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Some New Congruences for Andrews’ Singular
Overpartitions

1T. Kathiravan and 2S. N. Fathima

Department of Mathematics,
Ramanujan School of Mathematics,

Pondicherry University,
Puducherry - 605 014, India.

Abstract:

Recently, Andrews defined combinatorial objects which he called singular over-
partitions and proved that these singular overpartitions which depend on two param-
eters k and i can be enumerated by the function Ck,i(n), which denotes the number
of overpartitions of n in which no part is divisible by k and only parts ≡ ±i (mod k)
may be overlined. G. E. Andrews, S. C. Chen, M. Hirschhorn, J. A. Sellars, Olivia
X. M. Yao, M. S. Mahadeva Naika, D. S. Gireesh, Zakir Ahmed and N. D. Baruah
noted numerous congruences modulo 2, 3, 4, 6, 12, 16, 18, 32 and 64 for C3,1(n). In
this paper, we prove congruences modulo 128 for C3,1(n), and congruences modulo
2 for C12,3(n), C44,11(n),C75,15(n), and C92,23(n). We also prove “Mahadeva Naika
and Gireesh’s conjecture”, for n ≥ 0, C3,1(12n+ 11) ≡ 0 (mod 144) is true.

2010 Mathematics Subject Classification: 11P83, 05A17.
Keywords: Singular overpartition, Theta function, Congruence, Dissection.

1 INTRODUCTION

A partition of a positive integer n denoted by p(n), is a nonincreasing sequence of
positive integers whose sum is n. If � is a positive integer, then a partition is called
a �-regular partition denoted by b�(n), if there is no part divisible by �.
The generating function for b�(n), is given by

∞∑
n=0

b�(n)q
n =

(q�; q�)∞
(q; q)∞

=
f�
f1
, (1.1)
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where as customary, we define

fk := (qk; qk)∞ =
∞∏

m=1

(1− qmk).

Several interesting arithmetic properties of �-regular partition are found by many
mathematicians, see [4, 9, 10, 14, 18, 20].

In [13], Corteel and Lovejoy introduced overpartitons. An overpartition of n
denoted by p(n), is a nonincreasing sequence of positive integers whose sum is n in
which the first occurrences of number may be overlined. For example, p(3) = 8.
The eight overpartition of 3 are 3, 3, 2+1, 2+1, 2+1, 2+1, 1+1+1 and 1+1+1.
The generating function for p(n), is given by

∞∑
n=0

p(n)qn =
(−q; q)∞
(q; q)∞

=
f2
f 2
1

. (1.2)

Recently G. E. Andrews [5] introduced singular overpartition denoted by Cδ,i(n),
which count the number of overpartitions of n in which no part is divisible by δ
and only parts ≡ i (mod δ) may be overlined. For example, C3,1(4) = 10. The 10
singular overpartitions of 4 are 4, 4̄, 2 + 2, 2̄ + 2, 2 + 1 + 1, 2̄ + 1 + 1, 2 + 1̄ + 1,
1̄ + 1̄ + 1, 1 + 1 + 1 + 1 and 1̄ + 1 + 1 + 1.
The generating function for Cδ,i(n), is given by, δ ≥ 3 and 1 ≤ i ≤ ⌊

δ
2

⌋
,

∞∑
n=0

Cδ,i(n)q
n =

(qδ; qδ)∞(−qi; qδ)∞(−qδ−i; qδ)∞
(q; q)∞

. (1.3)

In his paper [5], G. E. Andrews also proved that for n ≥ 0,

C3,1(9n+ 3) ≡ C3,1(9n+ 6) ≡ 0 (mod 3).

Chan et al. [11] generalized and found infinite families of congruences modulo 3 for
C3,1(n), C6,1(n), C6,2 and modulo 2 for C4,1(n). For example, they proved that for
n, k ≥ 0,

C3,1(2
k(6n+ 5)) ≡ 0 (mod 8).

Recently, Ahmed and Baruah [2] using simple p-dissections of Ramanujan’s theta
functions have proved several congruences for C3,1(n), C8,2(n), C12,2(n), C12,4,
C24,8(n) and C48,16(n). Subsequently, Naika and Gireesh [19] prove congruence
modulo 6, 12, 16, 18 and 24 for C3,1 and infinite families of congruence modulo
12, 18, 48, and 72 for C3,1(n). They conjecture the following congruence for C3,1(n)
modulo 144,

C3,1(12n+ 11) ≡ 0 (mod 144). (1.4)

The aim of this paper is to prove new congruences for C3,1(n), C12,3(n), C44,11(n),
C75,25(n) and C92,23(n). The following are our main results:
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Theorem 1.1. If p is prime p ≥ 5, such that

(−3

p

)
= −1, than for any nonnegative

integer α and n,

C3,1

(
24p2α+1(pn+ j) + 7p2α+2

) ≡ 0 (mod 128).

Theorem 1.2. If p is prime p ≥ 5, such that

(−2

p

)
= −1, than for any nonnegative

integer α and n,

C3,1(24p
2α+1

(
pn+ j) + 19p2α+2

) ≡ 0 (mod 128).

Theorem 1.3. For k ≥ 0, we have

C12,3

(
4kn+

4k − 1

3

)
≡ C12,3 (mod 2), (1.5)

C12,3

(
4k+1n+

10 · 4k − 1

3

)
≡ 0 (mod 2), (1.6)

C12,3

(
4k+1n+

4k(6m+ 1)− 1

3

)
≡ 0 (mod 2), 1 ≤ m ≤ 7. (1.7)

Theorem 1.4. For all n ≥ 0,

C44,11(16n+ 2) ≡ 0 (mod 2), (1.8)

C44,11(16n+ 14) ≡ 0 (mod 2), (1.9)

C44,11(16n+ 10) ≡ 0 (mod 2), (1.10)

C44,11(176n+ 16m+ 6) ≡ 0 (mod 2), 1 ≤ m ≤ 10. (1.11)

Theorem 1.5. For all n ≥ 0,

C75,25(10n+ 9) ≡ 0 (mod 2), (1.12)

C75,25(80n+ 20m+ 14) ≡ 0 (mod 2), 1 ≤ m ≤ 3. (1.13)

Theorem 1.6. If m ∈ 5, 7, 10, 11, 14, 15, 17, 19, 20, 21, 22, then for all n ≥ 0,

C92,23

(
2 · 232k(23n+m) +

7 · 232k+1 − 73

88

)
≡ 0 (mod 2). (1.14)

In order to prove our main results, we collect a few definitions and lemmas in section
2. In section 3, we prove Naika and Gireesh’s conjecture (1.4) is true. The proofs of
Theorems 1.1−1.6 are given in section 4. In the subsequent section we conclude the
paper with some interesting congruences for C12,3(n), C44,11(n) and b2(n) modulo 2.



4

2 Preliminaries

In order to prove the main results of this paper, we collect some definitions and
lemmas in this section.
For | ab |< 1, Ramanujan’s general theta function f(a, b) is defined as

f(a, b) =
∞∑

n=−∞
an(n+1)/2bn(n−1)/2. (2.1)

Using Jacobi’s triple product identity [8, Entry 19, p. 35], (2.1) becomes

f(a, b) = (−a; ab)∞(−b; ab)∞(ab; ab)∞. (2.2)

The most important special cases of f(a, b) are

ϕ(q) :=f(q, q) = 1 + 2
∞∑
n=1

qn
2

= (−q; q2)2∞(q2; q2)∞ =
f 5
2

f 2
1 f

2
4

, (2.3)

ψ(q) :=f(q; q3) =
∞∑
n=0

qn(n+1)/2 =
(q2; q2)∞
(q; q2)∞

=
f 2
2

f1
(2.4)

and

f(−q) :=f(−q,−q2) =
∞∑

n=−∞
(−1)nqn(3n−1)/2 = (q; q)∞ = f1, (2.5)

where the product representations in (2.5) arise from (2.2) and is Euler’s famous
pentagonal theorem [3]. After Ramanujan, we also define

χ(q) := (−q; q2)∞ =
f 2
2

f1f4
.

We also note

ψ(−q) =
f1f4
f2

, ϕ(−q) =
f 2
1

f2
, χ(−q) =

f1
f2
.

By the binomial theorem, for any positive integer k,

f 2k ≡ f 2k−1

2 (mod 2k). (2.6)

Lemma 2.1. (Hirschhorn and Sellers [17]) The following 3-dissection holds

f2
f 2
1

=
f 4
6 f

6
9

f 8
3 f

3
18

+ 2q
f 3
6 f

3
9

f 7
3

+ 4q2
f 2
6 f

3
18

f 6
3

. (2.7)
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Lemma 2.2. ( Baruah and Ojah [6, Theorem 4.3]) The following 2-dissection holds

1

f1f3
=

f 2
8 f

5
12

f 2
2 f4f

4
6 f

2
24

+ q
f 5
4 f

2
24

f 4
2 f

2
6 f

2
8 f12

. (2.8)

Multiplying both sides of (2.8) by f 2
1 and replacing q by q11, we find

f11
f33

≡ f 5
22

f132
+ q11

f132
f22

(mod 2). (2.9)

Lemma 2.3. (Hirschhorn, Garvan and Borwein [15]) The following 2-dissection
holds

f 3
3

f1
=

f 3
4 f

2
6

f 2
2 f12

+ q
f 3
12

f4
. (2.10)

Lemma 2.4. (Cui and Gu [12, Theorem 2.2]) If p ≥ 5 is a prime and

±p− 1

6
:=

⎧⎪⎨
⎪⎩
p− 1

6
, if p ≡ 1 (mod 6),

−p− 1

6
, if p ≡ −1 (mod 6),

then

(q; q)∞ =

p−1
2∑

k=− p−1
2

k �=±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q
p2−1
24 (qp

2

; qp
2

)∞. (2.11)

Furthermore, if −(p−1)
2

≤ k ≤ (p−1)
2

, k �= (±p−1)
6

, then 3k2+k
2

�≡ p2−1
24

(mod p).

Lemma 2.5. (Ahmed and Baruah [1, Lemma 2.3]) If p ≥ 3 is prime, then

(q; q)3∞ =

p−1∑
k=0

k �= p−1
2

(−1)kq
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2

+ p(−1)
p−1
2 q

p2−1
8 (qp

2

; qp
2

)3∞. (2.12)

Furthermore, if k �= p−1
2
, 0 ≤ k ≤ p− 1, then k2+k

2
�≡ p2−1

8
(mod p).
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Lemma 2.6. (Hirschhorn [16]) We have,

1

f1
=

f 5
25

f 6
5

(
1

R4(q5)
+

q

R3(q5)
+

2q2

R2(q5)
+

3q3

R(q5)
+ 5q4 − 3q5R(q5)

+ 2q6R2(q5)− q7R3(q5) + q8R4(q5)

)
, (2.13)

where R(q) is the Rogers-Ramanujan continued fraction defined, for | q |< 1, by

R(q) :=
q1/5

1 +

q

1+

q2

1 +···
.

Lemma 2.7. (Hirschhorn and Sellers [18, Theorem 1]) The following 2-dissection
holds

f5
f1

=
f8f

2
20

f 2
2 f40

+ q
f 3
4 f10f40
f 3
2 f8f20

. (2.14)

Lemma 2.8. (Baruah and Ahmed [7, Eqn. (2.4)])

1

(q; q)∞(q11; q11)∞
≡ 1

(q2; q2)2∞(q22; q22)2∞

(
ψ(q12) + q6

ψ(−q66)χ(q22)

χ(−q4)

+q
ψ(−q6)χ(q2)

χ(−q44)
+ q15ψ(q132)

)
(mod 2). (2.15)

Lemma 2.9. (Berndt [8, Entry 31, p. 48])
Let Un = an(n+1)/2bn(n−1)/2 and Vn = an(n−1)/2bn(n+1)/2 for an integer n. Then

f(U1, V1) =
n−1∑
r=0

Urf

(
Un+r

Ur

,
Vn−r

Ur

)
. (2.16)

3 Proof of M. S. M. Naika and D. S. Gireesh’s

Conjecture (1.4)

From [19, Eq. 3.19], we have

∞∑
n=0

C3,1(4n+ 3)qn = 6
f 3
2 f

3
6

f 6
1

. (3.1)
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Substituting (2.7) in (3.1), we have

∞∑
n=0

C3,1(4n+ 3)qn = 6f 3
6

(
f 4
6 f

6
9

f 8
3 f

3
18

+ 2q
f 3
6 f

3
9

f 7
3

+ 4q2
f 2
6 f

3
18

f 6
3

)3

= 6
f 15
6 f 18

9

f 24
3 f 9

18

+ 36q
f 14
6 f 15

9

f 23
3 f 6

18

+ 144q2
f 13
6 f 12

9

f 22
3 f 3

18

+ 336q3
f 12
6 f 9

9

f 21
3

+ 576q4
f 11
6 f 6

9 f
3
18

f 20
3

+ 576q5
f 10
6 f 3

9 f
6
18

f 19
3

+ 384q6
f 9
6 f

9
18

f 18
3

. (3.2)

It follows that
∞∑
n=0

C3,1(12n+ 11)qn = 144
f 13
2 f 12

3

f 22
1 f 3

6

+ 576q
f 10f 3

3 f
6
6

f 19
1

. (3.3)

Conjecture (1.4) follow from (3.3).

4 Proof of Theorems 1.1-1.6

Theorem 4.1. If p is prime with p ≡ 5 (mod 6) and α ≥ 0, then

∞∑
n=0

C3,1

(
24p2αn+ 7p2α

)
qn ≡ 36pα(−1)α·

p−2
3 (q; q)3∞(q4; q4)∞ (mod 128). (4.1)

Proof. It follows from (3.2) that

∞∑
n=0

C3,1(12n+ 7)qn = 36
f 14
2 f 15

3

f 23
1 f 6

6

+ 576q
f 11
2 f 6

3 f
3
6

f 20
1

. (4.2)

Using (2.6) in (4.2), we have

∞∑
n=0

C3,1(12n+ 7)qn ≡ 36
f 3
2 f12
f1f3

+ 64qf2f
3
12 (mod 128). (4.3)

Substituting (2.10) into (4.3), we have

∞∑
n=0

C3,1(12n+ 7)qn ≡ 36f 3
2 f12

(
f8
f12

+ q
f24
f4

)
+ 64qf2f

3
12 (mod 128),

≡ 36f 3
2 f8 + 100qf2f

3
12 (mod 128). (4.4)

From (4.4), we have

∞∑
n=0

C3,1(24n+ 7)qn ≡ 36f 3
1 f4 (mod 128), (4.5)
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which is the α = 0 case of (4.1). Now suppose that (4.1) holds for some α ≥ 0.
Substituting (2.11) and (2.12) in (4.1), we have

∞∑
n=0

C3,1

(
24p2αn+ 7p2α

)
qn

≡ 36pα(−1)α(
±p−1

6
+ p−1

2
)

⎡
⎢⎢⎣

p−1∑
k=0

k �= p−1
2

(−1)kq
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)qpn·
pn+2k+1

2

+ p(−1)
p−1
2 q

p2−1
8 (qp

2

; qp
2

)3∞

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

p−1
2∑

k=− p−1
2

k �=±p−1
6

(−1)kq4
3k2+k

2 f

(
−q4

3p2+(6k+1)p
2 ,−q4

3p2−(6k+1)p
2

)

+ (−1)
±p−1

6 q4
p2−1
24 (q4p

2

; q4p
2

)∞

⎤
⎥⎥⎥⎥⎦ (mod 128). (4.6)

For a prime p ≥ 5, 0 ≤ k ≤ p − 1 and
−(p− 1)

2
≤ m ≤ (p− 1)

2
, now consider the

congruence
k2 + k

2
+ 4 · 3m

2 +m

2
≡ 7p2 − 7

24
(mod p), (4.7)

which is equivalent to

3(2k + 1)2 + (12m+ 2)2 ≡ 0 (mod p).

Since

(−3

p

)
= −1 as p ≡ 5 (mod 6) the solution (4.7) is k =

p− 1

2
and m =

p− 1

6
.

Therefore, extracting the terms involving qpn+
7p2−7

24 from both sides of (4.6) and then
replacing qp by q, we find that

∞∑
n=0

C3,1

(
24p2α+1n+ 7p2α+2

)
qn ≡ 36pα+1(−1)(α+1)· p−2

3 (qp; qp)3∞(q4p; q4p)∞ (mod 128).

(4.8)
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Extracting the terms containing qpn from both sides of identity (4.8) and then re-
placing qp by q, we find that

∞∑
n=0

C3,1

(
24p2α+2n+ 7p2α+2

)
qn ≡ 36pα+1(−1)(α+1)· p−2

3 (q; q)3∞(q4; q4)∞ (mod 128)

(4.9)
This completes the proof by induction of (4.1).

We can now prove Theorem 1.1.
Proof of Theorem 1.1
Empolying (2.11) and (2.12) and then comparing the coefficients of qpn+j , 1 ≤ j ≤
p− 1, on both side of (4.8), we deduce Theorem 1.1

Theorem 4.2. If p is prime with p ≡ 5 or 7 (mod 8) and α ≥ 0, then

∞∑
n=0

C3,1

(
24p2αn+ 19p2α

)
qn ≡ 100pα(−1)α·

p−2
3 (q6; q6)3∞(q; q)∞ (mod 128) (4.10)

Proof. From (3.2) we have

∞∑
n=0

C3,1(24n+ 19)qn ≡ 100f 3
6 f1 (mod 128) (4.11)

which is the α = 0 case of (4.10). Now suppose that (4.10) holds for some α ≥ 0.
Substituting (2.11) and (2.12) in (4.10), we have

∞∑
n=0

C3,1

(
24p2αn+ 19p2α

)
qn

≡ 100pα(−1)α(
±p−1

6
+ p−1

2
)

⎡
⎢⎢⎣

p−1∑
k=0

k �= p−1
2

(−1)kq6
k(k+1)

2

∞∑
n=0

(−1)n(2pn+ 2k + 1)q6pn·
pn+2k+1

2

+ p(−1)
p−1
2 q6

p2−1
8 (q6p

2

; q6p
2

)3∞

⎤
⎥⎥⎦

×

⎡
⎢⎢⎢⎢⎣

p−1
2∑

k=− p−1
2

k �=±p−1
6

(−1)kq
3k2+k

2 f

(
−q

3p2+(6k+1)p
2 ,−q

3p2−(6k+1)p
2

)
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+ (−1)
±p−1

6 q
p2−1
24 (qp

2

; qp
2

)∞

⎤
⎥⎥⎥⎥⎦ (mod 128). (4.12)

For a prime p ≥ 5, 0 ≤ k ≤ p − 1 and
−(p− 1)

2
≤ m ≤ (p− 1)

2
, now consider the

congruence

6 · k
2 + k

2
+

3m2 +m

2
≡ 19p2 − 19

24
(mod p), (4.13)

which is equivalent to

2(6k + 3)2 + (6m+ 1)2 ≡ 0 (mod p).

Since

(−2

p

)
= −1 as p ≡ 5 or 7 (mod 8) the solution to (4.13) is k =

p− 1

2
and

m =
p− 1

6
. Therefore, extracting the terms involving qpn+

19p2−19
24 from both sides of

(4.12) and then replacing qp by q, we find that

∞∑
n=0

C3,1

(
24p2α+1n+ 19p2α+2

)
qn ≡ 100pα+1(−1)(α+1)· p−2

3 (q6p; q6p)3∞(qp; qp)∞ (mod 128).

(4.14)
Extracting the terms containing qpn from both sides of the above and then replacing
qp by q, we find that

∞∑
n=0

C3,1

(
24p2α+2n+ 19p2α+2

)
qn ≡ 100pα+1(−1)(α+1)· p−2

3 (q6; q6)3∞(q; q)∞ (mod 128),

(4.15)
This completes the proof by induction of (4.10).

We can now prove Theorem 1.2.
Proof of Theorem 1.2
Empolying (2.11) and (2.12) and then comparing the coefficients of qpn+j , 1 ≤ j ≤
p− 1, from both side of (4.14) we deduce Theorem 1.2
Proof of Theorem 1.3
From (1.3) we have

∞∑
n=0

C12,3(n)q
n ≡ f 3

3

f1
(mod 2). (4.16)

Using (2.10) in (4.16), we found

∞∑
n=0

C12,3(2n+ 1)qn ≡ f 3
6

f2
(mod 2). (4.17)
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It follows that
C12,3(4n+ 1) ≡ C12,3(n) (mod 2) (4.18)

and
C12,3(4n+ 3) ≡ 0 (mod 2). (4.19)

The results (1.5) and (1.6) follow by induction, using (4.18) and (4.19) respectively.
Again from (4.16) we have

C12,3(2n) ≡ f8 (mod 2). (4.20)

It follow that
C12,3(16n) ≡ f1 (mod 2) (4.21)

and
C12,3(16n+ 2m) ≡ 0 (mod 2), (4.22)

for 1 ≤ m ≤ 7 using (1.5) in (4.22) we have the result (1.7).
Proof of Theorem 1.4
Again from (1.3) we have

∞∑
n=0

C44,11(n)q
n ≡ f 2

22

f1f11
(mod 2). (4.23)

Substituting (2.15) in (4.23) and extracting the terms involving q2n from both sides
of the congruence and then replacing q2 by q, we have

∞∑
n=0

C44,11(2n)q
n ≡ 1

f2

(
ψ(q6) + q3

f 2
66f4f11
f22f2f33

)
(mod 2). (4.24)

Using (2.9) in (4.24) and extracting the terms involving q2n+1 from both sides of the
congruence, dividing both sides by q and then replacing q2 by q, we have

∞∑
n=0

C44,11(4n+ 2)qn ≡ q
f 2
33f

5
11

f11f66
,≡ qf44 (mod 2). (4.25)

Extracting the terms involving q4n+1 from both sides of the congruence, dividing
both sides by q and then replacing q4 by q, we have

∞∑
n=0

C44,11(16n+ 6)qn ≡ f11 (mod 2) (4.26)

The results (1.8)-(1.10), follow from (4.25). The result (1.11) follows from (4.26).
Proof of Theorem 1.5
Again from (1.3) we have

∞∑
n=0

C75,25(n)q
n ≡ f25

f1
(mod 2). (4.27)
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Substituting (2.13) in (4.27), extracting the terms involving q5n+4 from both sides
of the congruence, dividing both sides by 4 and then replacing q5 by q, we have

∞∑
n=0

C75,25(5n+ 4)qn ≡ f 6
5

f 6
1

≡ f 3
10

f 3
2

(mod 2). (4.28)

The result (1.12) follow from (4.28). Also from (4.28) we have

∞∑
n=0

C75,25(10n+ 4)qn ≡ f 3
5

f 3
1

≡ f10f5
f2f1

(mod 2). (4.29)

Substituting (2.14) in (4.29), extracting the terms involving q2n+1 from both sides
of the congruence, dividing both sides by q and then replacing q2 by q, we have

∞∑
n=0

C75,25(20n+ 14)qn ≡ f4f40
f8

(mod 2). (4.30)

The result (1.13) follows from (4.30).

Theorem 4.3. For any non-negative integer k, we have

∞∑
n=0

C92,23

(
2 · 232kn+

7 · 232k+1 − 73

88

)
qn ≡ f 2

23 + qf1f
3
23 (mod 2). (4.31)

Proof. Again from (1.3) we have

∞∑
n=0

C92,23(n)q
n ≡ f 2

46

f1f23
(mod 2). (4.32)

Now, from [6, Eq. (1.9)], we have

∞∑
n=0

p[11231](2n+ 1)qn =
f2f46
f 2
1 f

2
23

+ q
f 2
2 f

2
46

f 3
1 f

3
23

, (4.33)

where p[11231](n) is defined by

∞∑
n=0

p[11231](n)q
n :=

1

f1f23
. (4.34)

Extracting the terms involving q2n+1 from both sides of (4.32), replacing q2 by q and
then employing (4.33), we have

∞∑
n=0

C92,23(2n+ 1)qn ≡ f 2
23 + qf1f

3
23 (mod 2), (4.35)
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which is the k = 0 case of (4.31). Now suppose (4.31) holds for some k ≥ 0.
Setting U1 = a = −q, V1 = b = −q2 and n = 23 in (2.16) and using the identity
f(a, b) = af(a−1, a2b), we find the following 23-dissection of f(−q,−q2) = f1.

f1 = f(−q782,−q805)− qf(−q851,−q736)− q2f(−q713,−q874)− q5f(−q920,−q667)

+ q7f(−q644,−q943)− q12f(−q989.− q598)− q15f(−q575,−q1012)

+ q22f(−q1058,−q529) + q26f(−q506,−q1081)− q35f(−q1127,−q460)

− q40f(−q437,−q1150) + q51f(−q1196,−q391) + q57f(−q368,−q1219)

− q70f(−q1265,−q322)− q77f(−q299,−q1288) + q92f(−q1334,−q253)

+ q100f(−q230,−q1357)− q117f(−q1403,−q184)− q126f(−q161,−q1426)

+ q145f(−q1472,−q115) + q155f(−q92,−q1495)− q176f(−q1541,−q46)

− q187f(−q23,−q1564). (4.36)

Employing (4.36) in (4.31) extracting the terms involving q23n from both sides of
the resulting congruence, replacing q23 by q, we have

∞∑
n=0

C92,23

(
2 · 232kn+

7 · 232k+1 − 73

88

)
qn ≡ f 2

1 + qf 3
1 f23

≡ f2 + qf1f2f23 (mod 2) (4.37)

Next, squaring (4.36), we have

f2 ≡ f 2(−q782,−q805) + q2f 2(−q851,−q736) + q4f 2(−q713,−q874) + q10f 2(−q920,−q667)

+ q14f 2(−q644,−q943) + q24f 2(−q989.− q598) + q30f 2(−q575,−q1012)

+ q44f 2(−q1058,−q529) + q52f 2(−q506,−q1081) + q70f 2(−q1127,−q460)

+ q80f 2(−q437,−q1150) + q102f 2(−q1196,−q391) + q114f 2(−q368,−q1219)

+ q140f 2(−q1265,−q322) + q154f 2(−q299,−q1288) + q184f 2(−q1334,−q253)

+ q200f 2(−q230,−q1357) + q234f 2(−q1403,−q184) + q252f 2(−q161,−q1426)

+ q290f 2(−q1472,−q115) + q310f 2(−q92,−q1495) + q352f 2(−q1541,−q46)

+ q374f 2(−q23,−q1564) (mod 2). (4.38)

Employing (4.36) and (4.38) in (4.37), extracting the terms involving q23n+21 from
both sides of the congruence, dividing both sides by q21 and then replacing q23 by
q, we have

∞∑
n=0

C92,23

(
2 · 232k+1n+

7 · 232k+2 − 73

88

)
qn ≡ f 2

23 + qf1f
3
23, (4.39)

This completes the proof by induction of (4.31).
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Next we prove Theorem 1.6.
Proof of Theorem 1.6
Employing (4.36) in (4.31) and then equating the coefficients of q23n+m from both
sides we deduce Theorem 1.6.

5 More congruences for Andrews’ singular over-

partitions:

From (4.26), we have
∞∑
n=0

C44,11(176n+ 6)qn ≡ f1 (mod 2) (5.1)

Theorem 5.1. For any prime p ≥ 5, α ≥ 1, and n ≥ 0,

C12,3

(
16p2αn+

2(24i+ p)p2α−1 − 2

3

)
≡ 0 (mod 2), (5.2)

For i = 1, 2, · · · , p− 1. For any prime p ≥ 5, α ≥ 0, and n ≥ 0,

C12,3

(
16p2α+1n+

2(24i+ 1)p2α − 2

3

)
≡ 0 (mod 2), (5.3)

where j is an integer with 0 ≤ j ≤ p− 1 such that

(
24j + 1

p
= −1

)
.

Proof. We note for 2-regular partitions modulo 2
∞∑
n=0

b2(n)q
n ≡ f1 (mod 2).

In [12] Cui and Gu have proved several interesting results, for example, for any
prime p ≥ 5, α ≥ 1, and n ≥ 0,

b2

(
p2αn+

(24i+ p)p2α−1 − 1

24

)
≡ 0 (mod 2). (5.4)

And for any prime p ≥ 5, α ≥ 0, and n ≥ 0,

b2

(
p2α+1n+

(24j + 1)p2α − 1

24

)
≡ 0 (mod 2), (5.5)

where j is an integer with 0 ≤ j ≤ p− 1 such that

(
24j + 1

p
= −1

)
. Theorem 5.1

follows from (4.21) and the results (5.2) and (5.3).

Remark: Similar results can be obtained for (5.1).
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