T(F;n) — A1(D)o,
(E/F,0) —> mp(0), (1.5.2)
is a bijection.

The result is classical and may be found in any of [14,20,4,23] or [3]. We therefore give no details.
2. Simple types and special functions in level zero
In this section, we recall the definition of a simple type of level zero in the group GL,(F), in the

sense of [11]. We specify some particular functions from the Hecke algebra of such a type, and work
out relations between them.
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2.1. Let G=GL,(F) and A =M, (F). We recall Definition 5.5.10(b) of [11].

Definition 1. A simple type of level zero in G is a pair (J, ) as follows.

(1) The group ] is the unit group U, of a hereditary op-order a in A satisfying

a/paEMf(kF)XMf(]kF)><-~-><Mf(ﬂ<§p), (2.1.1)

where there are e factors, ef =n, and p, denotes the Jacobson radical of a.
(2) There is an irreducible cuspidal representation Ao of GLs(kr) so that A is the inflation, via the

map | =Uq — Uq/1+pa =GLs(kr)®, of the representation M®i® - ®Ap.

In the context of the definition, we will usually write 14 p, = U;.
We note some elementary properties of the hereditary order a. For such background, see the early
pages of [11] and [5].

(2.1.2). Let a be a hereditary op-order in A satisfying (2.1.1).

(1) Any hereditary op-order in A, satisfying (2.1.1), is G-conjugate to a.
(2) The radical p, is a principal ideal of a, in that there exists w, € G such that pq, = W0 = aww,.
(3) The group

Koa={geG:gag ' =a}
is the G-normalizer of U 4. Moreover, X4 = U)'uZ X Uy, for any element w such that p, = wqa.

Any element @, as in part (2) of (2.1.2) will be called a prime element of a. We also observe that
p® =pra. The integer e is thus the F-period of a.

2.2. ltis only the G-conjugacy class of the pair (J, A) which is of concern. This allows us to impose
a standard form on the order a.

(2.21). Let a = ar(e, f) be the set of matrices (xij)1<i, j<e Such that x;j € My (or) and x;j € prMjy (o) when
i > j. The set a is then a hereditary op-order in A satisfying (2.1.1). The radical p, of a consists of those block
matrices (x;j) € a for which x;; € prMy (o), 1 <i<e.

Any hereditary op-order a in A satisfying (2.1.1) is G-conjugate to ar (e, f).

For notational convenience, we introduce another element of structure via which we can re-
write the definition of ar(e, f). Let E/F be an unramified field extension of degree f and set
B =Endg(E®) = M (E). Let b =ag(e, 1): this is the standard minimal hereditary og-order in B. Write
A =Endp(E®). We think of E as an F-subalgebra of A via the canonical inclusions E — B — A. There
is then a unique hereditary or-order a in A such that E* C X4 and aNB =b.

If we choose an F-basis of E, the algebra A becomes identified with My, (F). If we choose this basis
to be an og-basis of o, the order a becomes identified with ag(e, f). We use this scheme to identify
specific elements of G and functions in the Hecke algebras of types.

2.3. We take a simple type (J, 1) as in 2.1. We assume that J is the group of units of a =ag(e, f),
constructed from a field extension E/F as in 2.2. We set H = B* = GL.(E). Thus H is the G-centralizer
of E*. Moreover, if b =a N B, the group I = Uy, is the standard Iwahori subgroup of H.

In this and the next subsections, we summarize the account in [11, 5.6] of the intertwining prop-
erties of the representation A.
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Working first in the group H, let Wq be the group of permutation matrices. In particular, Wy is
generated by the involutions s;, 1 <i<e— 1, where s; is the permutation matrix realizing the trans-
position (i,i+1).

We choose a standard prime element I7 of a as follows. We choose, once for all, a prime element
@ of F (not E) and let IT = (x;j) € H be the matrix given by x; ;41 =1for 1<i<e—1, xe1 =, all
other entries being 0.

The element [T satisfies pq = I[Ta = alT as required, and I7¢ is the scalar matrix @ 14. The G-
normalizer of J is the semi-direct product /72 x J, as in (2.1.2). Conjugation by IT also fixes the
representation A. Likewise, the H-normalizer of I is I7% x I.

Let W denote the group generated by I7 and Wy. The map

W — I\H/I,
wi— Iwl, (2.3.1)

is then a bijection. The discussion in [11, 5.6] yields the following facts.
(2.3.2).

(1) The set I (1) of elements of G which intertwine A is given by

Ic)=JH]=]JW].

(2) The map

W — N\c()/ ],

wr— Jw],
is a bijection and, moreover, Jw ] N H = Iwl, for every w € W.

24. We refine (2.3.2) into an isomorphism of Hecke algebras.
Let A act on the vector space X, and let (A, X) denote the contragredient representation. If f is
an endomorphism of X (resp. X), we write f for the transpose endomorphism of X (resp. X). Thus

f=fand W X)) =ix1), xe]. 5
Let H, = H(G, A) be the space of compactly supported functions ¢ : G — End¢ (X) satisfying

¢ (j1852) = (1P (DA(j2),

for j,ke J and g € G. Let p¢ be the Haar measure on G for which wg(J) = 1. We use the measure
¢ to define convolution of elements of JH; and henceforward treat 3, as a unital, associative C-
algebra relative to this operation.

Similarly, let Hg = H(H, 1;) be the space of compactly supported functions ¢ : H — C such that
Y (xhy) =y (h), for h € H and x, y € I. We regard Hf as C-algebra under convolution defined relative
to the Haar measure py on H for which puy(I) =1.

For w € W, let [w] denote the characteristic function of Iwl. In particular, [w] € HE.

We summarize from [11, 5.6] the points we need concerning the algebra g and its relationship
with H;.

(2.4.1) Facts.

(1) The functions [w], w € W, form a basis of the vector space H.
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(2) Forany w € W, we have

[Wlx[IT]=[wII] and [[I]*[w]=[ITw].

In particular, the function [IT] is invertible in Hg, with inverse [T~ 1].
(3) The functions [s;i], 1 < i< e — 1, satisfy the relation

(Isi1+1) * (Isi1 —¢’) =0, (2.4.2)

where q = qf = |kp]|.

(4) The elements [s;], 1 <i < e —1and [IT], [IT~'] together generate the C-algebra H.

(5) There exists an algebra isomorphism Y : H, — Hg such that, if ¢ € H, has support Jw ], w € W, then
T ¢ has support Iwl. That is,

supp ¥ =suppy N H, (2.4.3)

forall y € H;.

(6) Let Y’ : H; — Hg be an algebra isomorphism with the property (2.4.3). Let ¥ € 3, have support IT .
(a) There exists a constant a € C* such that Y'v = aY .
(b) The algebra isomorphisms ', Y’ coincide if and only ifa = 1.

We delineate as “support-preserving” the family of algebra isomorphisms 7" satisfying (2.4.3).

2.5. We exhibit some particular elements of the Hecke algebra J,. Observe that, as a consequence
of (2.4.1)(5), each coset Jw ], w € W, supports only a one-dimensional space of elements of 3. This
space may be described in terms of intertwining operators, as in [11, 4.1.2]. We exhibit a sequence of
special cases.

Looking back at Definition 1 in 2.1, the representation A is determined by the irreducible cuspidal
representation Ao, say Ao : GLy (kr) — Autc(Xo). Thus A acts on the space X = Xo® Xo® - -- ® Xo and
5» on 5(:5(0@5(0@---@5(0.

For 1 <i<e—1, define t; € Autc()v() to be the automorphism which interchanges the i-th and
(i + 1)-th tensor factors Xo.

Lemma 1. For 1 < i < e — 1, there exists a unique function ¢; € H, with support Js; ] and such that

$i(si) =ti.
Next, let I" denote the automorphism
VI®QV2Q:-- Q@Veb—=> V2 Q- Q Ve ® V1
of X=Xo® - ® Xo.
Lemma 2. There is a unique function ¢ € 3, with support IT | and such that ¢;;(IT) =T .
Finally, let A € H denote the diagonal matrix
A =diag(1,1,...,1, w).

Lemma 3. There is a unique function ¢ € 3, with support JA] and such that $(A) = 1, the identity
automorphism of X.
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All of these lemmas are elementary applications of [11, (4.1.2)]. Before passing on, we note a useful
property of the function ¢. For any f € K, g € G, we have

supp(¢n * f) =T supp(f) and g * f(I1g) =¢n(I1)f(g). (251)
This follows from (2.4.1)(2) and a simple computation. Similarly for f * ¢7.

2.6. In the notation of Definition 1 (2.1), let Ao denote the representation of GLs(oF) obtained by
inflating Xo. The following calculation is central to the paper.

Proposition 3. Let 6y denote the unique character of Ur occurring in Aoly. If T : 3 — H is a support-
preserving algebra isomorphism, then

T¢i=0(-Dg/ V"5, 1<i<e—1. (26.1)
Moreover,

Grr*xP1x o %k Pe1 =Pa. (2.6.2)

Proof. The relation I7-1s;1T =s;,1 and (2.5.1) together imply that any two of the functions ¢; are
conjugate by a power of ¢y,

Gixdg=¢m*dir1, 1<i<e—1,

while Y'¢;7 = a[IT], for some a € C*. To prove (2.6.1), therefore, it is enough to treat the case i = 1.
Define o € X, by the relation Yo = [s1]. Thus (2.4.2)

or*orzqf—i—(qf —1)o.
Abbreviating ¢ = ¢1, we have ¢ =ao for some a € C* such that
pxp=0a’q) +a(q/ —1)¢.
Equivalently,

pxp(M=a’q),  pxgis)=a(a —1)t.

Computing the first expression, we find
800 = [ 0000 ") ducn = 3 pesnp(sre ™)
G g

where, in the sum, g ranges over J/J NsyJs1. To get such a set of coset representatives, we let x
range over a set of representatives for M (of)/prM;y(oF) and take gy of the form 1+ x’, where X is
the e x e block matrix having x in the 12-place, zeros elsewhere. In particular, gx € Ker A, whence

prp()=q" 2 =q""

That is, a = +qf/~1/2,
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To determine the sign, we have to compute
P x(s1) = /¢>(x)¢(x‘1sl)duc(><)
G
=Y o@gsno(s1g's1).
g

with g ranging as before. For our particular choice of coset representatives g, we have g € Keri so
¢(gs1) = ¢(s1) =t1. Also, the elements g~! constitute a set of representatives for J/J N sy Jsi. Thus

Prp(s1)=t1)_ P(s1851),
g

with g ranging as before. We write g in the form

(1 x 55_10
g_Ol’ ]gl_xl’

showing only the first 2f rows and columns. This matrix contributes to the integral if and only if
it lies in Js1J. This condition is equivalent to the matrix x € M¢(of) lying in GL(oF), following the

identity
10_1x*1S x 1
x 1)7\o 1 )°"\o —x1)"

Therefore, writing  for the contragredient of A,
¢ xp(s1)=00(—Dt1 Y _t10(n(y)@u(y™"))
y

=0(-1))_um@u(y™),
y

the sum being taken over y € GLf(kr). To simplify further, we take vq,v2 € Xo, X1,%2 € Xo and
evaluate the inner product

(@ *(s1)(Vi ® v2), X1 @ X2) =6p(—1) Z(M(Y)W ® (¥~ ")va. X1 ®x2)
y
=00(—=1) ) ()i 2 (y ") va. xa).
y
which, applying the first Schur orthogonality relation for w, reduces to

(@ % d(s1)(v1 ® v2), X1 ® x2) = Oo(—Dk(v1, x2) (V2, X1),

where k is a positive constant. In other words, ¢ ¢ (s1) = 6p(—1)ktq, for a constant k > 0. The relation
(2.6.1) has been proved.
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We turn to the identity (2.6.2). For 1 <i < e — 1, we define
Ci =SiSi+1 -+ Se—1 € Wo.

Thus ¢; = sici+1, i > 1, and ITc; = A. If y; denotes the automorphism of X corresponding to the index
permutation c;, then y; =titjyq---te_1 and yy = I\,

Lemma 4. Let 1 < i < e — 1. The function ®; = ¢; * Pi11 * - - - % ¢e—1 has support Jc; ] and ®;(c;) = ;.

Proof. We proceed by induction on i. We first note that ®,_1; = ¢._1 and the assertion is the defini-
tion of ¢e_1. We therefore take 1 <i <e — 1 and assume the result is valid for &;,1.

In the algebra Hp, an elementary calculation yields [s;][ci+1] = [c;]. The support of @; = ¢; * i1+
is therefore Js;Jciy1J = JciJ. It remains to compute

éi * Diy1(Ci) :f¢i(x)‘pi+l (x"Tsiciy1) duc ()
G

= ¢i(gs)Pipa(sig” sicita),
g

where g ranges over /] Ns;Js;. Only the trivial coset representative g satisfies s;gsici11 € Jcit1J,
giving

Pi(ci) = ¢i * Pip1(ci) = tiPit1(Ciy1) =i,
by inductive hypothesis. 0O

As in (2.5.1) therefore, ¢ * @1 has support JI1c1 ] = JA] and ¢ * @1(A) = ¢ (IT)P1(c1) =1,
as required for (2.6.2). O

3. Discrete series and types

Let G = GL,(F). We write A, (F) for the set of equivalence classes of irreducible smooth represen-
tations of G. We let A} (F) be the set of classes of representations 7 € A,(F) which are essentially
square-integrable modulo the centre F* of G, and Ag(F) the set of cuspidal classes m € Ap(F). In
particular, AS(F) C AJ(F). We tend to refer to the elements of A (F) as the “discrete series” of G.

In this section, we recall and develop aspects of the relation between the discrete series and
simple types in G. Most of the time, we specialize to simple types of level zero, but this restriction
serves only to allow us the use of the notation of Section 2 (and so avoid recalling the full machinery
of [11]). A reader familiar with [11] and [13] will have little difficulty generalizing the discussion.

3.1. We first establish some notation. We fix a positive divisor e of n, say n =ef, and define some
subgroups of G = GL,,(F).

Let P, denote the standard (upper triangular) parabolic subgroup of G such that, if N, is the
unipotent radical of P, then P./Ne = GL;(F)¢. We let P, denote the transpose of P.. Thus P is a
parabolic subgroup of G whose unipotent radical N}, is the transpose of N.. The group Me = P, N P,
is a Levi component of both P, and P,. We have P, = M.N, and P, = M.N}, while M, is the group
of matrices in G which are diagonal in f x f blocks. In particular, M, = GLf(F)e.

When e is fixed for a period, we tend to write simply P = P, and so on. With this abbreviated
notation, we write L,(,; for the normalized smooth induction functor from P to G. Likewise ry is the
normalized Jacquet functor relative to N, adjoint to lg. Similarly for N’ but, since we need it several
times, we prefer the abbreviated form
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/
=Ty (311)

3.2. We recall, with no proofs, the standard description of the discrete series in terms of parabolic
induction. For the basic results, and an overview of the literature, we refer to Jacquet and Shalika [18]
and Rodier [24].

Again we set G = GL,(F). We take positive integers e, f such that ef =n. We let P = P, = MN
and P’ = MN’ be the standard parabolic subgroups of G defined in 3.1.

Let T € A%F). If a is a real number, we write t® for the representation x — |detx|T ()
of GL¢(F). We form the representation

m=11792 g 0-02g . g1/

of M. We inflate t); to a representation of P, trivial on N, and induce to obtain a smooth representa-

tion lg Ty of G. The major result we need is the following.

(3.2.1).

(1) The representation t%tM admits a unique irreducible G-quotient St. (7). The representation St.(t) lies in
the discrete series Ay (F) of G.

(2) Let w € A (F). There exist a positive divisor e of n and a representation T € A
Ste (7). The pair (e, T) is determined uniquely by the equivalence class of .

0

nse (F) such that w =

For the genesis of this result, see [24, Proposition 11] and the discussion in [18, p. 209]. A different
approach (reversing the tactic adopted in these pages) is summarized in [12, 8.3].
We need a supplementary detail.

Lemma 5. If m = St.(7), as in (3.2.1), then r,m = 7.
Proof. See [24, Proposition 9]. O

3.3. We recall some general facts. For the moment, G could be any locally profinite group and
J a compact open subgroup of G. Let A be an irreducible smooth representation of J, A : ] — Autc(X)
say. We form the Hecke algebra H(G, A) = H;, in the standard way, as in Section 2. We form the
contragredient X of A, and use the same notation for duals as in Section 2. In particular, if ¢ € H;,
we define ¢ € H(G, 1) by

$@)=¢(g"), 2¢€G.
Let (;r, V) be a smooth representation of G. We define
Vi =Hom (X, ).

This complex vector space carries the structure of left J{; -module by (cf. [13, 2.7] et seq.)

¢-f)= / () f(B(g")x)duc(g). (33.1)

G

forp eH,, feV,, xeX.
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We revert to the case where G = GL,(F) and (J, ) is a simple type in G in the sense of [11,
5.5.10]. (There is no advantage in assuming A has level zero.) We exploit the fact that (J,A) is a
G-type in the sense of [13, 4.1]. (See also the discussion in [13, 9.3] for more details.)

If (7r, V) is a smooth representation of G, we let V* denote the sum of the spaces f(X), f € Vy,
and V(1) the G-subspace of V generated by V*.

Lemma 6. Let (7, V), (7r’, V') be smooth representations of G. The };, -modules V,, V; are isomorphic if and
only if the G-spaces V (1), V' (A) are isomorphic. In particular, if (7t, V) is irreducible and V; # 0, the module
V,. determines 7t up to isomorphism.

Proof. As (J, 1) is a G-type, the lemma follows from [13, 4.3]. O

34. Let (J,A) be a simple type of level zero in G. Thus J = U, where, we may assume, the
hereditary order a is ar(e, f), ef =n (2.2.1). The representation A is derived from an irreducible
cuspidal representation Ag of GLf(kp), as in (2.1.1). We use the associated notation introduced in
Section 2.

We recall some machinery from [13], adapted to the case in hand.

We set Jo =GLy(or) and let Ao be the inflation of Ao to a representation of Jo. The pair (Jo, Ao)
is then a maximal simple type in GL;(F), in the sense of [11, 6.2], as well as being of level zero. We
recall [11] some basic features of this situation.

(3.4.1). Let k € A¢(F) contain Xo.
(1) The representation k is cuspidal.

(2) Set Jo = F* Jo and Go = GL¢ (F). There exists a unique representation Ao of J, occurring in « and such
that Aglj, = Lo. Moreover,

K= c—lnd(];g Ag.
(3) Ifk’ € A (F) contains Ao, then k' =  if and only if the central characters w,, w, coincide.

Here, of course, (3) follows directly from (2).
We note the following general fact, obvious in the present case.

(3.4.2). Let P =P, = MN, P'=MN’, as in 3.1.

(1) Set Ju=JNM, Jy=JNN, Jno = J N N'. The group | then satisfies

J=Jn-Im- N,
Jv=Jox Jox---x Jo.

(2) The kernel of A contains both |y and Jy:, while

My =rQA® - ® Ao.

As remarked in the proof of Lemma 6 (3.3), the pair (J, 1) is a G-type. Likewise, (Jg, Ao) is a Go-
type. It follows readily that, on setting Ay = A|j,,, the pair (Ju,Aym) is an M-type. Moreover, (J, 1)
is a G-cover of (Jm, Am) in the sense of [13, 8.1]. (Again see [13, 9.3] for a more detailed discussion.)
We summarize the relevant consequences of this observation.

Let H,,, denote the Hecke algebra J{(M, Ay ), formed relative to a Haar measure ppy on M such
that upy(Jm) = 1.
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If (;r, V) is a smooth representation of G, we may apply the Jacquet functor r, of (3.1.1) to obtain
a smooth representation (1,7, r,V) of M = M.

(3.4.3). There is a canonical algebra homomorphism
3e =3)[:,é . D{AM —> Hj

with the following property. If (;t, V) is a smooth representation of G, with normalized Jacquet module
(rjm,1,V) relative to N’, the H;,,-module (r,V),,, is isomorphic to the module g%V, obtained from the
H,.-module V, by restriction along the homomorphism Je. In particular,

dim V, =dim(r, V) (3.4.4)

Am’
for any smooth representation (z, V) of G.

Proof. From [13, 7.11], we obtain a canonical map 88 with the required properties, relative to the un-
normalized Jacquet functor. The map J. is obtained by composing 32 with a twist by a positive-valued
smooth character of M. O

The result (3.4.3) is a more precise version of a criterion from [11], to the effect that a represen-
tation 7 € A, (F) contains A if and only if its cuspidal support consists of representations x € A (F)
which contain Ag. Combining this version with (3.2.1), we get the first assertion of:

Lemma 7.

(1) Arepresentation 7t € A}/ (F) contains X if and only if w = St.(t), for some T € A (F) containing Ag.
(2) Let T € A (F) contain Ao. The representation St () contains A with multiplicity one.

Proof. Part (2) follows from Lemma 5 of 3.2 and (3.44). O

3.5. Llet (w,V) e AJ(F). By [11, 85.11] (or the remark above), the representation 7 contains a
simple type (J, ) in G, and this type is uniquely determined by 7, up to conjugation in G [11, 8.4.3].
We say that 7 has level zero if (J, 1) has level zero. We write A} (F)o for the set of 7 € A (F) of
level zero, and similarly define .Ag(F)o.

Remark. Let 7 € A, (F). More commonly, one would say that 7= has level zero if it has a non-trivial
fixed vector for the subgroup 1+ My (pr) of GL,(oF). If 7 contains some simple type, this is equivalent
to the definition above.

3.6. We describe the discrete series in terms of simple types. Let (J, ) be a simple type of level
zero in G = GL,(F). Thus ] = U, where, we may assume, a = ar(e, f) in the notation of 2.2. We
choose a support-preserving isomorphism 71" : H;, — Hg (2.4.3) and define o; € K, by

Toi=[si], 1<i<e—1.

We note that the definition of o; is independent of the choice of 7" (2.4.1)(6).
The following statement summarizes the structure of the discrete series from the point of view of
Hecke algebras and simple types.

(3.6.1). Let (;r, V) be an irreducible smooth representation of G such that V, # 0. The following conditions
are equivalent.
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(1) m is a discrete series representation of G;
(2) dimV, =lando;f =—f,for1<i<e—1land f € V,.

Outline of proof. We indicate briefly how this fundamental result may be obtained.

Suppose first that (J, A) is the “trivial” simple type. This means that ] is the standard Iwahori
subgroup of G and A is its trivial character. In the notation of 2.2, a =ar(n, 1).

Let (77, V) € AJ(F) contain A. By (3.4.4) and Lemma 7 of 3.4, w = St (&), where & is an unramified
character of F* = GL{(F) and, moreover, 7t contains A with multiplicity one. By (2.4.2) every o; acts
on V; as —1 or q. The o; are all conjugate in X, (2.6, proof of Proposition 3). So, there exists o = —1
or q such that ojv=av,forveV, and 1<i<e—1.

Let se = 1T~ 's._1I1, and let Wy be the subgroup of W generated by the involutions s;, 1 <i<e.
A calculation, with the Poincaré series of the Coxeter system (W1, {[s;]}), shows that the case o = —1
gives w € A (F), the case o = q gives w ¢ A (F).

This deals with the case where (J, 1) is the trivial type. The general case of (3.6.1) then follows
from [11, (7.71)]. O

Remark 1. The restriction to level zero in (3.6.1) has the sole function of allowing us to use the
notation of Section 2. The same proof applies in full generality, using the Hecke algebra isomorphisms
of [11, 5.6].

We give an application.

Proposition 4. Let A (F), denote the set of (r, V) € A} (F) which contain A. For (7w, V) € AJ (F),, define
a character x5 : H, — C of H, by

- f=xz@f, ¢, feV,

This character x satisfies

Xz(op))=—-1, 1<i<<e—1. (3.6.2)
The map 7 > xr establishes a bijection between A (F), and the set of characters of I}, satisfying (3.6.2).
Proof. The proposition is a direct consequence of (3.6.1) and Lemma 6 (3.3). O

Remark 2. It follows from (2.4.1)(4) that the algebra ¥, is generated by the elements o; and ¢*!,
where ¢ is a function in H, with support /7 ]. A character x of X, satisfying (3.6.2), is therefore
completely determined by its value y (¢).

Proposition 5. Let (7, V) € A} (F) contain X.
(1) The representation 7 is of the form Ste(t), where T € A(}(F) contains Ag.

(2) The space (r,V),,, has dimension one and J{,,, acts on it via a character x,, : H,,, = C.
(3) The characters X, Xz, are related by

Xt = Xz ©Je. (3.6.3)

Proof. The first assertion is Lemma 7 of 3.4. The second follows from this same lemma and (3.4.4).
The final one is given by (3.4.3). O
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3.7. We combine Proposition 5 of 3.6 with the identities of 2.6.
As in 3.6, we take 7 € AJ(F)o containing the simple type (J,A). Thus 7w = St.(t), where
T € A(}(F) contains Ag. We recall from (3.4.1)(3) that t is effectively determined by its central char-
acter w, which satisfies the following condition.

Lemma 8. If 6 is the character of U occurring in Agly,, then

w,|UF = 90. (3.7.1)
We remark that 6y is the same as the character, with that name, introduced in Proposition 3 (2.6).
Defining the element A as in 2.5, let ¢ € 3(;,, have support AJy and satisfy ¢ (A) =1 (the

identity operator on the representation space X of 1). The definition [13, 7.12, 6.12] of the map J. of
(3.4.3) gives

Jed =kooa, (3.7.2)

for some constant kg > 0.

Proposition 6.

(1) The character ¥,, satisfies

Xow (9N) = k- (),

for some positive constant k1.
(2) The character x satisfies

Xn(@a) =k (),

for some positive constant k, and

Xx(¢m) = (=D o (D o). (3.73)

Proof. Part (1) follows from a simple calculation using (3.3.1). The first relation in (2) then follows
from (3.7.2) and (3.6.3). Applying Proposition 3 (2.6), we get the second relation up to a positive
constant factor k3. In particular, xr (¢7)® = w.(z)°k§. However, ¢F; has support z ] and value 1
at . It follows that xr (¢;7)° = wz (@), where w; is the central character of 7. Since w; = w$|px,
we get k§ =1 whence k3 =1, as required. O

Remark. It is not hard to determine the constants k; explicitly. Since we have no use for this infor-
mation, we omit the details.

4. Extended simple types

We recall an elegant idea of Silberger and Zink [30]. This gives another view on the discrete series.
Again, the result holds in great generality with much the same proofs.
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4.1. Let (J,X) be a simple type in G of level zero, as in (2.1.1).
The group G acts by conjugation on the set of isomorphism classes of simple types in G. We let J
denote the G-stabilizer of (J, ).

Lemma 9. Let w, be a prime element of a. The group ] is generated by ] and the element w. Indeed,
J= wuZ X | and, in particular, J contains JF* with index e.

Proof. This has already been observed in 2.3. O
Lemma 10.

(1) The representation A admits extension to a representation A of J.
(2) Let A, A" be representations of J such that A|; = A’|; = A. There exists an unramified character x of F*
such that A’ = A ® xj, where xj = x odet|;.
(3) Using the notation of (2), the following conditions are equivalent.
(@) A®xj =4,
(b) A'is G-conjugateto AQ xj;
(c) xy is trivial.

Proof. Since J/J is cyclic, assertion (1) is immediate. Any two extensions of A to J are related by

tensoring with a character of J trivial on J. Any such character is of the form yx, whence (2) follows.
In (3), the equivalence of (a) and (c) is given by elementary Clifford theory. In (b), any element g

of G which conjugates A to A ® x; must normalize | = J NKer||det|| and fix A. Thatis, ge J. O

We refer to pairs (J, A) obtained this way as extended simple types of level zero. We may recover
(J, ) from (J, A): the group J is the unique maximal compact subgroup of J and A = A[;. We say
that (J, A) lies over (], A).

4.2. The following result derives from [30], but we have changed the proof to better serve our
purposes.

Proposition 7. Let 7 € A (F)o.

(1) There is an extended simple type (], Ax) of level zero such that

Hom; (Ax,m) #0.

(2) The pair (], Ax) is uniquely determined by 7, up to conjugation in G.
(3) The map 7 + (], Ax) establishes a bijection between A} (F)o and the set of G-conjugacy classes of
extended simple types of level zero in G.

Proof. Let (w,V) € A7 (F)o. The representation 7 contains a simple type (J, 1) of level zero, and
it does so with multiplicity one (3.6.1). Let J be the G-stabilizer of (J,A). The group 7 (J) must
stabilize the isotypic space V*. As representation of J, the space V* affords the original irreducible
representation A. The natural action of 7 (J) on V* thus provides an extension A of A such that
Hom (A, ) #0. Since (J, 1) is determined by 77 up to G-conjugacy, the same applies to (J, A). We
have proved (1), (2) and found a well-defined map from A7 (F)o to the set of conjugacy classes of
extended simple types of level zero.

To prove this map is surjective, we take an extended simple type (J, A) of level zero, over a simple
type (J, ). The representation A occurs in some 7 € A (F)o and, by the first part of the proof, this
representation 7 contains some representation A’ of J such that A’|; =i. We have A = A’ Q xj,
for an unramified character x of F* (Lemma 10). The extension A thus occurs in the representation
X7 g x(detg)m(g) of G, and xm € A7 (F)o.
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It remains to show that an extended simple type (J, A) occurs in only one element of A (F)o. Let
(J, A) lie over the simple type (J, A). It is enough to treat the case where | = U, and a = ar(e, f)
(2.2.1). Let A act on the vector space X, and use the other notation introduced in 2.3.

Let (;r, V) contain A and consider the natural action of H, on the one-dimensional space V,. We
recall (3.3.1)

¢ - f)= / (9 f(P(g ")) duc(g). (4.2.1)

G

for ¢ € H,, f e V,, =Hom, (X, V), x € X. Taking ¢7 as in Lemma 2 of 2.5, we find

o - fX) =) f(IX).

However, the natural action of J on V* provides the extension A of A occurring in 7. That is,

ér - f(X) = AU f(I'X) = X (1) f ().

We may take f # 0. In this case, f is injective and so A(IT) is the operator given by

AUT) = Xz (¢m) "1 € Autc(X). (4.2.2)

The character y, is determined by its value on ¢ (3.6, Remark 2). Thus A determines the character
X and also the representation 7 (Lemma 6 of 3.3). O

5. Parametrization of the discrete series

In Proposition 7 (4.2), we gave a description of the elements of AJ(F)o in terms of extended
simple types of level zero. We convert this into a parametrization in terms of admissible tame pairs,
analogous to the discussions of Section 1.

5.1 We review the well-known cuspidal case. Section 2.2 of [7] provides further details. Let
(E/F,0) be an admissible tame pair of degree f.
We set Ag =My (F) and Go = GLy(F). We identify kg with a subfield of M¢(kr). There is a unique

character 6y of ]k; which inflates to 6|y, via the canonical map Ug — k;. If ¥ = Gal(kg/kp) =
Gal(E/F), the conjugates ¢, o € ¥, are distinct. We use the Green parametrization to construct
from 6y an irreducible cuspidal representation io of GLy(kf). This is determined by the character
formula

trio() = (=171 "6 (x7), (5.11)

oeXx

valid for every x € k; such that the conjugates x%, o € X, are distinct.

We write Jo =GLf(or) and inflate Lo to a representation Ag of Jo. We next set Jo=F*GLs(oF)
and extend XA to a representation Ag of J, by deeming that Ag|rx be a multiple of the char-
acter 6|px. The pair (Jg, Ao) is an extended maximal simple type in Go. The Gp-conjugacy class
of (Jo, Ao) depends only on the isomorphism class of (E/F, 6).

We set

7(9) = c-Ind}? Ao. (5.1.2)
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Proposition 8.

(1) Let (E/F,6) be an admissible tame pair of degree f. The representation 7t 7 (), defined by (5.1.2), is an
irreducible cuspidal representation of Go = GLy (F). The equivalence class of 7 s (9) depends only on the
F-isomorphism class of (E/F, 0).

(2) The map

Tr(F) — A$(Fo,

(E/F,0) —> 1 (0), (5.1.3)
is a bijection.
Proof. The proposition summarizes 2.2 Proposition of [7]. O

5.2. We generalize the construction of 5.1 to account for all elements of the set A (F)o.

Let (E/F,0) € Ts(F), let e > 1, and set n =ef. We use the character 6 to define the cuspidal
representation Ao of GLf(kr), as in (5.1.1). We let a=ar(e, f) and J = Uq. If p, is the Jacobson radical
of a, we have J/1+ py =GLf(kr)®. Following Definition 1 of 2.1, we form the representation A of |
inflated from Ao ® Ao ® - - ® Ag. We so obtain a simple type (J,2) in G = GL,(F). The G-conjugacy
class of (J, A) then depends only on the isomorphism class of (E/F,6).

We next choose a prime element @ of F and use it to define IT € J, just as in 2.3. Therefore J =
% x | is the G-normalizer of (J, 1). Let Xo be the representation space of Ag. Thus A : | — Autc (X),
where X = Xo ® Xo ® --- ® Xo (with e factors in the tensor product). We define 4I" € Autc(X) by

dl X1 QX% ® - QX > X2 Q- QXe @X1, Xk € Xo-
In the notation of 2.5, we have 4" = I""1.
Lemma 11.

(1) There is a unique representation Aq of J suchthat Ag|j = A and Ag (IT) =4I
(2) Leta e J haveimage (aq,az, ..., ae) in GLy (kF)®. The representation Ay then satisfies

tr Agy (ITa) = trAo(a1az - - - de). (5.2.1)
Proof. The statement merely recalls the definition and character formula for “tensor induction”. O
The defining identity (5.2.1) shows clearly that the representation A, depends on the choice of

the prime element @ € F. However, the same identity implies that the representation A extending A
and given by

AUT) =0((-D) ') Ay (IT) (5.2.2)

is independent of the choice of zr. The pair (J, A) is an extended simple type in G of level zero. We
temporarily denote it by (Jg, Ag).

Lemma 12.

(1) The G-conjugacy class of the representation (J,, Agp) depends only on the F-isomorphism class

of (E/F, 0).
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(2) Themap (E/F,0) — (], Ap) induces a bijection of T(F; n) with the set of conjugacy classes of extended
simple types of level zero in G.

Proof. Let (Jy, Ag) lie over the simple type (Jg, Ap). The conjugacy class of (Jg, Ag) is visibly in-
dependent of any choice made in its construction. The definition (5.2.2) and the character formula
(5.2.1) now give (1). Part (2) follows from Lemma 10 of 4.1 and the definition (5.2.2). O

We remark that we make no direct use of part (2) of the lemma. We have included the proof since
it is so easy.

Proposition 7 of 4.2 now allows us to make the following definition.

Definition 2. Let (E/F,0) € T(F;n). Define 7,(6) to be the unique element of A} (F)o containing the
extended simple type ([J,, Ap).

We remark that, in the case n = f, this definition coincides with (5.1.2).
Proposition 9. The map
T(F;n) — A5 (Fo.
(E/F,0) — my(0), (5.2.3)
is a canonical bijection.
Proof. This is a direct consequence of Lemma 12 and Proposition 7 of 4.2. O

Again, we make no direct use of this result.
6. Comparison theorems

We compare the various parametrizations mp, 7, pn by admissible tame pairs, elaborated in Sec-
tion 1 and Section 5.

6.1. Letn>1 be an integer, and let D be a central F-division algebra of dimension n®. The Jacquet-
Langlands correspondence [25,1] gives a canonical bijection

j:A1(D) S AJ(F). (6.1.1)

Theorem 1. Let n = ef , where e and f are positive integers. Let (E/F, 0) € T¢(F). If ng denotes the unramified
quadratic character of E*, then

Jp©) = (ni € 0). (6.1.2)

Allowing for a difference of notation, this result is a case of Theorem 3 on p. 184 of [30].

6.2. For each integer n > 1, the Langlands correspondence [21,15,16] gives a canonical bijection
1: A,(F) S Gu(F). (6.2.1)
This restricts to give a canonical bijection

1: AX(F) = Go(F). (6.2.2)
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Lemma 13. If e and f are positive integers, and T € A(}(F), then

I(Ste(7)) = Sp, (7). (6.2.3)
This is proved in [17, 2.7].
6.3. We arrive at our destination.

Theorem 2. Letn = ef, where e and f are positive integers. Let (E/F, 0) € T¢(F). If ng denotes the unramified
quadratic character of E*, then

17,(0) = pa(ns'6). (63.1)

Before proving the theorem, we note that on combining (6.3.1) with (6.1.2), we obtain the following
consequence.

Corollary 1. Let n = ef, where e and f are positive integers. Let (E/F, 6) € T¢(F). If ng denotes the unrami-
fied quadratic character of E*, then

. -1
Lip©) = pa (i ~0).
Corollary 1 is, of course, the Main Theorem of the introduction.

6.4. We prove Theorem 2 of 6.3. Consider first the representation I ¢(6). According to 2.4, Theo-
rem 2 of [9], this is given by

-1
I 0) = pr(nf~'6). (6.4.1)
We turn to the representation m = m,(0). By Lemma 7 of 3.4, m = St.(t), for some 7 € A(}(F) con-
taining the representation Ao introduced in 5.1.

Let x, be the character of J, attached to s, as in Proposition 4 of 3.6. Combining (4.2.2) and
(5.2.2), we find that

Xx(om) =0((—1)'w). (6.4.2)
Applying (3.7.3), we get
D' (D' @) = X () =0((—1)* ' ).

Recalling (3.7.1), this implies w; (@) = (—1)*"16(w). We deduce that T = ﬂf(neE_]Q). We apply
(6.4.1) to obtain It = pf(n;_fe). By (6.2.3) and the definition (1.4.3),

I = Sp(t) = pu(n 7 0),
whence the theorem follows.
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