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We say that a rational map on P
n is a monomial map if it can be

expressed in some coordinate system as [F0 : · · · : Fn] where each
Fi is a monomial. We consider arithmetic dynamics of monomial
maps on P

2. In particular, as Silverman (1993) explored for rational
maps on P

1, we determine when orbits contain only finitely many
integral points. Our first result is that if some iterate of a monomial
map on P

2 is a polynomial, then the first such iterate is 1, 2, 3,
4, 6, 8, or 12. We then completely determine all monomial maps
whose orbits always contain just finitely many integral points. Our
condition is based on the exponents in the monomials. In cases
when there are finitely many integral points in all orbits, we also
show that the sizes of the numerators and the denominators are
comparable. The main ingredients of the proofs are linear algebra,
such as Perron–Frobenius theorem.
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Dynamics is a study of iterative behaviors of a rational map

φ = adzd + ad−1zd−1 + · · · + a0

bdzd + bd−1zd−1 + · · · + b0
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Namely, it is a study of the limiting behavior of the n-th iterate φ(n) = φ ◦ · · · ◦ φ︸ ︷︷ ︸
n times

as n goes to ∞.

Traditionally, this has been explored over the field of complex numbers, that is, when ai and bi are
in C. On the other hand, rational maps are really algebraic morphisms on P1, and when they are
defined over a field of arithmetic interests, one can also explore arithmetic questions related to the
dynamics (see [5] for an introduction to the subject). Silverman [4] was one of the first to explore
these directions. In particular, he investigated when the orbit Oφ(P ) = {P , φ(P ),φ(2)(P ),φ(3)(P ), . . .}
of a point P ∈ Q under φ ∈ Q(z) contains infinitely many distinct integers. If φ(n) is ever a polynomial,
then just plugging in an integer produces infinitely many integers. Silverman’s result in [4] is that
aside from this obvious exception, we always get only finitely many integers in each orbit.

There have been some extensions and improvements of [4]. For example, [2] shows that we get
new primes dividing numerators and the denominators of φ(n)(P ) as n → ∞. This is more pre-
cise than [4], involving non-archimedean absolute values. As for extending to spaces other than P1,
[1] deals with the analog for maps on (P1)g .

In this article, we consider the analog of [4] for monomial maps on P2. These are the maps of
the form [F0 : F1 : F2] where each Fi is a monomial. Most of these are merely rational maps, not
morphisms. We will work mostly with the dehomogenized form φ = (xi y j, xk yl) with i, j,k, l ∈ Z,
obtained by dividing by F2. These are precisely the algebraic-group morphisms on Gm × Gm , but
we want to analyze integral points, so we will view the monomial maps as special examples of
rational maps on P2. A natural notion of “integral points” in this setting is (P2\(Z = 0))(Z) =
{[X : Y : 1]: X, Y ∈ Z}, and in the dehomogenized form, we will often refer to this set as the set
of integers. With this setup, we analyze the analog of [4] for monomial maps on P2.

Theorem 1 determines which iterations monomial maps can become polynomials. For P1,
Riemann–Hurwitz guarantees that if φ(2) is not a polynomial then no φ(n) will be. For monomial
maps on P2, the analog turns out to be φ(24) . In fact, we classify exactly when the first polynomial
can occur. Theorem 2 and Theorem 4 are generalizations of Silverman’s result to monomial maps
on P2. Theorem 2 characterizes monomial maps which always have finitely many integers in the
orbits no matter the initial point. Unlike the situation of P1, where we are guaranteed finiteness of
integers in all orbits if we avoid polynomials, it is not nearly as common for monomial maps. Our
characterization is in terms of the exponent matrix

( i j
k l

)
of φ = (xi y j, xk yl) and its eigenvalues. Theo-

rem 4 is the analog of the deeper result of Silverman’s; that is, when we are guaranteed finiteness of
integers in orbits, how “far away” from integers the orbit points actually are. Silverman’s result says
that the numerator and the denominator of φ(n)(P ) become comparable logarithmically as n → ∞.
For monomial maps on P2, we show in Theorem 4 that when we write both the x-coordinate and the
y-coordinate in reduced fractions, the product of the numerators and the product of the denomina-
tors become comparable logarithmically. The proofs of Theorems 1, 2, and 4 all utilize the asymptotic
analyses of the n-th power of the exponent matrix via the eigenvalues.

This paper is organized as follows. The first section contains some background material on mono-
mial maps, and then we give the precise statements of all the theorems. We also remark there that
the question of finiteness of integral points in orbits was also explored by the second author [7] as-
suming a very deep conjecture in Diophantine geometry by Vojta [6]. The monomial maps do not
satisfy the hypotheses of the main theorem in [7] so this article is not a direct example. On the other
hand, our original motivation for exploring the dynamics (in particular integers in orbits) of monomial
maps was trying to find explicit maps where questions of the form in [7] can be answered uncondi-
tionally, so we will discuss the connections. The next three sections contain the proofs of the three
theorems, respectively. After the proofs, we include some concrete numerical examples.

1. Background and precise statements of the theorems

Here we discuss the background material on monomial maps and then present precise statements
of the results. We say a map φ = [F0 : F1 : F2] on P2 is a monomial map if the Fi ’s are monomials
of same degree. Unless {F0, F1, F2} = {Xd, Y d, Zd} as sets, φ is not a morphism. On the other hand,
the points where φ might not be defined are restricted to just those on the triangle XY Z = 0. In
particular, as long as αβγ �= 0, the orbit of [α : β : γ ] is well-defined.
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Since F0/F2 and F1/F2 are degree-zero, they can be expressed as (X/Z)i(Y /Z) j for some i, j ∈ Z.
For most of this paper, we will use this dehomogenized notation φ = (xi y j, xk yl). We define the
exponent matrix of φ to be

( i j
k l

)
, and denote it by Aφ . This is the Jacobian of φ at (1,1). Since

φ
(
xp yq, xr ys) = (

xip+ jr yiq+ js, xkp+lr ykq+ls),
we can check by induction that Aφ(n) = (Aφ)n . Therefore, the exponent matrix Aφ and its eigenvalues
play crucial roles in the dynamics of the monomial map φ.

Our first result is determining the first iterate of φ that is a polynomial (if ever). Here, a polynomial
means that in the dehomogenized representation of φ, both coordinates are polynomials, that is, we
do not have any negative entries in Aφ . Our interest is analyzing integer-points (P2\(Z = 0))(Z) =
{[X : Y : 1]: X, Y ∈ Z} in orbits, and a polynomial trivially creates infinitely many integers in the orbits
of (α,β) ∈ Z2. So just as in P1, we would like to know up to what iterations we have to check to see
if we ever get a polynomial in φ(n) . By the previous paragraph, this reduces to determining powers
of Aφ which can have all entries nonnegative. There is a useful criterion for entrywise nonnegative
matrices in linear algebra, namely Perron–Frobenius theorem (Theorem 5 in Section 2). Together with
some cyclotomic field theory, we prove the following result.

Theorem 1. Let φ be a monomial map on P2 . If φ(n) is a polynomial for some n, then the first such n is 1, 2, 3,
4, 6, 8 or 12.

Hence, if φ(24) is not a polynomial, then φ(n) will never be a polynomial. All of the numbers listed
in the theorem do occur:

φ (dehomogeneous) φ (homogeneous) First polynomial iterate

(xy, y) [XY : Y Z : Z 2] φ(1) = (xy, y)

(x−1 y−1, x−1) [Z 2 : Y Z : XY ] φ(2) = (x2 y, xy)

(x−1 y−1, x) [Z 2 : X2 : XY ] φ(3) = (x, y)

(y−1, x) [Z 2 : XY : Y Z ] φ(4) = (x, y)

(y−1, xy) [Z 3 : XY 2 : Y Z 2] φ(6) = (x, y)

(x−1 y, x−1 y−1) [Y 2 Z : Z 3 : XY Z ] φ(8) = (x16, y16)

(xy−1, xy2) [X Z 3 : XY 2 Z : Y Z 3] φ(12) = (x729, y729)

These simple examples already indicate a pattern: if a monomial map becomes a polynomial
for the first time after three or more iterations, then the first polynomial seems to be of the form
(xm, ym), i.e. corresponding to a scalar matrix. This observation, proved in Lemma 7, is crucial to our
proof of Theorem 1.

Our second result gives a characterization of monomial maps whose orbits always contain just
finitely many integers. Unlike the P1 case, there exist many monomial maps which do not ever be-
come polynomials but which have an orbit that contains infinitely many distinct integers. Whether or
not an orbit with infinitely many integers exists is controlled by the eigenvalues of the matrix Aφ .

Theorem 2. Let φ = (xi y j, xk yl) be a monomial map on P2 , and let A = Aφ be its exponent matrix. Suppose
that at least some orbit of φ contains infinitely many distinct rational points. In the following circumstances,
all orbits contain just finitely many distinct integers, i.e. Oφ(P ) ∩ (P2\(Z = 0))(Z) is a finite set for any
P ∈ P2(Q)\(XY Z = 0):

(1) A has two real eigenvalues λ1, λ2 /∈ Q with |λ1| > |λ2| and |λ1| > 1, satisfying (i − λ1) j > 0.
(2) A is diagonalizable with two rational eigenvalues λ1, λ2 with |λ1| > |λ2| and |λ1| > 1, satisfying

(i − λ1) j > 0 and either |λ2| � 1 or (i − λ2) j > 0.
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(3) A is not diagonalizable with the unique eigenvalue λ satisfying |λ| > 1, and (i − λ) j > 0.
(4) φ = (x/ym, y), (ym/x,1/y), (x, y/xm), or (1/x, xm/y) for some m � 1.

In all other situations (including the case when A has complex eigenvalues), there exists P ∈ P2(Q)\(XY Z = 0)

such that Oφ(P ) contains infinitely many distinct integral points.

Example 3. Let φ = (y/x, x), so the exponent matrix A = ( −1 1
1 0

)
. It is not clear by an immediate

inspection if all orbits have finitely many integers. The eigenvalues are λ1 = −1−√
5

2 and λ2 = −1+√
5

2 ,

so (i − λ1) j =
√

5−1
2 > 0. Thus, this φ is in category (1) of the theorem, and so all orbits have just

finitely many integers. For this particular example, we can explicitly see what prevents orbits from
having infinitely many integers. We can prove by induction that

An = (−1)n
(

Fn+1 −Fn

−Fn Fn−1

)
,

where {F0, F1, F2, . . .} = {0,1,1,2,3,5,8,13, . . .} is the Fibonacci sequence. Therefore, we have

Fn = 1√
5

((
1 + √

5

2

)n

−
(

1 − √
5

2

)n)
,

and Fn−1
Fn

> Fn
Fn+1

if n is even and the inequality is reversed if n is odd. Suppose on the contrary
that the orbit of (α,β) under φ contains infinitely many integer points. Since α and β cannot both
be ±1, there is a prime p such that ordp(α) or ordp(β) is nonzero. Let us consider the case when
ordp(β) �= 0 and there are infinitely many even n’s such that φ(n)(α,β) is an integer; the cases of
infinitely many odd n’s and/or ordp(α) �= 0 will be similar. As the exponent matrix for φ(n) is An and
being an integer is equivalent to having nonnegative valuations at every prime, we must have

Fn+1 ordp(α) − Fn ordp(β) � 0

−Fn ordp(α) + Fn−1 ordp(β) � 0

for infinitely many even n. Thus, if ordp(β) > 0, then Fn
Fn+1

� ordp(α)

ordp(β)
� Fn−1

Fn
, and as the two ends

go to the same irrational number (the reciprocal of the golden ratio), while the middle is a fixed
rational number, this is a contradiction. If ordp(β) < 0, then a similar argument forces Fn

Fn+1
>

Fn−1
Fn

,
an immediate contradiction. We will discuss this example further in Example 10.

As in the above example, the proof of Theorem 2 involves an analysis of the asymptotics of
Aφ(n) = (Aφ)n , and we will use the Jordan normal form of A. Although it is stated over Q here, one
can generalize Theorem 2 to number fields. One care has to be taken: other than Q and quadratic
imaginary fields, we have infinitely many units, and monomial maps send units to units, so the cor-
responding statement for general number fields would characterize when one gets an orbit with
infinitely many distinct non-unit integers.

Our final result is the analog of the deepest result in [4]. When there are only finitely many
integers in every orbit, one can ask how the sizes of the denominators and the numerators compare
as we iterate the map. Silverman uses Roth’s theorem to show that the ratio of log |an| and log |bn|
goes toward 1 as n goes to infinity, where an/bn is φ(n)(P ) in a reduced fraction. We get a similar
result for monomial maps, but now the limit might not be 1:

Theorem 4. Assume that a monomial map φ belongs to one of the cases (1)–(3) of Theorem 2. Let
P ∈ P2(Q)\(XY Z = 0) such that the orbit Oφ(P ) is an infinite set. Writing both the x- and the y-coordinates
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of φ(n)(P ) in reduced fractions, let Nn be the product of the numerators and let Dn be the product of the
denominators. Then

lim
n→∞

max(log |Nn|, log |Dn|)
min(log |Nn|, log |Dn|)

exists and is a strictly positive number.

This limit is computable from the exponent matrix and its eigenvalues, together with primes at
which the point P has nonzero valuations. For example, if A has nonrational real eigenvalues and if
P = (α,β) is such that ordp(α) and ordp(β) are all zero except for one prime, then the limit is j

i−λ
(or its reciprocal if this is less than 1), where λ is the eigenvalue with the bigger absolute value. More
generally, the limit is a ratio of positive linear combinations of logarithms of primes.

Since the number of digits of the product of the numerators and the number of digits of the
product of the denominators have to become roughly the same, this theorem says that the orbit
points must be very far from being integers. So this is an analog of Silverman’s result. On the other
hand, a more natural generalization would be the comparability of the logarithm of the maximum of
the homogeneous coordinates of φ(n)(P ) and the logarithm of the Z -th coordinate. In fact, we can see
from Theorem 4 that these two logarithms are also comparable: if the point (r/s, t/u) = [ru : st : su]
satisfies log(rt) ∼ log(su), then we have log(ru) � log(rt) + log(su) and log(st) � log(rt) + log(su), so
the logarithms of both the X-coordinate and the Y -coordinate are comparable to the logarithm of the
Z -coordinate. More precisely, in the remark following the proof of Theorem 4, we will show that the
limit

log(max(|Xn|, |Yn|, |Zn|))
log |Zn|

also exists, where φ(n)(P ) = [Xn : Yn : Zn] written with integers without common divisors. However,
the expression for this limit is much more complicated than the limit for Theorem 4.

Note that Theorem 4 does not hold for φ in case (4) of Theorem 2: if φ = (x/y, y), then φ(n) =
(x/yn, y), so φ(n)(1,2) = (1/2n,2).

We end this section with two remarks. First, our original motivation for this paper comes from
trying to find unconditional examples of the previous work [7] on integer orbits by the second author,
which assumed a powerful conjecture in Diophantine geometry formulated by Vojta [6]. The main
theorem [7, Theorem 1.1] has two parts: (1) if φ : PN → PN is a morphism of degree d such that
there exists k with dk > N + 1 making the pullback (φ(k))∗(H) of a hyperplane divisor H a normal
crossings divisor, then for any P ∈ PN (Q), the orbit Oφ(P ) contains only finitely many integer points
(PN\H)(Z) (2) if φ is a morphism such that (φ(k))∗(H) is a normal crossings divisor for all k, then
the ratio of the logarithm of the H-coordinate of φ(n)(P ) to the logarithmic height of φ(n)(P ) goes to
1 as n → ∞. Vojta’s conjecture is a powerful height inequality in Diophantine geometry, and it can
be viewed as an extension of Roth’s theorem on P1. Therefore, [7] is a generalization of Silverman’s
result to higher-dimensional projective spaces, replacing the nonpolynomial condition (i.e. not totally
ramified) of Silverman by the normal-crossings condition (which implies not ramified at all).

Viewed in this context, Theorems 2 and 4 offer similar results as [7] for the case of mono-
mial maps, without assuming any conjectures. On the other hand, they are not examples of [7],
since monomial maps are rational maps and not morphisms. Moreover, H in our case is Z = 0,
but (φ(k))∗(H) for a monomial map φ is the triangle XY Z = 0 with high multiplicity, so it is never
normal-crossings. So the key hypotheses of the main theorem of [7] are not satisfied by the mono-
mial maps on P2, and accordingly the results are different: in Theorem 2, we show that many maps
can have infinitely many distinct integers without their iterations ever becoming a polynomial, and in
Theorem 4, we show that the log ratio of the sizes of the coordinates can go to a number not equal
to 1. Nevertheless, monomial maps offer concrete examples where one can explore similar types of
questions, possibly gathering some evidence for generalizations of [7] to rational maps.
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Our second remark is about generalizing Theorems 1, 2, and 4 to monomial maps on P3 or even
higher-dimensional projective spaces. At a first glance, this seems to be a lot more difficult. For one
thing, it is not even clear if anything similar to Theorem 1 even holds. Just by using exponents be-
tween −2 and 2, for any n between 1 and 46, we can find a monomial map whose first polynomial
iterate occurs at n. For example, if φ = (xy−1, x2 y2z−1, x−1 y−1z−2), then the first polynomial iterate
is φ(46) , which is

(
x889794221451447 y427541822476455z1281621242409692,

x426537597456782 y1743873641384684z4272405549705531,

x2990784307295839 y5554026792115223z21396738325026192). (1)

We give a few more examples: the first polynomial iterate of (x−2z, xy−2, xyz2) is the 43rd one, the
first polynomial iterate of (x−1 y−1z−2, xy2z−2, x−2 y−1) is the 44th one, and the first polynomial iter-
ate of (y−1z2, x2 y−2z−1, x2 yz) is the 45th one. We did not find any monomial whose first polynomial
iterate occurs at 47, but this is probably caused by the limited range of integers used. So the situation
is very different from the P2 case. Moreover, as one can even see in (1), the first polynomial iterate
does not seem to correspond to any sort of a special class of matrices, as we obtain the scalars for P2

(Lemma 7). One more difficulty is that our proofs of Theorems 2 and 4 are based on Jordan normal
forms for 2 by 2 matrices, making the generalization of the arguments difficult.

2. Iteration of monomial maps and polynomials

We will now prove Theorem 1. This is really a corollary of a linear algebra result (applied to the
matrix Aφ ), so we will state the results in this setting. We first make the following definition.

Definition. If A is a real matrix, we say A is entrywise nonnegative if all entries of A are nonnegative.
For brevity, we may refer to A as nonnegative or write A � 0, but this should not be confused with
the usual definition of a nonnegative matrix (self-adjoint with nonnegative eigenvalues). If A1 and A2
are matrices of the same size then we say A1 � A2 if A1 − A2 is entrywise nonnegative. Entrywise
nonpositivity, positivity, and negativity are similarly defined.

Clearly if A is entrywise nonnegative and v � 0, then Av � 0. Conversely, A is entrywise nonneg-
ative if it takes all nonnegative vectors to nonnegative vectors.

We will use the following Perron–Frobenius characterization of entrywise nonnegative matrices [3,
Theorem 16.4]:

Theorem 5 (Perron–Frobenius). Every nonnegative l × l matrix A, A �= 0, has an eigenvalue λ such that

(1) λ is real and nonnegative,
(2) there exists a nonnegative eigenvector of λ,
(3) the absolute value of every other eigenvalue is � λ,
(4) if κ is another eigenvalue of A with |κ | = λ, then κ = e2π ik/mλ, where k, m are positive integers with

m � l.

In the case of 2 × 2 matrices, the final condition implies that κ = ±λ, since m = 1 or 2. We also
use the following standard terminology.

Definition. Suppose A is a nondiagonalizable 2 × 2 matrix, with an eigenvalue λ and an eigenvec-
tor v1. Then v2 is a generalized eigenvector of A if v2 is not a scalar multiple of v1 and (A−λI)v2 = v1.
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If we write A using the basis {v1, v2}, then the matrix is
( λ 1

0 λ

)
, and we can easily check that

Ak v2 = λk v2 + kλk−1 v1.

Lemma 6. If A ∈ M2(R) has real eigenvalues, and An is entrywise nonnegative for some n, then A2 is entrywise
nonnegative.

Proof. Note that since An � 0, A2rn � 0 for all r, so Ak � 0 for infinitely many even k. Let λ1, λ2
be the eigenvalues of A, and first let us consider the case when |λ1| > |λ2| with vi corresponding
eigenvectors. Since v1 is an eigenvector of An corresponding to the eigenvalue with bigger absolute
value, by Theorem 5, we can choose v1 to be nonnegative. Let v be any nonnegative vector, and we
can uniquely write v = c1 v1 + c2 v2. We will prove that A2 v � 0. If c1 < 0, then Ak v = c1λ

k
1 v1 +

c2λ
k
2 v2 < 0 for any sufficiently large even k. Therefore, we may assume c1 � 0. Then

A2 v = c1λ
2
1 v1 + c2λ

2
2 v2 � c1λ

2
2 v1 + c2λ

2
2 v2 = λ2

2 v � 0,

so A2 must be nonnegative.
Now suppose |λ1| = |λ2|, i.e., λ1 = ±λ2. If A is diagonalizable, then A2 is diagonalizable with both

eigenvalues equal to λ2
1, so A2 � 0 as desired. If A is not diagonalizable, then let λ = λ1 = λ2 and let

v1 be an eigenvector of A and v2 be its generalized eigenvector. For any nonnegative v = c1 v1 + c2 v2,

Ak v = c1 Ak v1 + c2 Ak v2 = c1λ
k v1 + c2λ

k v2 + kc2λ
k−1 v1

= λk v + kc2λ
k−1 v1 = λk−2(λ2 v + kc2λv1

)
.

In order for above to be nonnegative for infinitely many even k, we must have c2λv1 � 0. But then
A2 v = λ2 v + 2c2λv1 � 0. �
Lemma 7. Let A ∈ M2(Q). Suppose that for some n > 0, An � 0, but for m < n, Am � 0. Then n is 1, 2, 3, 4, 6,
8, or 12. Moreover, if such an n is greater than 2, then An is a scalar matrix.

Proof. If n = 1 or 2, then we are done. Otherwise, by Lemma 6 A has non-real eigenvalues λ, λ. By
Theorem 5, λn is real and λn > 0. Since A is diagonalizable, so is An , and (λ)n = λn = λn implies that
An is a scalar matrix. Note that if m < n, we cannot have λm real and positive, since then λm = λm

would be real and positive, and Am would be a nonnegative matrix. Therefore, (λ/|λ|)n = 1, but
(λ/|λ|)m �= 1 for any m < n. So ω, defined to be λ/|λ|, is a primitive nth root of unity.

Now, λ is a root of A’s characteristic polynomial, so it is in a quadratic extension of Q. As ω2 =
λ2/|λ|2 = λ/λ, so is ω2. Hence, ω2 is a root of unity belonging to a quadratic extension, so its order
must be 1, 2, 3, 4, or 6. Therefore, n must be 3, 4, 6, 8 or 12. �
Proof of Theorem 1. Since both components of φ(n) in a dehomogenized form are polynomials pre-
cisely when A = Aφ has the property that An is entrywise nonnegative. Therefore, the result is an
immediate consequence of Lemma 7. �
3. Finiteness of integers in orbits

We prove Theorem 2 in this section. Let A = Aφ be the exponent matrix of φ = (xi y j, xk yl). Let
λ1, λ2 be the two (possibly equal) eigenvalues of A, and we assume without loss of generality that
|λ1| � |λ2|. By choosing an eigenvector

( a
c

)
for λ1 and an eigenvector

( b
d

)
for λ2 (when A is not

diagonalizable then
( b

d

)
is a generalized eigenvector (see Definition 5) of λ1 = λ2), we have

(
a b
c d

)−1

A

(
a b
c d

)
=

(
λ1 δ

0 λ

)
,

2
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where δ = 0 if A is diagonalizable and δ = 1 if not. Therefore, the exponent matrix for φ(n) is

Aφ(n) = An = 1

ad − bc

(
a b
c d

)(
λn

1 δnλn−1
1

0 λn
2

)(
d −b

−c a

)

= 1

ad − bc

(
adλn

1 − bcλn
2 − δacnλn−1

1 −ab(λn
1 − λn

2) + δa2nλn−1
1

cd(λn
1 − λn

2) − δc2nλn−1
1 −bcλn

1 + adλn
2 + δacnλn−1

1

)
. (2)

This is an integer-entry matrix. We now divide into three cases.

3.1. Case I: A is diagonalizable with real eigenvalues

Suppose λ1, λ2 ∈ R. Since δ = 0, if |λ1| (and therefore |λ2|) is less than or equal to 1, the set
{An} is a finite set of matrices, so all orbits will be finite. Thus, we may assume that |λ1| > 1. In
the current case, if |λ1| = |λ2|, then A2 is a scalar matrix with diagonal entries bigger than 1, so we
trivially get infinitely many distinct integers in the orbit of say (2,1). We may now thus assume that
|λ1| > |λ2|.

Let (α,β) ∈ Q2. Note that a rational number is an integer if and only if it has a nonnegative
valuation at every prime. Since the formula for the exponents of φ(n) is given in (2), φ(n)(α,β) is an
integer if and only if

1

ad − bc

[(
adλn

1 − bcλn
2

)
ordp(α) − ab

(
λn

1 − λn
2

)
ordp(β)

]
� 0

1

ad − bc

[
cd

(
λn

1 − λn
2

)
ordp(α) + (−bcλn

1 + adλn
2

)
ordp(β)

]
� 0 (3)

for every prime p. By multiplying the eigenvector
( b

d

)
by −1 if necessary, we may assume that ad −

bc > 0. Then (3) can be rewritten as

a
(
d ordp(α) − b ordp(β)

)
λn

1 + b
(
a ordp(β) − c ordp(α)

)
λn

2 � 0

c
(
d ordp(α) − b ordp(β)

)
λn

1 + d
(
a ordp(β) − c ordp(α)

)
λn

2 � 0. (4)

Assume for the moment that a �= 0. If c/a > 0, then we can choose integers ord2(α) and ord2(β)

so that a(d ord2(α) − b ord2(β)) > 0 and c(d ord2(α) − b ord2(β)) > 0. For sufficiently large even n,
λn

1 � λn
2 > 0, so both of (4) are satisfied for p = 2. If we make the valuations of α and β to be 0 at

all odd primes, we can then satisfy (4) for all primes, so we get infinitely many n’s where φ(n)(α,β)

is an integer point. Since |λ1| > 1, it is also clear that the points in the orbit are distinct, so we are
guaranteed to have infinitely many distinct integers in this orbit.

Now assume that c/a < 0. If (α,β) ∈ Q2 is such that for some prime p, d ordp(α) − b ordp(β) �= 0,
then it is clear by the same argument that for all sufficiently large n one of (4) will not be satisfied,
so we are guaranteed to have finiteness of integers in such an orbit. Now suppose that d ordp(α) −
b ordp(β) = 0 for all primes p. If |λ2| � 1, then the orbit contains only finitely many distinct points, so
we may assume that |λ2| > 1. If |α| = |β| = 1, then the orbit is always finite, so we may assume that
(ordp(α),ordp(β)) �= (0,0) for some p. For such a p, because

( a
c

)
and

( b
d

)
are linearly independent,

a ordp(β) − c ordp(α) �= 0. Therefore, if b and d are both nonzero and b/d < 0, then for all n, one of
(4) is negative. Moreover, as |λ2| > 1, we will have infinitely many distinct points in the orbit. So we
have only finitely many integral points despite having infinitely many points in the orbit. If b = 0,
then ordp(α) = 0 for every p, so (4) reduce to just da ordp(β)λn

2 � 0. So by choosing ordp(β) to have
the same sign as da, we obtain integer points for all even n. The case of d = 0 is similar. Finally, if
b/d > 0, then choosing (α,β) so that the parity of a ord2(β) − c ord2(α) is the same as that of b,
we can satisfy both of (4) for all even n. Therefore, we have infinitely many distinct integers in this
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orbit. In summary, when c/a < 0, we are guaranteed finiteness of integers in all orbits if b/d < 0, or
if |λ2| � 1, or if for every (α,β) there exists a prime p so that d ordp(α) − b ordp(β) �= 0.

Now let us consider the case of a = 0. We can then assume that c = 1, and by linear independence
of two eigenvectors, b �= 0. If we choose ord2(α) so that −bc ord2(α) > 0 and then choose d ord2(α)−
b ord2(β) > 0, we can satisfy both of (4) for all sufficiently large even n because |λ1| > |λ2| and
|λ1| > 1. Thus, we get infinitely many distinct integers in this orbit. The case of c = 0 is similar.

Since the eigenvector
( a

c

)
of λ1 is

( j
λ1−i

)
and the eigenvector

( b
d

)
of λ2 is

( j
λ2−i

)
, we obtain

cases (1) and (2) of Theorem 2. Note that when eigenvalues are nonrational, for a prime p such that
(ordp(α),ordp(β)) �= (0,0), d ordp(α) − b ordp(β) is guaranteed to be nonzero. Therefore, the sign of

a/c = j
λ1−i completely determines whether we always get just finitely many integers in orbits, as

stated in case (1) of Theorem 2.

3.2. Case II: A is nondiagonalizable

In this case, we have λ = λ1 = λ2 and δ = 1 in (2), so for φ(n)(α,β) to be an integral point, we
must have

(
λn − ac

ad − bc
nλn−1

)
ordp(α) + a2

ad − bc
nλn−1 ordp(β) � 0 (5)

− c2

ad − bc
nλn−1 ordp(α) +

(
λn + ac

ad − bc
nλn−1

)
ordp(β) � 0 (6)

for all primes p. Since the trace 2λ and the determinant λ2 of A are integers, λ ∈ Z. If λ = 0, then
A2 = 0, so all orbits are finite sets. We can now assume that |λ| � 1.

If c = 0, then we may assume that a = 1. If |λ| > 1, then it is easy to see that (α,β) = (2,1)

satisfies (5) and (6) for all even n’s and (5) goes to infinity as n → ∞, so we get infinitely many
distinct integers in its orbit. If λ = ±1, then (5) and (6) are

(±1)n ordp(α) + 1

d
n(±1)n−1 ordp(β) � 0, (±1)n ordp(β) � 0.

In order for the orbit to contain infinitely many distinct rational points, ordp(β) must be nonzero for
some p. If λ = 1, then the second inequality forces ordp(β) > 0 for such a p, so we have infinitely
many distinct integers if d > 0 and we have finitely many integers if d < 0. If λ = −1, then the signs
of 1

d (−1)n−1 and (−1)n have to agree to have infinitely many integers, so we have infinitely many
distinct integers if d < 0 and we have finitely many integers if d > 0. The case of a = 0 (and c = 1)
can be treated similarly: we have finiteness of integers in every orbit if λ = 1 and b < 0 or λ = −1
and b > 0. Using these information on the eigenvalues and the (generalized) eigenvectors, we can
reconstruct the exponent matrix, obtaining A = ( ±1 1/d

0 ±1

)
,
( ±1 0

1/b ±1

)
. This is precisely case (4) of the

theorem.
Now let us assume that ac �= 0. Note that |nλn−1| is bigger than |λn| for n sufficiently large, and

the coefficient of nλn−1 in (6) is c/a times the coefficient of nλn−1 in (5). So if c/a > 0, by choosing
(α,β) so that −c ord2(α)+a ord2(β)

ad−bc has the same sign as a, we get integers for all sufficiently large odd
n, creating infinitely many distinct integers. On the other hand, suppose c/a < 0. If −c ordp(α) +
a ordp(β) �= 0 for some prime p, then (5) and (6) have opposite signs for all sufficiently large n, so we
get only finitely many integers in its orbit. If −c ordp(α) + a ordp(β) = 0 for all p, then ordp(α) and
ordp(β) must have opposite signs whenever they are nonzero. Since (5) says λn ordp(α) � 0 and (6)
says λn ordp(β) � 0, this is a contradiction. So we have finiteness of integers in all orbits if c/a < 0.
This is case (3) of the theorem.
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3.3. Case III: A has complex eigenvalues

In this case, we can let λ = λ1 and then λ2 = λ. Since
( a

c

)
is an eigenvector for λ, we can let a = j

and c = λ − i when j > 0, and we let a = − j and c = i − λ when j < 0. We can then take b = a and
d = c to make

( b
d

)
an eigenvector for λ. We know that a and b are strictly positive. Interchanging λ

and λ if necessary, we can assume without loss of generality that Im(c) > 0, so that 0 < arg(c) < π .
Substituting these values into (2), we obtain

Aφ(n) = An = 1

a(c − c)

(
a(cλn − cλn ) −a2(λn − λn )

cc(λn − λn ) −a(cλn − cλn )

)

= 1

−a Im c

(
a Im(cλn) −a2 Imλn

|c|2 Im λn −a Im(cλn)

)
,

where all entries are integers as before. If |λ| � 1, then by the first line, it is clear that there are
only finitely many possibilities for An , so all orbits will be finite. Let us now assume that |λ| > 1. In
this case, we will now show that the orbit of (1,2) always contains infinitely many distinct integers.
Taking the 2-adic valuation and using the fact that Im c and a are both positive, we need to show that

Im λn � 0 and Im
(
cλn) � 0

for infinitely many n. In other words, we need infinitely many n so that both λn and cλn lie in the
upper half-plane.

Now, if arg λ is a rational multiple of π , λn is positive real for infinitely many n, and in this case
we satisfy both inequalities, because Im c > 0. For such n, Im(cλn) = |cλn| sin(arg c), so as |λ| > 1, this
goes to infinity as n increases. Therefore, these integer points are distinct.

If argλ is not a rational multiple of π , then argλn is uniformly distributed in (−π,π ], in par-
ticular they are dense. Since 0 < arg c < π , we may therefore choose infinitely many n satisfying
0 <

π−arg c
2 < argλn < π − arg c < π . Then we have 0 <

π−arg c
2 < argλn < arg(cλn) < π , so both λn

and cλn lie in the upper half-plane. Moreover, if we let t = min(sin(
π−arg c

2 ), sin(π − arg c)), then
Imλn � |λ|nt . Therefore, this is not bounded, and hence we have infinitely many distinct integer points
in the orbit. This finishes the proof in this case, finishing the proof of Theorem 2. �

Using the proof above, we can efficiently find monomial maps which do not satisfy (1)–(4) of
Theorem 2 but which has some (α,β) such that Oφ(α,β) is an infinite set containing only finitely
many integer points. From the examples below, we see that it is weak to ask for just some orbits
to contain finitely many integer points. This explains why we instead characterized in Theorem 2
monomial maps whose orbits always contain finitely many integer points.

Example 8. If all entries of the exponent matrix are nonnegative, then starting from (α,β) ∈ Z2, we
get infinitely many integers. So these maps have some orbits containing infinitely many integer points.
On the other hand, if α and β are reciprocals of integers, then all orbit points will be reciprocals of
integers. So these types of orbits contain infinitely many rational points but only finitely many integral
points.

A slightly less trivial example is when the exponent matrix A is diagonalizable with real eigen-
values such that a > 0, c > 0, and λ1 > 0. We have seen in the proof of Theorem 2 that some orbits
have infinitely many integer points. However, if we choose (α,β) to satisfy d ordp(α) − b ordp(β) < 0,
we conclude from (4) that φ(n)(α,β) is not an integer point for any sufficiently large n. For example,
if φ = (x4/y, x2 y), then we can take

( a
c

) = ( 1
1

)
with λ1 = 3 and

( b
d

) = ( 1
2

)
with λ2 = 2. Then the

point (3,27) has the property that 2 ord3(3) − ord3(27) < 0, so the leading terms in both of (4) have
negative coefficients, forcing the orbit to contain only finitely many integer points. On the other hand,
the point (27,3) satisfies 2 ord3(27) − ord3(3) > 0, so there are infinitely many distinct integer points
in this orbit.
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Example 9. We can find a similar situation for the case when the exponent matrix is nondiagonal-
izable. For example, if a > 0 and c > 0 then we have seen that there are some orbits with infinitely
many integer points. But if ordp(β) = 0, then we cannot satisfy (5) for any sufficiently large n if
ad − bc > 0 and ordp(α) > 0. For example, if φ = (xy, y3/x), then

( a
c

) = ( 1
1

)
with eigenvalue 2 and

we can take
( b

d

) = ( 1
2

)
as a corresponding generalized eigenvector. Then ad − bc = 1 > 0. So the point

(2,1) has only finitely many integers in its orbit, while (1,2) satisfies −c ord2(α) + a ord2(β) = 1, so
it has infinitely many integers in its orbit.

4. Size of numerators and denominators in orbits

Here we prove Theorem 4, and then discuss several examples at the end. Let us first deal with the
case when the exponent matrix A is diagonalizable with real eigenvalues λ1, λ2 satisfying |λ1| > |λ2|.
As in the proof of Theorem 2, let

( a
c

)
be an eigenvector for λ1 and

( b
d

)
be an eigenvector for λ2.

Without loss of generality, we can assume that a > 0, c < 0, and b � 0. We will also assume that
d � 0: this is guaranteed for case (2) of Theorem 2, and we will see later that the sign of d does not
make a difference in case (1). Suppose that (α,β) ∈ (Q∗)2, and we can assume that |α| and |β| are not
both 1. We use (4) to write the x-coordinate and the y-coordinate of φ(n)(α,β) in a reduced fraction.
One needs to be slightly careful, as pn

p = 1/p
1/pn as fractions, but log pn

log p = n is completely different from
log(1/p)

log(1/pn)
= 1

n . Thus, we have to make sure to distinguish primes appearing in the denominator from
those appearing in the numerator to calculate the ratio of logarithms. We define

S1 = {
p prime: d ordp(α) − b ordp(β) > 0

}
S2 = {

p prime: d ordp(α) − b ordp(β) < 0
}

S3 = {
p prime: d ordp(α) − b ordp(β) = 0 and a ordp(β) − c ordp(α) > 0

}
S4 = {

p prime: d ordp(α) − b ordp(β) = 0 and a ordp(β) − c ordp(α) < 0
}
.

These four sets are disjoint and their union is nonempty, as ordp(α) �= 0 or ordp(β) �= 0 for some

p and
( a

c

)
and

( b
d

)
are linearly independent. Let us assume for now that λ2 � 0. Using (4), for n

sufficiently large (and additionally for n even if λ1 < 0), the x-coordinate of φ(n)(α,β) in a reduced
fraction is

∏
p∈S1

pa(d ordp(α)−b ordp(β))λn
1+b(a ordp(β)−c ordp(α))λn

2
∏

p∈S3

pb(a ordp(β)−c ordp(α))λn
2

∏
p∈S2

p−a(d ordp(α)−b ordp(β))λn
1−b(a ordp(β)−c ordp(α))λn

2
∏

p∈S4

p−b(a ordp(β)−c ordp(α))λn
2

(7)

and the y-coordinate is

∏
p∈S2

pc(d ordp(α)−b ordp(β))λn
1+d(a ordp(β)−c ordp(α))λn

2
∏

p∈S4

pd(a ordp(β)−c ordp(α))λn
2

∏
p∈S1

p−c(d ordp(α)−b ordp(β))λn
1−d(a ordp(β)−c ordp(α))λn

2
∏

p∈S3

p−d(a ordp(β)−c ordp(α))λn
2
. (8)

For large enough (and if λ1 < 0, even) n, the exponents that appear in the numerator and the de-
nominator are guaranteed to be nonnegative. Let Θp = d ordp(α) − b ordp(β) and Γp = a ordp(β) −
c ordp(α). Then the log ratio log Nn

log D is

n
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∑
p∈S1

(aΘpλn
1+bΓpλn

2) log p+ ∑
p∈S2

(cΘpλn
1+dΓpλn

2) log p+ ∑
p∈S3

bΓpλn
2 log p+ ∑

p∈S4

dΓpλn
2 log p

∑
p∈S1

(−cΘpλn
1−dΓpλn

2) log p+ ∑
p∈S2

(−aΘpλn
1−bΓpλn

2) log p+ ∑
p∈S3

−dΓpλn
2 log p+ ∑

p∈S4

−bΓpλn
2 log p

. (9)

Let us first assume that S1 ∪ S2 �= ∅. If the eigenvalues are nonrational, then either d or b lie outside
of Q, so d ordp(α) − b ordp(β) is nonzero if ordp(α) or ordp(β) is nonzero. Therefore, as (α,β) �=
(±1,±1), S1 ∪ S2 is always nonempty when eigenvalues are nonrational reals. In all situations when
S1 ∪ S2 �= ∅, the coefficients of λn

1 in the numerator and in the denominator of (9) are strictly positive,
since they are nonempty positive linear combinations of logarithms. Hence, dividing the top and the
bottom by λn

1 and letting n → ∞, this fraction tends to

∑
p∈S1

aΘp log p + ∑
p∈S2

cΘp log p∑
p∈S1

−cΘp log p + ∑
p∈S2

−aΘp log p

=

∑
p∈S1

a(d ordp(α) − b ordp(β)) log p + ∑
p∈S2

c(d ordp(α) − b ordp(β)) log p∑
p∈S1

−c(d ordp(α) − b ordp(β)) log p + ∑
p∈S2

−a(d ordp(α) − b ordp(β)) log p
. (10)

This limit is a strictly positive number. Similarly, if λ1 < 0, for n sufficiently large and odd, the x-
coordinate becomes ∏

p∈S2

paΘpλn
1+bΓpλn

2
∏

p∈S3

pbΓpλn
2

∏
p∈S1

p−aΘpλn
1−bΓpλn

2
∏

p∈S4

p−bΓpλn
2

and the y-coordinate becomes

∏
p∈S1

pcΘpλn
1+dΓpλn

2
∏

p∈S4

pdΓpλn
2

∏
p∈S2

p−cΘpλn
1−dΓpλn

2
∏

p∈S3

p−dΓpλn
2
.

As before, the exponents in the numerators and the denominators are nonnegative. Thus, the limit of
the log ratio is∑

p∈S1

c(d ordp(α) − b ordp(β)) log p + ∑
p∈S2

a(d ordp(α) − b ordp(β)) log p

− ∑
p∈S1

a(d ordp(α) − b ordp(β)) log p − ∑
p∈S2

c(d ordp(α) − b ordp(β)) log p
. (11)

Therefore, when λ1 < 0, the limit (11) of the odd iterations is the reciprocal of the limit (10) of the
even iterations. So when λ1 < 0, we have a single limit for all iterations if and only if (10) is equal to
1. As the logarithms of primes are linearly independent over number fields, we see that this happens
if and only if a = −c, that is j = i − λ1. When the limits differ, we can formulate a uniform result for
all iterations as follows: the ratio of max(log |Nn|, log |Dn|) to min(log |Nn|, log |Dn|) goes to the limit
given by (10) (or its reciprocal (11) when (10) is less than 1) as n → ∞.

We remark that if all primes are in S1 (resp. S2), then (10) is − a
c (resp. − c

a ) and (11) is − c
a (resp.

− a
c ). As

( a
c

)
is an eigenvector for eigenvalue λ1, − a

c = j
i−λ1

, so we can write out the limit using the
exponents of φ. Otherwise, the limit can involve various logarithms, as we will see in Examples 10, 11,
and 12.
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Note that if λ2 < 0, then the products over S3 and S4 switch places between the numerator and
denominator for odd n. For example, in the case λ1 > 0, (7) for odd n becomes

∏
p∈S1

paΘpλn
1+bΓpλn

2
∏

p∈S4

pbΓpλn
2

∏
p∈S2

p−aΘpλn
1−bΓpλn

2
∏

p∈S3

p−bΓpλn
2
. (12)

All exponents are nonnegative for sufficiently large odd n, so this is the reduced fraction expression.
When we take logarithms of the numerator and the denominator and then divide by λn

1, the place-
ments of S3 and S4 terms do not make any differences. Thus, the limit expression will be exactly
the same: (10) for λ1 > 0 or for even iterations, (11) for λ1 < 0 and odd iterations. Similarly, in case
(1) of Theorem 2, S1 ∪ S2 is guaranteed to be nonempty, so we can now see that the limit does not
change even if d was actually positive, since this also only interchanges S3 and S4 in the y-coordinate
expression.

If S1 ∪ S2 is empty, then the sign of λ2 does make a difference. If λ2 > 0 or λ2 < 0 and n even, we
divide the top and the bottom of (9) by λn

2 and the log ratio is always (there is no dependence on n)

∑
p∈S3

b(a ordp(β) − c ordp(α)) log p + ∑
p∈S4

d(a ordp(β) − c ordp(α)) log p∑
p∈S3

−d(a ordp(β) − c ordp(α)) log p + ∑
p∈S4

−b(a ordp(β) − c ordp(α)) log p
. (13)

If λ2 < 0, then using (12) and the corresponding y-coordinate expression, the log ratio of the odd
iterations is always

∑
p∈S3

d(a ordp(β) − c ordp(α)) log p + ∑
p∈S4

b(a ordp(β) − c ordp(α)) log p∑
p∈S3

−b(a ordp(β) − c ordp(α)) log p + ∑
p∈S4

−d(a ordp(β) − c ordp(α)) log p
.

So if d ordp(α) − b ordp(β) = 0 for all p, then the ratio of max(log |Nn|, log |Dn|) to min(log |Nn|,
log |Dn|) is (13) (or its reciprocal if (13) is less than 1). As before, if in addition S4 is empty, (13) is
− b

d = j
i−λ2

.
Now, we deal with case (3) of Theorem 2. We have |λ| > 1 and ac < 0, so we can assume without

loss of generality that a > 0 and c < 0. Then similarly to the diagonalizable case, define

Θp = −c ordp(α) + a ordp(β)

ad − bc

S1 =
{

p prime:
−c ordp(α) + a ordp(β)

ad − bc
> 0

}

S2 =
{

p prime:
−c ordp(α) + a ordp(β)

ad − bc
< 0

}
S3 = {

p prime: Θp = 0, ordp(α) > 0
} = {

p prime: Θp = 0, ordp(β) < 0
}

S4 = {
p prime: Θp = 0, ordp(α) < 0

} = {
p prime: Θp = 0, ordp(β) > 0

}
.

Let us assume for now that S1 ∪ S2 is not empty and λ > 0. From (5) and (6), for all n sufficiently
large, φ(n)(α,β) in a reduced fraction is
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( ∏
p∈S1

pλn−1(aΘpn+λ ordp(α))
∏

p∈S3

pλn ordp(α)

∏
p∈S2

pλn−1(−aΘpn−λ ordp(α))
∏

p∈S4

p−λn ordp(α)
,

∏
p∈S2

pλn−1(cΘpn+λ ordp(β))
∏

p∈S4

pλn ordp(β)

∏
p∈S1

pλn−1(−cΘpn−λ ordp(β))
∏

p∈S3

p−λn ordp(β)

)
. (14)

Computing the log ratio and multiplying the top and the bottom by ad−bc
nλn−1 , the limit as n → ∞ is

∑
p∈S1

a(−c ordp(α) + a ordp(β)) log p + ∑
p∈S2

c(−c ordp(α) + a ordp(β)) log p∑
p∈S1

−c(−c ordp(α) + a ordp(β)) log p + ∑
p∈S2

−a(−c ordp(α) + a ordp(β)) log p
. (15)

Again, both the numerator and the denominator are nonempty positive linear combinations of loga-
rithms, so the limit is a strictly positive number. If S2 (resp. S1) is empty, then the limit has the form

a
−c = j

i−λ
(resp. − c

a = i−λ
j ).

If λ < 0, for sufficiently large odd n, S3 and S4 switch places between the numerator and denom-
inator in (14), but the limit remains the same as (15). For sufficiently large even n, φ(n)(α,β) in a
reduced fraction is

( ∏
p∈S2

pλn−1(aΘpn+λ ordp(α))
∏

p∈S3

pλn ordp(α)

∏
p∈S1

pλn−1(−aΘpn−λ ordp(α))
∏

p∈S4

p−λn ordp(α)
,

∏
p∈S1

pλn−1(cΘpn+λ ordp(β))
∏

p∈S4

pλn ordp(β)

∏
p∈S2

pλn−1(−cΘpn−λ ordp(β))
∏

p∈S3

p−λn ordp(β)

)
.

Hence the limit of the log ratio for the even iterations will be

∑
p∈S1

c(−c ordp(α) + a ordp(β)) log p + ∑
p∈S2

a(−c ordp(α) + a ordp(β)) log p

− ∑
p∈S1

a(−c ordp(α) + a ordp(β)) log p − ∑
p∈S2

c(−c ordp(α) + a ordp(β)) log p
,

precisely the reciprocal of (15). As before, these two limits will be identical if and only if the limits
happen to be both 1, i.e. when a = −c, or equivalently j = i − λ.

If S1 ∪ S2 is empty, then for all n if λ > 0 and for all even n if λ < 0, φ(n)(α,β) in a reduced
fraction is

( ∏
p∈S3

pλn ordp(α)

∏
p∈S4

p−λn ordp(α)
,

∏
p∈S4

pλn ordp(β)

∏
p∈S3

p−λn ordp(β)

)
.

So the log ratio is always (independent of n) equal to

∑
p∈S3

ordp(α) log p + ∑
p∈S4

ordp(β) log p

− ∑
p∈S3

ordp(β) log p − ∑
p∈S4

ordp(α) log p

As before, for λ < 0 and n odd, we get the reciprocal of above. This finishes the proof of Theo-
rem 4. �
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Remark. As mentioned in Section 1, a more natural generalization of Silverman’s result and a di-
rect parallel of [7] would be looking at the ratio of the logarithm of the homogeneous Z -coordinate
to the logarithmic height. For example, suppose A has two real eigenvalues and λ1 > 1. If we
write φ(n)(α,β) = [Xn : Yn : Zn] with integers without common divisors, then using (7) and (8),
we have

log |Xn| =
∑
p∈S1

(
(a − c)Θpλn

1 + (b − d)Γpλn
2

)
log p +

∑
p∈S3

(b − d)Γpλn
2 log p

log |Yn| =
∑
p∈S2

(
(c − a)Θpλn

1 + (d − b)Γpλn
2

)
log p +

∑
p∈S4

(d − b)Γpλn
2 log p

log |Zn| =
∑
p∈S1

(−cΘpλn
1 − dΓpλn

2

)
log p +

∑
p∈S2

(−aΘpλn
1 − bΓpλn

2

)
log p

−
∑
p∈S3

dΓpλn
2 log p −

∑
p∈S4

bΓpλn
2 log p.

Note that the denominators of (7) and (8) have no primes in common, so there will be no com-
mon divisors when we clear denominators. Assuming S1 ∪ S2 �= ∅, as n → ∞, log max(|Xn|,|Yn|,|Zn|)

log |Zn| goes
to

max
( ∑

p∈S1

(a − c)Θp log p,
∑

p∈S2

(c − a)Θp log p,− ∑
p∈S1

cΘp log p − ∑
p∈S2

aΘp log p
)

− ∑
p∈S1

cΘp log p − ∑
p∈S2

aΘp log p
.

So this natural generalization also works, but the expression is more complicated and the limit is
certainly not equal to 1 in general. Other cases can be treated similarly. Note that case (4) of Theo-
rem 2 still does not have a nonzero limit here: for φ = (1/x, x/y), φ(n) = (1/x, xn/y) for odd n, and
so φ(n)(2,1) = (1/2, 2n) = [1 : 2n+1 : 2].

We finish this article with several examples of Theorem 4.

Example 10. First, we take another look at the Fibonacci case (Example 3): φ = (y/x, x). Then λ1 =
−1−√

5
2 , λ2 = −1+√

5
2 , so a = 1, c = 1−√

5
2 , and b = 1, d = 1+√

5
2 . Since λ1 < 0, the limit for the odd

iterations should be the reciprocal of the limit for the even iterations. We calculate that

φ(10)(1,2) =
(

1

36028797018963968
,17179869184

)

so the log ratio is � 0.618182. In this case, S1 is empty and S2 = {2}, so the theoretical limit

is c/(−a) =
√

5−1
2 � 0.618034. We can also check that φ(9)(1,2) = (17179869184,1/2097152), and

the log ratio is 1.61905, whose reciprocal is 0.617647. Similarly, for the initial point (6,2), Θp =
1+√

5
2 ordp(6) − ordp(2) is positive for both p = 2 and p = 3. And we have

φ(8)(6,2) =
(

136619472483668533248,
1

2677850419968

)
log ratio � 1.6202

while the expected limit = a

−c
= 2√ � 1.61803.
5 − 1
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For the start point (2,6), S1 = {2} and S2 = {3}. Therefore, the expected limit for even iterations is

( 1+√
5

2 − 1) log 2 + 1−√
5

2 · (−1) · log 3
√

5−1
2 ( 1+√

5
2 − 1) log 2 + (−1)(−1) log 3

= (
√

5 − 1) log 6

log 72 − √
5 log 2

� 0.812228.

We compare this with

φ(10)(2,6) =
(

17179869184

174449211009120179071170507
,

16677181699666569

2097152

)
,

which gives the log ratio � 0.812483.

Example 11. Next we look at an example where the exponent matrix is diagonalizable with ra-
tional eigenvalues. In this case, Θp = d ordp(α) − b ordp(β) can be zero, so the limit could be
of the form in (13). Let φ(x, y) = (x7 y10,1/x5 y8). Then the exponent matrix has an eigenvector( 1

−1

)
with eigenvalue −3 and an eigenvector

( 2
−1

)
with eigenvalue 2. So λ1 = −3, λ2 = 2, a = 1,

b = 2, c = −1, d = −1. If α = 1/9 and β = 3, then Θ3 = −(−2) − 2 · 1 = 0. On the other hand,
Γ3 = ord3(β) + ord3(α) = −1, so S4 = {3}. Hence, according to the proof of Theorem 4, we expect
the log ratio to be always d/(−b) = 1

2 , independent of n (note that λ2 > 0 so even and odd itera-
tions give the same behavior). Indeed, the first several points in the orbit are (1/81,9), (1/6561,81),
(1/43046721,6561). If we instead let (α,β) = (4/9,3/2), then Θ2 = −2 − 2(−1) = 0 and Θ3 = 0 as
before, so we have S3 = {2} and S4 = {3}. Therefore, from (13), we expect all points in the orbit to
satisfy the log ratio of

2 · 1 · log 2 + (−1)(−1) log 3

1 · 1 · log 2 + (−2)(−1) log 3
= log 12

log 18
� 0.859719.

Indeed, we have

φ(3)

(
4

9
,

3

2

)
=

(
65536

43046721
,

6561

256

)
,

65536 · 6561

43046721 · 256
= 128

188
.

φ(4)

(
4

9
,

3

2

)
=

(
4294967296

1853020188851841
,

43046721

65536

)
,

4294967296 · 43046721

1853020188851841 · 65536
= 1216

1816
.

Example 12. We end the paper with an example of a nondiagonalizable exponent matrix. Let
φ(x, y) = (xy4,1/xy3). Then λ = −1 is the unique eigenvalue, with

( 2
−1

)
as an eigenvector and( −1

1

)
as a generalized eigenvector. So we can let a = 2, b = −1, c = −1, and d = 1, and so

Θp = ordp(α) + 2 ordp(β). If (α,β) = (2,6), then Θ2 = 3 and Θ3 = 2, so S1 = {2,3}. As the eigen-
value is negative, using (15), the limit of odd iterations should be − a

c = 2 and the limit of the even
iterations should be − c

a = 1
2 . Indeed we can compute that φ(10)(2,6) is

(
1

7008416976781303646959092879367077888
, 22463437455746924544

)

giving the log ratio � 0.525204, while φ(11)(2,6) is

(
36331633607634278105835937486638931771392,

1

1617367496813778567168

)
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giving the log ratio � 1.91243. If (α,β) = (2,2/3), then Θ2 = 3 and Θ3 = −2, so S1 = {2} and
S2 = {3}. Hence the limit of the odd iterations is expected to be 2·3·log 2+(−1)(−2) log 3

1·3 log 2+(−2)(−2) log 3 � 0.981806,

and the limit of the even iterations is its reciprocal � 1.01853. We check φ(21)(2,2/3) is

(
42535295865117307932921825928971026432

11972515182562019788602740026717047105681
,

328256967394537077627

18446744073709551616

)

whose log ratio is 0.979793, while φ(20)(2,2/3) is

(
147808829414345923316083210206383297601

664613997892457936451903530140172288
,

2305843009213693952

36472996377170786403

)

whose log ratio is 1.02073. In the nondiagonalizable case, the dominant term in the numerator and
in the denominator is bigger than the smaller term by just a factor of n/λ (in contrast to (λ1/λ2)

n in
the diagonalizable case), so the convergence is much slower than other examples.
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