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In this paper, we compute Galois groups over the rationals
associated with generalized Laguerre polynomials L

(α)
n (x)

whose discriminants are rational squares, where n and α are
integers. An explicit description of the integer pairs (n, α) for
which the discriminant of L

(α)
n (x) is a rational square was

recently obtained by the author in a joint work with Filaseta,
Finch and Leidy. Among these pairs (n, α), we show that for
2 � n � 5, the associated Galois group of L

(α)
n (x) is always

An, except for the pairs (4,−1) and (4, 23). For n � 6, we
show that the corresponding Galois group is An if and only if
the polynomial concerned is irreducible over the rationals.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

For a real number α, and a positive integer n, the generalized Laguerre polynomial of
degree n is defined by

L(α)
n (x) =

n∑
j=0

(n + α)(n− 1 + α) · · · (j + 1 + α)
(n− j)!j! (−x)j .

In this paper however, we will concern ourselves with the case that α is an integer.
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The generalized Laguerre polynomials find a wide range of applications in several
branches of mathematics. An interest in algebraic and number theoretic aspects of these
polynomials was initiated by Schur, in a series of papers [13–15], where he established the
irreducibility of L(α)

n (x) for α ∈ {0, 1,−n−1} over the rationals. He also computed their
associated Galois groups. In particular, he [14] gave the following remarkable formula for
the discriminant Disc(n, α) of the monic integral polynomial L(α)

n (x) = (−1)nn!L(α)
n (x),

namely

Disc(n, α) =
n∏

j=2
jj(α + j)j−1.

Recently, a variety of results concerning the irreducibility and Galois properties of L(α)
n (x)

have appeared in the literature. To cite a few, Gow [6] showed that if n ≡ 2 (mod 4)
and n �= 2, then L

(n)
n (x) has Galois group An, the alternating group on n letters,

provided it is irreducible. Filaseta, Kidd and Trifonov [4] have established the irre-
ducibility in this case. Hajir [7,9] and Sell [16] have investigated the irreducibility and
Galois groups associated with L

(α)
n (x) for α = −n − r where r is a positive integer.

In particular, Hajir shows that for r large and n sufficiently large depending on r,
the polynomial L

(α)
n (x) is irreducible and has Galois group Sn, the symmetric group

on n letters. Filaseta and Lam [5] showed that if α ∈ Q is not a negative integer,
then L

(α)
n (x) is irreducible for n sufficiently large. Hajir [8] extended their result show-

ing that for α a rational number that is not a negative integer, and n sufficiently
large depending on α, the Galois group of L

(α)
n (x) over Q is An if Disc(n, α) is a

square, and Sn otherwise. In [10], Hajir and Wong consider the case in which n � 5
is fixed and show that for all but finitely many values of α, L

(α)
n (x) is irreducible

and the Galois group of L
(α)
n (x) over Q is An if Disc(n, α) is a square, and Sn oth-

erwise.
More recently, the author in a joint work with Filaseta, Finch and Leidy [1] has

explicitly described the set A of integer pairs (n, α) with n � 1, for which Disc(n, α) is
a nonzero square. Thus the Galois group associated with L

(α)
n (x) over Q is An only if

(n, α) ∈ A. We shall describe the set A briefly. In this paper, we attempt to describe the
Galois group of L(α)

n (x) for precisely the pairs (n, α) in A.

2. Statements of the main results

We will often denote an integer square by �. The greatest prime factor of a natural
number b > 1 will be denoted by P (b). If c+ d

√
t = (a+ b

√
t )u, where c, d, a, b and t are

rational numbers with
√
t irrational and u is a nonnegative integer, then we refer to c as

the rational part of (a+ b
√
t )u. For a prime p, a positive integer e and an integer n, we

will often use the notation pe ‖n to denote that pe | n, but pe+1 � n.
Following the notations in [1], we view pairs (n, α) in A as being in two sets A0

and A∞. As is evident in [1], the set A0 is finite set of pairs that are effectively com-
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putable, and, hence, so are the corresponding Galois groups. In this paper, we will be
interested in the Galois group of L(α)

n (x), for precisely the pairs (n, α) in A∞.
The set A∞ consists of pairs (n, α) satisfying one of the following.

(i) n = 1 and α arbitrary
(ii) α = n and n ≡ 0 (mod 2)
(iii) α = 1 and n is odd or n + 1 is an odd square
(iv) α = −1 and n is even or n is an odd square
(v) α = −n− 1 and n ≡ 0 (mod 4)
(vi) α = −n− 2 and n ≡ 1 (mod 4)
(vii) α = −2n− 2 and n ≡ 0 (mod 4)
(viii) α = 3 and n + 2 is the rational part of (2 +

√
3 )2k+1 for some k ∈ N

(ix) α = 3, n ≡ 1 (mod 24) and (n + 2)/3 is a square
(x) α = 5 and n + 3 is the rational part of (4 +

√
15 )2k+1 for some k ∈ N

(xi) α = n− 6 and (2n− 5)/3 is the rational part of (1 +
√

2 )4k for some k ∈ N

(xii) α = n− 1 is even and n is a square
(xiii) n = 2 and α + 2 is a square
(xiv) n = 3, α ≡ 1 (mod 3) and (α + 2)/3 is a square
(xv) n = 4 and α + 3 is the rational part of (2 +

√
3 )k for some k � 3

(xvi) n = 5 and α + 3 is the rational part of (4 +
√

15 )k for some k � 2
(xvii) α = n+ 2 and n+ 1 is the square of the rational part of (1 +

√
2 )2k+1 for some

k ∈ N

(xviii) α = n + 1 and n + 1 is twice a square
(xix) α = n + 3 is an even square
(xx) α = −n− 3, n ≡ 0 (mod 4) and n + 1 is a square
(xxi) α = −n− 4, n ≡ 1 (mod 24) and (n + 2)/3 is a square
(xxii) α = −n− 5 and n + 2 is the rational part of (2 +

√
3 )2k+1 for some k ∈ N

(xxiii) α = −n− 6 and n + 3 is the rational part of (4 +
√

15 )2k+1 for some k ∈ N

(xxiv) α = −2n + 4 and (2n− 5)/3 is the rational part of (1 +
√

2 )4k for some k ∈ N

(xxv) α = −2n and n is an odd square
(xxvi) n = 4 and −α− 3 is the rational part of (2 +

√
3 )k for some k � 3

(xxvii) n = 5 and −α− 3 is the rational part of (4 +
√

15 )k for some k � 2
(xxviii) α = −2n − 4 and n + 1 is the square of the rational part of (1 +

√
2 )2k+1 for

some k ∈ N

(xxix) α = −2n− 2 and (n + 1)/2 is the square of an odd number
(xxx) α = −2n− 4 and n + 3 is an even square

The main result in [1] is the following.

Theorem 1. There is a finite set A0 of pairs (n, α) such that Disc(n, α) is a nonzero
square if and only if (n, α) satisfies one of the properties (i)–(xxx) or (n, α) ∈ A0.
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In this paper, we investigate as to how often the Galois group associated with L
(α)
n (x)

is An, provided Disc(n, α) is a square, where n and α are integers and (n, α) /∈ A0. In
other words, our goal here is to classify pairs (n, α) ∈ A∞ such that the associated Galois
group of L(α)

n (x) is An.
Already a fair bit of information exists in the literature on when the Galois group of

L
(α)
n (x) is An, for pairs (n, α) in A∞. These results are compiled below, indicating when

the Galois group of L(α)
n (x) is An, where the pair (n, α) satisfies the indicated property

listed among (i)–(xxx). Here we omit the trivial case n = 1 from our discussion, and
for n = 2, we note that the associated Galois group is always A2 (the trivial group),
whenever (2, α) ∈ A∞.

• Case (ii), Filaseta, Kidd, Trifonov [4]
• Cases (iii) and (v), Schur [13–15]
• Cases (vi) and (xxi)–(xxiii), Hajir [7,9]
• Case (xx), Sell [16]
• Cases (viii)–(x), Banerjee, Filaseta, Finch, Leidy [1]

Thus we only need to consider cases (i), (iv), (vii), (xi)–(xix) and (xxiv)–(xxx).
Our main result in this paper is the following.

Theorem 2. Let the integer pair (n, α) satisfy one of the properties (i)–(xxx) listed above.
Then

(i) for 2 � n � 5, the Galois group associated with L
(α)
n (x) is always An except for the

cases (n, α) ∈ {(4,−1), (4, 23)}. Both, L(−1)
4 (x) and L

(23)
4 (x), have associated Galois

group A3, and
(ii) for n � 6, L(α)

n (x) has Galois group An if and only if L(α)
n (x) is irreducible over Q.

As a consequence of Theorem 2, the Galois group associated with L
(α)
n (x) is always

An in cases (xiv)–(xvi) and (xxvi)–(xxvii), except when n = 4 and α = 23 or, n = 4 and
α = −1. It follows from the result of Hajir and Wong [10] that, for all but finitely many
α with (5, α) ∈ A∞, the Galois group associated with L

(α)
5 (x) is A5. Theorem 2 asserts

that this finite set of exceptional values of α ∈ Z such that the Galois group of L(α)
5 (x)

is not A5, is in fact, the empty set. It also follows from Theorem 2 that, in the remaining
cases, L(α)

n (x) has An as the Galois group, provided L
(α)
n (x) is irreducible over Q. For

pairs (n, α) ∈ A∞ with n � 6 and α < 0, we only consider the values

α = −2n− 4, α = −2n− 2, α = −2n and α = −2n + 4.

As indicated in the list preceding Theorem 2, in the remaining cases (cases (vi) and
(xx)–(xxiii)), Hajir [7,9] and Sell [16] have described the respective Galois groups.
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Conditions (ii)–(xxx) in [1] were achieved by solving the Diophantine equation

Disc(n, α) =
n∏

j=2
jj(α + j)j−1 = �.

After removing the obvious square factors in Schur’s discriminant formula, the equation
Disc(n, α) = � reduces to

Δ(n, α) =
∏

2k+1�n

(2k + 1)
∏

2k�n

(α + 2k) = �. (1)

In order to prove part (i) of Theorem 2, we will use (1) for n = 4 and n = 5 in cases (xv),
(xvi), (xxvi) and (xxvii). It is easy to check that for n = 4 and n = 5, (1) is equivalent
to

(α + 2)(α + 4) =
{ 3 � if n = 4

15 � if n = 5.
(2)

Apart from cases (xv), (xvi), (xxvi) and (xxvii), n = 4 and n = 5 appear in the list above
in pairs (4, 4) (case (ii)), (5, 1) (case (iii)), (4,−1) (case (iv)), (4,−5) (case (v)), (5,−7)
(case (vi)) and (4,−10) (case (vii)). We have verified with Sage (Mathematical Software
System) that, except for the pair (4,−1), the Galois group associated with L

(α)
n (x) is An.

The polynomial L(−1)
4 (x) has Galois group A3.

The proof of Theorem 2 will make use of Newton polygons, which we briefly describe
here. Let p be a prime, and s and r be integers relatively prime to p. If m is a nonzero
number and a is an integer such that m = pa s

r , we define ν(m) = νp(m) = a. By
convention, we take ν(0) = +∞. Consider f(x) =

∑n
j=0 ajx

j ∈ Q[x] with ana0 �= 0, and
let p be a prime. Let S be the set of points in the extended plane given by

S =
{(

0, ν(an)
)
,
(
1, ν(an−1)

)
,
(
2, ν(an−2)

)
, . . . ,

(
n− 1, ν(a1)

)
,
(
n, ν(a0)

)}
.

Consider the lower edges along the convex hull of these points. The left-most endpoint
is (0, ν(an)), and the right-most endpoint is (n, ν(a0)). The endpoints of all the edges
belong to S, and the slopes of the edges increase from left to right. The polygonal path
formed by these edges is called the Newton polygon of f(x) with respect to the prime p,
and we will denote it by NPp(f).

Newton polygons are extremely useful in studying algebraic properties of polynomials
with rational coefficients. For n � 3, a polynomial in Q[x] must necessarily be irreducible
in order for it to have An as the Galois group. We will refer to the following version of
the celebrated Dumas criterion [3] in order to establish the irreducibility of L(α)

n (x) for
n � 3 in part (i) of Theorem 2.

Theorem 3 (Dumas). Let p be a prime and h1(x), h2(x) ∈ Z[x] with h1(0)h2(0) �= 0.
Also, let a �= 0 be the leading coefficient of h1(x)h2(x) with νp(a) = k. Then the edges
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of the Newton polygon of h1(x)h2(x) with respect to p can be formed by constructing a
polygonal path beginning with (0, k) and using translates of edges of Newton polygons of
h1(x) and h2(x) with respect to p (using exactly one translate for each edge). Necessarily,
the edges are translated in such a way as to form a polygonal path with slopes of edges
increasing from left to right.

Observe that if a polynomial f(x) with integer coefficients factors in Z[x] into polyno-
mials of degrees � 1, then Theorem 3 tells us that for some factor h(x) ∈ Z[x], h(0) must
appear as the ordinate of some lattice point, different from the endpoints, on NPp(f),
for any prime p. Thus, in particular, if for some prime p, there are no lattice points on
NPp(f), other than endpoints, then f(x) is irreducible over Q. We will often exploit this
fact in order to establish the irreducibility part in Theorem 2. As will be evident from
Theorem 4 due to Hajir [8], the theory of Newton polygons also serves as an important
tool in studying Galois groups of polynomials in Q[x]. Before stating Hajir’s theorem,
we first need to introduce the notion of the Newton index of a polynomial.

Definition 1. Given f(x) ∈ Q[x], let Nf , be called the Newton index of f(x), be the
least common multiple of the denominators (in lowest terms) of all slopes of NPp(f) as
p ranges over all primes.

It is easy to see that for a given f(x) ∈ Q[x] the denominator of any slope of NPp(f)
is 1 for all but finitely many primes p. That is to say that the Newton index is well
defined.

Theorem 4 (Hajir). Given an irreducible polynomial f(x) ∈ Q[x], Nf divides the order of
the Galois group of f(x). Moreover, if Nf has a prime divisor p in the range (n/2, n−2),
where n is the degree of f(x), then the Galois group of f(x) contains An. In that case,
the Galois group of f(x) is An if the discriminant of f(x) is a rational square, and Sn

otherwise.

In other words, Theorem 4 implies that if f(x) ∈ Q[x] is irreducible over Q and of
degree n and that a prime in (n/2, n − 2) divides the slope of an edge of a Newton
polygon of f(x), then the Galois group of f(x) over Q is An or Sn depending on whether
the discriminant of f(x) is a square in Q or not, respectively.

If a polynomial f(x) ∈ Q[x] of degree n � 3 has associated Galois group An, then it
is necessarily irreducible over Q. In [9], Hajir, among other things, completely describes
the irreducibility of L(α)

n (x) for n ∈ {3, 4}, and where α ∈ Q. We deduce from [9] that
for α ∈ Q, L(α)

3 (x) is reducible over Q if and only if α is of the form

α = m3 − 9m− 6
, m ∈ Q,
3m + 2
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and L
(α)
4 (x) is reducible if and only if α ∈ {−4,−3,−2,−1, 5, 23}. We will however

establish the irreducibility of L
(α)
3 (x), where (n, α) ∈ A∞, via a direct argument. For

n = 4, we find that (4,−1) and (4, 23) are the only pairs listed in A∞ for which L
(α)
4 (x)

is reducible, and these are the only exceptional pairs appearing in part (i) of Theorem 2.
It is easily verified (using technology or otherwise) that the corresponding Galois group
in these exceptional cases is in fact A3.

We conclude this section with the discussion of the cases where |α| � 5 and
(n, α) ∈ A∞. From the list preceding Theorem 2, we already know for precisely when
the Galois group of L(α)

n (x) is An for 0 � α � 5. Also, for α < 0, it follows from the
identity

L(α)
n (x) = x−αL(−α)

n+α (x), |α| � n

that the Galois group of L(α)
n (x) is not An if |α| � n. Thus, for |α| � 5 and n � 5,

the Galois group associated with L(α)
n (x) is not An. Furthermore, it can be verified that

L(−5)
4 (x) has Galois group A4 (see [14]). We have thus completely described the instances

where the Galois group of L(α)
n (x) is An for |α| � 5, and where (n, α) ∈ A∞. Henceforth,

we will assume |α| � 6. Moreover, from the last identity, it follows that for pairs (n, α)
satisfying condition (iv) in the list, that is, for α = −1, the Galois group of L(α)

n (x) is
never An. This is the only exceptional case among (i)–(xxx), where the Galois group is
never An. In fact, for α = −1, one has

L(−1)
n (x) = xL(1)

n−1(x).

It now follows from Schur’s work [14] that the Galois group associated with L(−1)
n (x)

is An−1, whenever (n,−1) ∈ A.
In the next three sections to follow, we investigate in detail the Galois group of L(α)

n (x)
for n = 3, n = 4 and n = 5, respectively, and where |α| � 6. We will only consider
cases (xiv), (xv), (xvi), (xxvi) and (xxvii). Apart from these cases, the pair (n, α) with
n ∈ {3, 4, 5} and |α| � 6, appears in A∞ in cases (vi) (the pair (n, α) = (5,−7)) and
(vii) (the pair (n, α) = (4,−10)). We easily find that the corresponding Galois group of
L(α)
n (x) is An in both cases. In Section 6, we will give a proof of part (ii) of Theorem 2.

3. Galois group in the case n = 3

It is well known that the Galois group over Q of a cubic in Q[x] is A3 if and only if
the cubic is irreducible over Q and its discriminant is a square in Q. We already have for
(n, α) ∈ A∞ that Disc(L(α)

n ) is a square in Z. Therefore in order to achieve our result in
the case n = 3, it is enough to show that the polynomial L(α)

3 (x) is irreducible over Q.
For n = 3, we have

L(α)
3 (x) = x3 − 3(α + 3)x2 + 3(α + 3)(α + 2)x− (α + 3)(α + 2)(α + 1).
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Setting g(x) = L(α)
3 (x + α + 3), we obtain

g(x) = x3 − 3(α + 3)x− 2(α + 3).

Now, for any prime divisor p �= 2 of α+3, NPp(g) has only one edge, joining the endpoints
(0, 0) and (3, νp(α+3)). Thus, in order that g(x) is reducible, it follows from Theorem 3
that there must be at least one lattice point, other than the endpoints, on NPp(g). For
this to be the case, one necessarily has νp(α + 3) ≡ 0 (mod 3). Since this is the case for
any prime divisor, except possibly for p = 2, we deduce that α+3 = ε2lt3, where l � 0, t
are integers with 2 � t, and ε ∈ {1,−1}. Since ε3 = ε, for any choice of ε, we may assume
without loss of any generality that α + 3 = 2lt3. Also, we have t �= 0 as |α| � 6 here. If
we set g1(x) = g(tx)/t3, we have

g1(x) = x3 − 3 · 2ltx− 2l+1.

For the monic cubic g1(x) to be reducible over Q, it must have an integer root. One
easily verifies that any integer root of g1(x) is of the form ε2m, where 0 � m � l + 1
is an integer, and ε ∈ {1,−1}. Clearly, 1 is not a root of g1(x), and −1 is a root if and
only if t = 1 and l = 0. But this gives α = −2. Since we are interested in |α| � 6, we
may as well ignore the last solution. Next, we consider m � 1. Noting that ε3 = ε, in
this case, we have ε23m − 3εt2l+m − 2l+1 = 0. Since t is odd, one easily checks that
the last equation holds only if either, 3m = l + 1, m = 1 or, 3m = l + m. In the
case that 3m = l + 1, we have ε23m − 3εt24m−1 − 23m = 0. After factoring 23m, one
obtains

ε
(
1 − 3t2m−1) = 1,

which clearly does not hold if t �= 0, and that is the case here. If m = 1, then

23ε− 3εt2l+1 − 2l+1 = 0. (3)

One readily sees that for (3) to hold, l must necessarily be in the set {0, 1, 2}. Af-
ter solving (3) for these values of l, we find that (ε, l, t) = (1, 0, 1) and (ε, l, t) =
(−1, 1, 1) are the only solutions to (3) corresponding to t �= 0. None of these solu-
tions yields any value in |α| � 6, and we discard these solutions. Finally, in the case
that 3m = l + m, we have ε23m − 3εt23m − 22m+1 = 0. After factoring 22m+1, we
have

ε2m−1(1 − 3εt) = 1.

It is now easy to verify that there are no integral solutions to the last equation if
t �= 0.

Therefore we conclude that for |α| � 6, L(α)
3 (x) is irreducible, and, in particular,

L(α)
3 (x) has Galois group A3, whenever (3, α) ∈ A∞.
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4. Galois group in the case n = 4

For n = 4, the polynomial we are interested in is

f(x) = L(α)
4 (x) = x4 − 4(α + 4)x3 + 6(α + 4)(α + 3)x2

− 4(α + 4)(α + 3)(α + 2)x

+ (α + 4)(α + 3)(α + 2)(α + 1),

where α satisfies the quadratic equation (2), that is,

(α + 2)(α + 4) = 3 �. (4)

As noted in Section 2, we will concern ourselves with |α| � 6 and α �= 23. For convenience,
we will work with the translated polynomial g(x) = f(x + α + 4). Thus

g(x) = x4 − 6(α + 4)x2 − 8(α + 4)x + 3(α + 4)(α + 2).

Let the integers β and r be defined as

β :=
{
α if α > 0
−α if α < 0

and r :=
{ 3 if α > 0
−3 if α < 0.

Then from (4), we deduce that β + r is the rational part of (2 +
√

3 )k, where k is some
integer bigger than 2. Thus

β + r =
{

2k +
(
k
2
)
2k−2 · 3 + · · · + 3k/2 if k ≡ 0 (mod 2)

2k +
(
k
2
)
2k−2 · 3 + · · · +

(
k

k−1
)
2 · 3(k−1)/2 if k ≡ 1 (mod 2).

From this description of β + r, we immediately deduce that, if k is odd, then 2 ‖ (β + r)
and β ≡ −1− r (mod 3). If k is even, then β ≡ 1− r (mod 3) and that 2 exactly divides
one of β + r + 1 and β + r − 1 while 4 divides the other. Based on this information, we
have from (4) the following.

Lemma 1. Let the integers β and r be as described above. Then there are integers y and
z such that

(i) if β is odd, then (β + r − 1, β + r + 1) = (y2, 3z2), where y ≡ z ≡ 1 (mod 2), and
(ii) if β is even, then (β + r − 1, β + r + 1) = (6y2, 2z2), where y �≡ z (mod 2).

For a monic quartic polynomial h(x) = x4 + ax3 + bx2 + cx + d, having roots t1, t2,
t3 and t4, define the resolvent cubic Rh(x) to be the cubic whose roots are t1t2 + t3t4,
t1t3 + t2t4 and t1t4 + t2t3. It can be verified (see [11] for instance) that h(x) and Rh(x)
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have the same discriminant and that for the given quartic h(x), Rh(x) can be expressed
as

Rh(x) = x3 − bx2 + (ac− 4d)x− a2d− 4bd + c2.

Resolvent cubics are particularly useful in computing Galois groups of quartic polyno-
mials over number fields. In order to show that the Galois group of g(x) is A4, we will
first need to establish the irreducibility of g(x). As noted in Section 2, Hajir has already
established the irreducibility of L(α)

4 (x) for pairs (4, α) ∈ A∞ with |α| � 6 and α �= 23.
Instead of Rg(x), we will work with the cubic R′

g(x) = Rg(2x − 2α − 8)/8, which in
our case is given by

R′
g(x) = x3 − 6(α + 4)(α + 3)x− 4(α + 4)2(α + 3).

For Galois group computations, we will refer to the following result of Kappe and War-
ren [11].

Theorem 5 (Kappe–Warren). Let k(x) be an irreducible quartic polynomial in Q[x], and
Rk(x) be its resolvent cubic. Then, the Galois group of k(x) over Q is A4 if and only if
Rk(x) is irreducible over Q, and the discriminant of k(x) (which is equal to the discrim-
inant of Rk(x)) is a square in Q.

In the following lemma, we establish the irreducibility of R′
g(x).

Lemma 2. For every integer α satisfying (4), the polynomial R′
g(x) = x3 − 6(α+ 4)(α+

3)x− 4(α + 4)2(α + 3) is irreducible over Q.

Proof. If R′
g(x) is reducible over Q, then it has an integer root. Let a ∈ Z be a root of

R′
g(x). As noted earlier, 2 ‖ (α+ 3) whenever α is odd and satisfies (4). Thus, for odd α,

the Newton polygon NP2(R′
g) has only one edge, joining the endpoints (0, 0) and (3, 3).

Now, from Dumas criterion, we deduce that the sole edge of NP2(x− a) has slope equal
to 1. This, in other words, means that 2 ‖ a. Furthermore, from h(a)/8 = 0, we have

(a/2)2 − 3(α + 4)
(
(α + 3)/2

)
(a/2) − (α + 4)2

(
(α + 3)/2

)
= 0.

But this is impossible as an odd number of terms on the left hand side above are odd.
In the case that α is even, we let p denote a prime divisor of β + r. Clearly, p �= 2.

Also, p �= 3 as β ≡ 1 − r (mod 3) with r ∈ {3,−3}. Therefore NPp(R′
g) has just one

edge, that joining the endpoints (0, 0) and (3, νp(β + r)). Once again, we deduce from
Dumas criterion that νp(β + r) ≡ 0 (mod 3) in order for R′

g(x) to be reducible over Q.
Since this is the case for every prime divisor of β + r, we conclude that β + r = t3 for
some odd integer t. We also have from Lemma 1 that β+ r+1 = 2z2 for some integer z.
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Now, from the identity (β + r+1)− (β + r) = 1, it follows that (t, z) is an integral point
on the elliptic curve

2Z2 = T 3 + 1. (5)

Cohn [2] has shown that, apart from the trivial solutions (T,Z) = (−1, 0) and (T,Z) =
(1,±1), (T,Z) = (23,±78) are the only other integral points on (5). It is easy to check
that T = ±1 do not yield positive values in β = |α| � 6. Since 3 does not divide
β + r + 1 = 2 z2, we may as well ignore (T,Z) = (23,±78). Thus we have proved the
assertion of our lemma. �

This concludes the proof of Theorem 2 in the case n = 4.

5. Galois group in the case n = 5

For n = 5 and α ∈ Z, the n-th normalized Laguerre polynomial is given by

f(x) = L(α)
5 (x) = x5 − 5(α + 5)x4 + 10(α + 5)(α + 4)x3

− 10(α + 5)(α + 4)(α + 3)x2

+ 5(α + 5)(α + 4)(α + 3)(α + 2)x

− (α + 5)(α + 4)(α + 3)(α + 2)(α + 1),

where α satisfies (2), that is,

(α + 2)(α + 4) = 15 �. (6)

As noted earlier, we need only consider |α| � 6. Sometimes, we will work with the
translated polynomial g(x) = f(x + α + 5) instead, that is, work with the following
polynomial.

g(x) = x5 − 10(α + 5)x3 − 20(α + 5)x2 + 15(α + 5)(α + 3)x + 4(α + 5)(5α + 19).

Similarly to the case n = 4, we define

β :=
{
α if α > 0
−α if α < 0,

and r :=
{ 3 if α > 0
−3 if α < 0.

Then β + r is the rational part of (4 +
√

15 )k, where k is some integer bigger than 2,
that is,

β + r =
{

4k +
(
k
2
)
4k−2 · 15 + · · · + 15k/2 if k ≡ 0 (mod 2)

4k +
(
k
)
4k−2 · 15 + · · · +

(
k
)
4 · 15(k−1)/2 if k ≡ 1 (mod 2).
2 k−1
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From the above description of β + r, we deduce that β ≡ 1 − r (mod 3). Furthermore,
for odd β (i.e., for even k), we have β ≡ −1 − r (mod 5) and that 4 ‖ (β + r), while 2
exactly divides β + r ± 2. In the case that β is even, one has β ≡ 1 − r (mod 5) and it
is easily seen that 4 divides one of β + r ± 1, and 2 exactly divides the other. Based on
this information and Eq. (6), we have the following.

Lemma 3. Let the integers β and r be as described above. Then there are integers y and
z such that

(i) if β is odd, then (β + r − 1, β + r + 1) = (3y2, 5z2), where y ≡ z ≡ 1 (mod 2), and
(ii) if β is even, then (β + r − 1, β + r + 1) = (30y2, 2z2), where y �≡ z (mod 2).

We also set

s =
{ 5 if α > 0
−5 if α < 0.

Observe that

β + r ≡ 1 + 3k + 15k(k − 1)
2 ≡ 1 + 3k2 (mod 9).

Thus, if α > 0, then β + s = β + r + 2, which is 3 or 6 mod 9; and 3 � (β + s) if α < 0.
Moreover, if β is odd, then 2 ‖ (β + s) and that β + s is odd if β is even.

Suppose that f(x) is reducible over Q, and h(x) ∈ Q[x] is an irreducible factor of f(x).
Without loss of any generality, we may assume h(x) ∈ Z[x] and is monic. Let p /∈ {2, 3}
be a prime divisor of β + s. Then we find that the Newton polygon NPp(f) of f(x) with
respect to p has only one edge, joining the endpoints (0, 0) and (5, νp(β+ s)). By Dumas
criterion, h(0) (∈ Z) must appear as the ordinate of some lattice point on NPp(f). In
order for this to be the case, we must have νp(β + s) ≡ 0 (mod 5). Therefore, assuming
reducibility of f(x), we have the following description of β + s.

β + s =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

6x5 if β ≡ 1 (mod 2) and α > 0
3x5 if β ≡ 0 (mod 2) and α > 0
2x5 if β ≡ 1 (mod 2) and α < 0
x5 if β ≡ 0 (mod 2) and α < 0

(7)

for some odd integer x. Observe that for the y and z appearing in Lemma 3 and the x

above, one has gcd(x, y) = gcd(y, z) = gcd(z, x) = 1.
We next show that the polynomial f(x) = L(α)

5 (x) is irreducible over Q under the
assumptions of Lemma 3 on β. We will make use of the description of β + s above, in
order to arrive at a contradiction.
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5.1. Irreducibility of L(α)
5 (x)

We consider different cases depending on various signs and parities of α.

Case (i) α > 0 is odd: In this case, observing that (β + s) − (β + r − 1) = 3, we have
from Lemma 3 and (7) that 6x5 − 3y2 = 3, which after factoring 3 reduces to

2x5 − y2 = 1. (8)

Working in Z[i], we show that (x, y) = (1,±1) are the only solutions to Eq. (8). Rewriting
(8), we have

(1 + i)(1 − i)x5 = (y + i)(y − i).

Now, 1 + i being a prime in the unique factorization domain (UFD) Z[i], it must divide
y+ i or y− i. Without loss of any generality, let us assume 1 + i divides y + i (otherwise
one can replace y by −y) and 1− i divides y− i. Since x and y are odd in this case with
gcd(x, y) = 1, we have gcd(y+i

1+i ,
y−i
1−i ) = 1. Also, if ε in Z[i] is a unit, then ε = ε5. Thus

in the UFD Z[i], both y+i
1+i and y−i

1−i are 5-th powers. Therefore there are integers a and
b such that

y + i

1 + i
= y + 1 + (y − 1)i

2 = (a + bi)5 = a5 − 10a3b2 + 5ab4 +
(
5a4b− 10a2b3 + b5

)
i.

Comparing the real and imaginary parts on either side, we have from the identity (y +
1)/2 − (y − 1)/2 = 1 that

(
a5 − 10a3b2 + 5ab4

)
−

(
5a4b− 10a2b3 + b5

)
= 1,

i.e., (a− b)
(
a4 − 4a3b− 14a2b2 − 4ab3 − b4

)
= 1.

Since a and b are integers, we deduce that a−b = ±1. It is easy to check that (a, b) = (1, 0)
and (a, b) = (0,−1) are the only solutions to the above equation, giving us y = 1 and
y = −1, respectively. These values of y correspond to α = 1, which maybe ignored since
we are interested in |α| � 6.

Case (ii) α > 0 is even: Similarly to the previous case, we consider (β+s)−(β+r−1) = 3.
This, by Lemma 3 and (7), gives us the following equation.

x5 − 10y2 = 1. (9)

Working in the ring R = Z[
√
−10 ], we will show that the affine algebraic curve (9) has

no nontrivial integral points on it. Here, we note that, although R is not a UFD, there
is always a unique factorization of ideals of R into products of prime ideals. Writing
δ =

√
−10, we have from (9) the following ideal factorization in R.
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(x)5 = (1 + yδ)(1 − yδ).

Here, (x), (1 + yδ) and (1 − yδ) are the principal ideals generated by the respective
elements in R. Since both x and y are odd, the ideals (1 + yδ) and (1 − yδ) have no
common prime ideal factor in R. It follows from unique factorization of ideals in R that
both (1+yδ) and (1−yδ) are 5-th powers of some ideals in R. Thus (1+yδ) = I5, for some
ideal I of R. Since the ideal class group of R is cyclic of order 2 (see for example [17]),
we deduce that the ideal classes of I5 = I2 ·I2 ·I and I, are the same. Since I5 = (1+yδ)
is principal, so is I. Let I = (c + dδ), where c and d are integers. Since ±1 are the only
units in R, and −1 = (−1)5, we may assume without loss of generality that

1 + yδ = (c + dδ)5 = c5 − 100c3d2 + 500cd4 +
(
5c4d− 100c2d3 + 100c5

)
δ.

Comparing the rational parts on both sides above, we get the following.

c
(
c4 − 100c2d2 + 500d4) = 1.

Since c and d are integers, we deduce that the only possible values of c satisfying the
above equation are c = ±1. c = 1 gives d = 0, and, hence, y = 0. Therefore we may
discard this solution since from y = 0, one obtains α + 2 = 0, whereas we are concerned
with α > 0 here. c = −1 does not give a valid (integral) solution for d, and, as such in y.
Since the α under consideration is positive, we conclude that L(α)

5 (x) is irreducible in
this case.

Thus we have established the irreducibility of L(α)
5 (x) over Q in the case α > 0.

Case (iii) α < 0 is odd: Working similarly to the previous cases, we consider the iden-
tity (β + r + 1) − (β + s) = 3. This, by Lemma 3 and (7), gives us the quintic curve
5z2 − 2x5 = 3. We will show that (x, z) = (1,±1) are the only integral points on this
curve that correspond to a possibly reducible L(α)

5 (x). One verifies that (x, z) = (1,±1)
correspond to β = 7. A quick inspection of the Newton polygon of L(−7)

5 (x) with respect
to 2, and then using the rational root test (or otherwise), one can easily verify that
L(−7)

5 (x) is irreducible over Q. In the case that (x, z) �= (1,±1), let us write 3 as 5 − 2.
After rearranging terms on both sides of 5z2 − 2x5 = 3, we have

5
(
z2 − 1

)
= 2(x− 1)(x− ω)

(
x− ω2)(x− ω3)(x− ω4), (10)

where ω = ζ5 is the fifth root of unity. Since the prime 1 − ω divides 5 in the UFD
Z[ω], the ring of integers in Q[ω], 1 − ω divides the right hand side of (10). Now,
1 − ω being a prime in Z[ω], divides x − ωj for some j ∈ {0, 1, 2, 3, 4}. Also, from
x−ωk = x− ωj + ωj(1−ωk−j), we see that 1−ω divides x−ωj for any j ∈ {0, 1, 2, 3, 4}.
Therefore (1 − ω)5 divides the right hand side of (10). After taking norms, we find that
z2 ≡ 1 (mod 5). Thus
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β + r + 1 = 5z2 ≡ 5 (mod 25),

that is, 5 ‖ (β + r + 1). Thus, for α > 0, 5 ‖ (α + 4); and 5 ‖ (α + 2) if α < 0. Hence,
the Newton polygon NP5(f) of f(x) = L(α)

5 (x) has just one edge, joining points (0, 0)
and (5, 1). As there are no lattice points on this edge other than the terminal points, we
conclude from Theorem 3 that the polynomial f(x) is irreducible.

Case (iv) α < 0 is even: In this case, we begin by considering the identity (β + r− 1)−
(β + s) = 1. From Lemma 3, (7) and the last identity, we have in this case the following
hyper-elliptic curve.

30y2 = x5 + 1 = (x + 1)(x + ω)
(
x + ω2)(x + ω3)(x + ω4), (11)

where ω = ζ5 is the fifth root of unity. As in the previous case, we deduce that 1 − ω

divides x+ωj , for j ∈ {0, 1, 2, 3, 4}. Furthermore, 6 does not divide (x+ω)(x+ω2)(x+
ω3)(x + ω4) = x4 − x3 + x2 − x + 1 for any x ∈ Z. Thus, we have

x + ωj = εj(1 − ω)u2
j , for 1 � j � 4,

where εj is a unit in Z[ω], and uj ∈ Z[ω]. We note that for ω = ζ5, the units in Z[ω] are
of the form ±ωh(1 + ω)k, where 0 � h � 4, and k ∈ Z. Since ωi is a square in Z[ω] for
every i ∈ Z, and since (1 + ω)−1 = (1 + ω) · 1

(1+ω)2 with 1
(1+ω)2 ∈ Z[ω] (1 + ω being a

unit in Z[ω]), we may assume without loss of generality that

ε1 = ε or ε1 = ε(1 + ω); where ε ∈ {1,−1}.

First, let us deal with the case that ε1 = ε. In this case, we have

x + ω = ε(1 − ω)u2
1. (12)

Let u1 = a + bω + cω2 + dω3, where a, b, c and d are integers. Then

u2
1 = a2 + 2cd− c2 − 2bd +

(
d2 + 2ab− c2 − 2bd

)
ω

+
(
b2 + 2ac− c2 − 2bd

)
ω2 +

(
2ad + 2bc− c2 − 2bd

)
ω3.

Applying the automorphism ω → ω2 to (12) and denoting the image of u1 under this
map by U1, one has

x + ω2 = ε
(
1 − ω2)U2

1 . (13)

Subtracting (13) from (12), we obtain

εω(1 − ω) = (1 − ω)
(
u2

1 − (1 + ω)U2
1
)
,
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that is,

εω = u2
1 − (1 + ω)U2

1 .

If we write u2
1 = A + Bω + Cω2 + Dω3 with A, B, C, D ∈ Z, then it is easy to verify

that under the action ω → ω2, one has

U2
1 = A + Dω + Bω2 + Cω4,

and, hence,

(1 + ω)U2
1 = A + (D − C + A)ω + (B − C + D)ω2 + (B − C)ω3.

Thus

εω = u2
1 − (1 + ω)U2

1 = (B + C −A−D)ω + (2C −B −D)ω2 + (D + C −B)ω3.

Writing A, B, C and D in terms of a, b, c and d, and comparing the coefficients of 1, ω,
ω2, and ω3 on either side, we have

d2 + b2 − a2 + 2ab + 2ac− 2bc− 2ad− 2cd = ε, (14)

2b2 − d2 + 4ac− 2ab− 2ad− 2bc = 0, (15)

and

b2 − c2 − d2 + 2ac + 2ad + 2bc− 2ab− 2bd = 0. (16)

Adding (14) and (16), we have

2b2 − a2 − c2 + 4ac− 2cd− 2bd = ε.

From (15), we find that d is even, and from the last equation, we deduce that a and c

have opposite parities.
Note that x in (12) is odd. Now, working mod 2 in Z[ω], we have from (12) that

1 + ω ≡ (1 + ω)
(
a2 + c2 + c2ω +

(
1 + c2

)
ω2 + c2ω3) (mod 2). (17)

First, we consider the case where c is even and a is odd. Then from (17), we find that

1 + ω ≡ (1 + ω)
(
1 + ω2) (mod 2), i.e., ω2(1 + ω) ≡ 0 (mod 2).

But this is impossible as ω2 and 1 + ω are units in Z[ω], and 2 is not a unit. Similarly,
if c is odd and a is even, one has from (17) that

1 + ω ≡ (1 + ω)
(
1 + ω + ω3) (mod 2), i.e., ω(1 + ω)

(
1 + ω2) ≡ 0 (mod 2).

This is a contradiction as ω, 1 + ω and 1 + ω2 are all units in Z[ω].
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Next, we consider the case that ε1 = ε(1 + ω). The equation we are interested in is

x + ω = ε(1 − ω)(1 + ω)u2
1. (18)

Under ω → ω2, we obtain from (18) that

x + ω2 = ε
(
1 − ω2)(1 + ω2)U2

1 = −ε(1 − ω)ω4U2
1 . (19)

Working mod 1 − ω, we find from u1 = a + bω + cω2 + dω3 that

u2
1 ≡ (a + b + c + d)2 (mod 1 − ω).

Also,

U2
1 =

(
a + bω2 + cω4 + dω

)2 ≡ (a + b + c + d)2 (mod 1 − ω).

Therefore u2
1 ≡ U2

1 (mod 1 − ω). Subtracting (19) from (18) and after dividing through-
out by 1 − ω, we have

εω = (1 + ω)u2
1 + ω4U2

1 .

In the ring Z/(5) ∼= Z[ω]/(1 − ω), the above equation is

3u2 ≡ ε (mod 5),

where u2 is the image of u2
1 = U2

1 (considered as elements of Z[ω]/(1 − ω)) in Z/(5).
Thus

u2 ≡ 2ε (mod 5),

which is impossible, since squares mod 5 are, 0 and ε. Therefore, we conclude that
Eq. (11) has no nontrivial integral solution. It is easily seen that the trivial solution
(x, y) = (−1, 0) gives β = 5, which we may ignore, since we are only considering β � 6
here.

5.2. Galois group of L(α)
5 (x)

Now that we have already shown L(α)
5 (x) is irreducible, whenever (5, α) ∈ A∞, our

next task is to establish that the Galois group of L(α)
5 (x) is always A5 in these cases.

We achieve this by showing that 3 divides the Newton index NL(α)
5

, whenever the pair
(5, α) is in A∞. Hence, as a consequence of Theorem 4, 3 divides the order of the Galois
group of L(α)

5 (x). Let us denote this Galois group by G. Since L(α)
5 (x) is irreducible

over Q, G must be a transitive subgroup of S5, the symmetric group on 5 letters. Thus
15 divides |G|. We claim that |G| � 60, and, as such, G = A5 or G = S5. Otherwise,
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|G| = 30 or |G| = 15. If |G| = 30, we note that G is not a subgroup of A5. This is
because for n � 5, An is simple and |A5|/|G| = 2. But then there is subgroup H of order
15 of G (the kernel of the signature map of G to {±1}, the multiplicative cyclic group
of order 2). A straightforward application of Sylow’s theorem shows that H is abelian,
generated by a 3-cycle and a 5-cycle. On the contrary, in S5, a 3-cycle σ and a 5-cycle
τ do no commute. To see this, let k ∈ {1, 2, 3, 4, 5} be such that σ(k) �= k Now, consider
the element σ(k) ∈ {1, 2, 3, 4, 5}/{k} = {τ i(k): 1 � i � 4}. Let σ(k) = τ j(k) for some
1 � j � 4. If σ and τ commute, we have

k = σ3(k) = σ2τ j(k) = τ jσ2(k) = τ jσσ(k) = τ jστ j(k) = τ2jσ(k) = τ3j(k).

Since τ is a 5-cycle, we deduce that j ≡ 0 (mod 5), whereby we get a contradiction.
Therefore |G| �= 30. With exactly similar reasoning, we further deduce that |G| �= 15.
Thus the only possibility is that |G| = 60 or |G| = 120. Consequently, G = A5 or G = S5.
Thus L(α)

5 (x) has Galois group A5, whenever the pair (5, α) is in A∞.
First, let us investigate the case that α is a positive integer. We show that 3 divides

the Newton index Ng of the polynomial g(x) = f(x + α + 5), defined at the beginning
of the section. Let us consider the Newton polygon NP3(g). For α > 0, it follows from
the discussion preceding Lemma 3 that, α + 2 = β + r − 1 ≡ 0 (mod 3), so that
5α+ 19 = 5(α+ 2) + 9 ≡ 0 (mod 3). Let us set ν3(5α+ 19) = l � 1. As noted earlier, we
have in this case that α + 5 = β + s, which is 3 or 6 mod 9. In any case, we have that
ν3(α + 5) = 1. Thus the Newton polygon NP3(g) has two edges, the first edge joining
(0, 0) and (3, 1), and the other edge joining (3, 1) and (5, l + 1). Clearly, 3 divides the
denominator of the slope of the edge joining (0, 0) and (3, 1). This concludes our proof
for α > 0.

As for computing the Galois group in the case α < 0, we note that for any prime
divisor p �= 2 of β + r (−(α+ 3)), NPp(f) has two edges, one joining points (0, 0), (2, 0),
and the other joining (2, 0), (5, νp(β + r)).

Thus, if 3 � νp(β+r), then the slope of the edge of NPp(f), joining (2, 0) and (5, νp(β+
r)), has 3 in the denominator. It now follows from Theorem 4, that 3 divides the order
of the Galois group of f(x), and, thereby allowing us to conclude that f(x) has A5 as
the Galois group. Otherwise, if 3 | νp(β + r) for every prime divisor p �= 2 of β + r, then
from Lemma 3, we have

β + r =
{

4t3 if β ≡ 1 (mod 2)
t3 if β ≡ 0 (mod 2),

for some odd integer t. If β is odd, then from (β + r) − (β + r − 1) = 1 and Lemma 3,
we obtain that

4t3 − 3y2 = 1. (20)
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Putting T = 48 t and Y = 288 y + 4, we have the following (isomorphic) minimal Weier-
strass model for (20).

Y 2 + Y = T 3 − 7.

The last elliptic curve has conductor 27, and a quick glance at the Cremona’s table reveals
that the group of rational points on this curve has rank 0, and its torsion part is cyclic
of order 3. Therefore, we conclude that the only integer points on our affine curve (20)
are (1,±1). These points correspond to β = 7. We verified with Maple (mathematical
software system) that L(−7)

5 (x) has Galois group A5.
For the case where β is even, we have from (β + r) − (β + r − 1) = 1 and Lemma 3,

the elliptic curve

t3 − 2z2 = −1. (21)

One verifies that (t, z) = (−1, 0), (t, z) = (1,±1) and (t, z) = (23,±78) (see [2] for
details) are the only integral solutions to (21). We can discard the last two solutions,
(23,±78) as we have already noted that 3 does not divide

β + r − 1 = 2z2

in the discussion preceding Lemma 3. The equation (t, z) = (−1, 0) gives β = 2, and
(t, z) = (1,±1) yields β = 4. We may ignore these values of β as well, since only β � 6
are being considered here.

6. Galois group in the case n ��� 6

As noted in Section 2, we only need to consider cases (i), (iv), (vii), (xi)–(xix) and
(xxiv)–(xxx). We further recall from Section 2 that we may assume |α| � 6. Since we
are interested in n � 6 in this section, we restrict ourselves to cases (vii), (xi)–(xii),
(xvii)–(xix), (xxiv)–(xxv) and (xxviii)–(xxx). Let us denote the set of pairs (n, α) listed
in these cases by A′

∞. We first consider the case that α > 0. Set

g(x) = L(α)
n (x) =

n∑
j=0

bjx
j ,

where

bj = (−1)n+j

(
n

j

)
(n + α)(n− 1 + α) · · · (j + 1 + α).

Let us denote (n + α)(n − 1 + α) · · · (j + 1 + α) by aj . Thus bj = (−1)n+j
(
n
j

)
aj . First,

we derive a criteria for L(α)
n (x) to have the associated Galois group containing An in the

case that α > 0, and where (n + α)/3 < 1 + α.
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Lemma 4. Let n and α be positive integers with n < 2α+ 3 such that there is a prime in
the interval ((n + α)/3, 1 + α). Then the Galois group of L(α)

n (x) over Q contains An,
provided that L(α)

n (x) is irreducible over Q.

Proof. Let us set g(x) = L(α)
n (x). We show that if there is prime p in the interval

((n + α)/3, 1 + α), then the Newton polygon NPp(g) of g(x) with respect to p has two
edges with p dividing the denominator of the slope of one of these edges. Since this p is
in the interval (n/2, n− 2), it follows from Theorem 4 in Section 2 that g(x) has Galois
group An, provided g(x) is irreducible over Q.

Suppose that there is a prime p ∈ ((n + α)/3, 1 + α). Clearly, p does not appear as
one of the factors in the expression for aj . Also, from 3p > n + α, we find that 3p does
not appear as a factor in the expression for aj either. Thus νp(aj) � 1 for all j = 0,
1, . . . , n. Also, νp(aj) = 1, whenever 2p appears as one of the factors in the expression
for aj . This is the case if 2p � j + 1 + α, that is, when j � 2p − 1 − α. It is easy to
check that

(
n
j

)
≡ 0 (mod p) if and only if n− p + 1 � j � p− 1. In fact, for the p under

consideration, νp
((

n
j

))
= 1 for n− p + 1 � j � p− 1.

For our choice on the size of p, we have

n− p < 2p− 1 − α < p− 1 < n.

From the above discussion, it follows that

νp(bj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 � j � n− p

2 if n− p < j � 2p− 1 − α

1 if 2p− 1 − α < j � p− 1
0 if p � j � n.

Thus NPp(g) has two edges, one joining (0, 0) and (n − p, 0), and the other joining
(n − p, 0) and (n, 1). Clearly, the latter edge has slope 1/p, and, hence, p divides the
denominator of the slope of this edge of NPp(g), which is what we claimed. �

For n � 6 and α > 0, (n, α) ∈ A′
∞ if and only if α ∈ {n−6, n−1, n, n+1, n+2, n+3}.

Thus n and α satisfy the condition in Lemma 4. Furthermore, if we take the prime p in
the interval (2/3n+2, n−7], then p is also as in Lemma 4. The conclusion in Theorem 2
for n � 6 and α > 0 now follows from Lemma 4. In order to ensure the existence of a
prime in the interval (2/3n + 2, n − 7], we make use of explicit estimates on π(x) (the
number of primes less than or equal to a real number x � 1) from [12].

Lemma 5. For n � 36, the interval (2/3n + 2, n− 7] contains a prime.

Proof. Let S(n) = π(n− 7) − π(2n/3 + 3). From [12], we have the following estimates.
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π(x) > x

log x− 0.5 for x � 67,

π(x) < x

log x− 1.5 for x � e1.5,

where the logarithms appearing above are natural logarithms. Thus, as long as n � 74,
we have

S(n) > n− 7
log(n− 7) − 0.5 − 2n/3 + 3

log(2n/3 + 3) − 1.5

>
n− 7

logn− 0.5 − 2n/3 + 3
logn + log(2/3) − 1.5

>
n− 7

logn− 0.5 − 2n/3 + 3
logn− 1.906 .

After combining the fractions, we find that S(n) > 0 if

T (n) = n log n
3 − 5n

3 − 10 logn + 14.842 > 0.

A simple calculation verifies that T (x) is increasing for x � e5 and T (250) > 0. Thus
S(n) > 0 for n � 250. This proves Lemma 5 for n � 250. For 36 � n � 249, we used
Sage to verify the conclusion of Lemma 5. �

Thus the conclusion of Theorem 2 for n � 36 follows from Lemmas 4 and 5.
One easily verifies that for 6 � n � 35 and α > 0, the only pairs (n, α) which
appear in the list for A′

∞ are (28, 22) (case (xi)); (9, 8), (25, 24) (case (xii)); (7, 8),
(17, 18), (31, 32) (case (xviii)); and (13, 16), (33, 36) (case (xix)). For pairs (n, α) ∈
{(7, 8), (9, 8), (13, 16), (17, 18)}, we used Sage to compute the corresponding Galois
groups (Sage can compute Galois groups of all irreducible polynomials having de-
gree � 23). The Galois group always turns out to be An. In the event that (n, α) ∈
{(25, 24), (28, 22), (31, 32), (33, 36)}, we verified the irreducibility of L(α)

n (x) with Sage.
Now we conclude from Lemma 4 that the corresponding Galois group is An in these
cases.

The treatment in the case that α < 0 is not much different either. For the sake of
convenience, we use Hajir’s notations as in [9] and write α = −1 − n − r. We define
L〈r〉
n (x) as

L〈r〉
n (x) := L(−1−n−r)

n (x) = L(α)
n (x) =

n∑
j=0

cjx
j .

Here, cj = (−1)n+j
(
n
j

)
dj , where dj = (r + 1)(r + 2) · · · (r + n − j). Following a similar

approach as in the previous case, we first derive a criteria for the Galois group of L〈r〉
n (x)

to contain An.
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Lemma 6. Let n and r be positive integers with n < 2r + 3 such that there is a prime
in the interval ((n+ r)/3, 1 + r). Then the Galois group of L〈r〉

n (x) over Q contains An,
provided that L〈r〉

n (x) is irreducible over Q.

Proof. Let us write f(x) = L〈r〉
n (x). Working similarly to the previous case, one finds

that νp(dj) � 1 for all 0 � j � n, and that νp(dj) = 1, for j � 2n− 2p− 5. Thus

νp(cj) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if 0 � j � n− p

2 if n− p < j � 2n− 2p− 5
1 if 2n− 2p− 5 < j � p− 1
0 if p � j � n.

Therefore NPp(f) has two edges, joining points (0, 0), (n − p, 0), and (n − p, 0), (n, 1),
respectively. As in the case α > 0, p divides the denominator of the slope of the edge
joining (0, n − p) and (n, 1). Therefore we conclude from Theorem 4 that L〈r〉

n (x) has
Galois group An, provided it is irreducible over Q. �

As indicated at the beginning of this section, for n � 6 and α < 0, we only need to
consider pairs (n, α) ∈ A′

∞ in which α assumes values in the set {−2n − 4,−2n − 2,
−2n,−2n + 4} (cases (vii), (xxiv)–(xxv) and (xxviii)–(xxx)). Thus the only values of r
that we need to consider are in the set {n− 5, n− 1, n+ 1, n+ 3}. As in the case α > 0,
we deduce from Lemma 5 that, for n � 36 and r ∈ {n− 5, n− 1, n+ 1, n+ 3}, there is a
prime in the interval ((n + r)/3, 1 + r). Thus, by appealing to Lemma 6, the conclusion
in Theorem 2 follows for n � 36 and α < 0.

For 6 � n � 35 and α < 0, the pairs (n, α) ∈ A′
∞ are (8,−18), (12,−26), (16,−34),

(20,−42), (24,−50), (28,−58), (32,−66) (case (vii)); (28,−52) (case (xxiv)); (9,−18),
(25,−50) (case (xxv)); (17,−36) (case (xxix)); and (13,−30), (33,−70) (case (xxx)). For
6 � n � 20, we verified with Sage that the corresponding Galois group is indeed An.
For the remaining pairs, that is, for pairs (24,−50), (25,−50), (28,−58), (28,−52),
(32,−66) and (33,−70), it follows from Lemma 6 that the corresponding Galois group
is An, provided L(α)

n (x) is irreducible for these values of n and α. The irreducibility in
these cases was established using Sage. Based on these various evidences, we believe that
for α �= −1, (4, 23) is the only pair in A∞ for which the Galois group associated with
L(α)
n (x) is not An. We conclude this paper with the following.

Conjecture 1. For α �= −1, the only pair (n, α) ∈ A∞ for which the Galois group asso-
ciated with L

(α)
n (x) is not An, is (4, 23).
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