Accepted Manuscript

Some new congruences for Andrews’ singular overpartitions

T. Kathiravan, S.N. Fathima N UMBER
THEORY

PII: S0022-314X(16)30260-8

DOI: http://dx.doi.org/10.1016/j.jnt.2016.09.026

Reference: YJINTH 5592

To appear in: Journal of Number Theory

Received date: 11 September 2016
Revised date: 20 September 2016
Accepted date: 21 September 2016

Please cite this article in press as: T. Kathiravan, S.N. Fathima, Some new congruences for Andrews’ singular overpartitions, J.
Number Theory (2017), http://dx.doi.org/10.1016/.jnt.2016.09.026

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are
providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting
proof before it is published in its final form. Please note that during the production process errors may be discovered which could
affect the content, and all legal disclaimers that apply to the journal pertain.


http://dx.doi.org/10.1016/j.jnt.2016.09.026

Some New Congruences for Andrews’ Singular
Overpartitions

IT. Kathiravan and 2S. N. Fathima

Department of Mathematics,
Ramanujan School of Mathematics,
Pondicherry University,
Puducherry - 605 014, India.

Abstract:

Recently, Andrews defined combinatorial objects which he called singular over-
partitions and proved that these singular overpartitions which depend on two param-
eters k and i can be enumerated by the function C};(n), which denotes the number
of overpartitions of n in which no part is divisible by k& and only parts = +i (mod k)
may be overlined. G. E. Andrews, S. C. Chen, M. Hirschhorn, J. A. Sellars, Olivia
X. M. Yao, M. S. Mahadeva Naika, D. S. Gireesh, Zakir Ahmed and N. D. Baruah
noted numerous congruences modulo 2,3,4,6,12,16,18,32 and 64 for Cs,(n). In
this paper, we prove congruences modulo 128 for C3;(n), and congruences modulo
2 for Cia3(n), Cus11(n),Crs15(n), and Cogaz(n). We also prove “Mahadeva Naika
and Gireesh’s conjecture”, for n >0, C3;(12n 4+ 11) = 0 (mod 144) is true.

2010 Mathematics Subject Classification: 11P83, 05A17.
Keywords: Singular overpartition, Theta function, Congruence, Dissection.

1 INTRODUCTION

A partition of a positive integer n denoted by p(n), is a nonincreasing sequence of
positive integers whose sum is n. If £ is a positive integer, then a partition is called
a (-regular partition denoted by by(n), if there is no part divisible by /.

The generating function for by(n), is given by

() — (@38 S
;b[(n)q U)o (1)
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where as customary, we define

froi= (a4 = [0 = ™).
m=1
Several interesting arithmetic properties of ¢-regular partition are found by many
mathematicians, see [4, 9, 10, 14, 18, 20].

In [13], Corteel and Lovejoy introduced overpartitons. An overpartition of n
denoted by p(n), is a nonincreasing sequence of positive integers whose sum is n in
which the first occurrences of number may be overlined. For example, p(3) = 8.
The eight overpartition of 3 are 3, 3,2+1,24+1,2+1,2+1,1+1+1and T+1+1.
The generating function for p(n), is given by

e = "D
> plne" == = (1.2)

Recently G. E. Andrews [5] introduced singular overpartition denoted by Cs;(n),
which count the number of overpartitions of n in which no part is divisible by
and only parts = i (mod ) may be overlined. For example, C'31(4) = 10. The 10
singular overpartitions of 4 are 4, 4, 2+2,2+2,2+1+1,24+14+1,2+1+1,
I+1+1L,1+1+1+1land 1+1+1+1.

The generating function for C's;(n), is given by, § > 3 and 1 <14 <[],

S T = (s qﬁ)oo(—q;;gf])):(—qﬁ‘i;q5)oo' (13)

In his paper [5], G. E. Andrews also proved that for n > 0,
C31(9n+3)=Cs51(9n+6) =0 (mod 3).

Chan et al. [11] generalized and found infinite families of congruences modulo 3 for
Cs1(n), 6671(71), s and modulo 2 for Cy;(n). For example, they proved that for
n, k>0,

C3,(2%(6n+5)) =0 (mod 8).

Recently, Ahmed and Baruah [2] using simple p-dissections of Ramanujan’s theta
functions have proved several congruences for Csi(n), Cga(n), Ciaa(n), Ciau,
62478(n) and 648716(11). Subsequently, Naika and Gireesh [19] prove congruence
modulo 6, 12, 16, 18 and 24 for C3; and infinite families of congruence modulo
12, 18, 48, and 72 for C'31(n). They conjecture the following congruence for C'3 1 (n)
modulo 144,

C31(12n4+11) =0  (mod 144). (1.4)

The aim of this paper is to prove new congruences for 6371(71), 61273(71)7 644,11(11),
C75.95(n) and Cgg93(n). The following are our main results:
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Theorem 1.1. If p is prime p > 5, such that (—) = —1, than for any nonnegative
p

integer a and n,

Caa (24p™  (pn + 5) + 7p**2) =0 (mod 128).

—2

Theorem 1.2. If pis prime p > 5, such that (—) = —1, than for any nonnegative
p

integer a and n,

Cs1(24p°* " (pn+ ) +19p°*"*) =0 (mod 128).

Theorem 1.3. For k > 0, we have

_ h 4k —1 _
01273 4 n + = 01273 (mod 2), (15)
— Kt 10-4% =1\
01273 4 n + f =0 (HlOd 2), (16)
— 4* 1)—1
Cias <4k+1n + (Gm;)— ) ) =0 (mod?2), 1<m<T. (1.7)
Theorem 1.4. For all n > 0,
Cus11(16n +2) =0  (mod 2), (1.8)
Cui11(16n +14) =0  (mod 2), (1.9)
Cia11(16n4+10) =0  (mod 2), (1.10)
Cuys1(176n+16m +6) =0 (mod 2), 1 < m < 10. (1.11)
Theorem 1.5. For all n > 0,
675725(1071 + 9) =0 (HlOd 2), (112)
Cr5.25(80n +20m +14) =0 (mod 2), 1 <m < 3. (1.13)
Theorem 1.6. If m € 5,7,10,11,14,15,17,19, 20, 21, 22, then for all n > 0,
— 7232+ 73
Co2.93 (2 -23%%(23n +m) + T) =0 (mod 2). (1.14)

In order to prove our main results, we collect a few definitions and lemmas in section
2. In section 3, we prove Naika and Gireesh’s conjecture (1.4) is true. The proofs of
Theorems 1.1 —1.6 are given in section 4. In the subsequent section we conclude the
paper with some interesting congruences for C'1p3(n), Ciys11(n) and by(n) modulo 2.



2 Preliminaries

In order to prove the main results of this paper, we collect some definitions and

lemmas in this section.
For | ab |< 1, Ramanujan’s general theta function f(a,b) is defined as

f(a,b) = Z a"(n"‘l)/?bn(n—l)/z.

n=—oo

Using Jacobi’s triple product identity [8, Entry 19, p. 35], (2.1) becomes

fla,b) = (—a;ab)s(—b; ab) o (ab; ab)

The most important special cases of f(a,b) are

5

v(q) ==1(q.q —1+22q = (=4: )% (0% oo #Z
n(n+1)/2 _ q q ) f_22
O Zq (@P)w N
and
f(=q) =f(=¢, =) = D> (=1)"¢"®" " = (¢;9)e = fr,

(2.1)

(2.2)

(2.5)

where the product representations in (2.5) arise from (2.2) and is Euler’s famous

pentagonal theorem [3]. After Ramanujan, we also define

X(0) = (5 oo = 22
7 - f1f4

We also note

VN
f2,w(q) Iy

By the binomial theorem, for any positive integer k,

=2 (mod 25).

Y(—q) =

Lemma 2.1. (Hirschhorn and Sellers [17]) The following 3-dissection holds

bR, BB

ft 3 fs 13 /3

(2.6)



Lemma 2.2. ( Baruah and Ojah [6, Theorem 4.3]) The following 2-dissection holds

1 R fif
= Jop i T9gapapar (2.8)
Nfs Blafefss " 1615 he
Multiplying both sides of (2.8) by fZ and replacing q by ¢!, we find
5
&: I3 + 11f1_32 (mod 2). (2.9)

f33 N f132 1 f22

Lemma 2.3. (Hirschhorn, Garvan and Borwein [15]) The following 2-dissection

holds r T 13
Jy _ JiJe | Ji2
T +q % (2.10)

Lemma 2.4. (Cui and Gu [12, Theorem 2.2]) If p > 5 is a prime and

-1
+p—1 pT’ ifp=1 (mod 6),

6 ~ | —p—!
6 )

ifp=-1 (mod 6),

then

p—1
2

3k24k 3p2+(6k+1)p 3p2—(6k+1)p
(G0 = D>, (=1)'q > f(—q : g e )

k=—pz1

+ 21
kA EE=L

dp—1 p3—1

+ (=) ¢ (¢ ¢ ) (2.11)

Furthermore, if @ <k< (pgl),k: + (ipfj_l), then 3k22+k * p2221 (mod p).

Lemma 2.5. (Ahmed and Baruah [1, Lemma 2.3]) If p > 3 is prime, then

p—1 o)
k(k+1) n . P2kl
(@03 = Y (=D = D (=1)"@2pn+ 2k + 1)g"™ ">
kii n=0
2
_ 2_ .
+p(=1) 7 ¢ (¢ )% (2.12)

Furthermore, if k& # 1%1,0 <k <p-—1, then L;’k = ”27_1 (mod p).



Lemma 2.6. (Hirschhorn [16]) We have,

rf3 1 24> 3¢°
7= (i m w0 WA
L2 R - T RG) + q8R4<q5>) , (2.13)

where R(q) is the Rogers-Ramanujan continued fraction defined, for | ¢ |< 1, by

1/5 2
q q 49
R(q) := 1.1

1 oals
Lemma 2.7. (Hirschhorn and Sellers [18, Theorem 1]) The following 2-dissection

holds f Fof2 Fhiof
J5 _ J8J20 4J10J40
fi fifao a f3fsfao” (2.14)

Lemma 2.8. (Baruah and Ahmed [7, Eqn. (2.4)])

1 s (=q")x(¢*)

—_ 1 12
(@ 90)o(@h 00 (4% 032 (% 6222 (dj(q ) +a x(—q*)
+ ) L ou) modz. @9

Lemma 2.9. (Berndt [8, Entry 31, p. 48])
Let U, = a™tD/2pn(n=1/2 and V,, = ¢~ D/2p(+D/2 for an integer n. Then

(UL W) ZUf( ekl ;}) (2.16)

3 Proof of M. S. M. Naika and D. S. Gireesh’s
Conjecture (1.4)

From [19, Eq. 3.19], we have

> Csa(dn+3)q f}fﬁ. (3.1)
n=0 1




Substituting (2.7) in (3.1), we have

. fe 19 fefs S f2EN°
1(4n + 3)q" = 63 ( +2q +4q
Z O\ S5 fs fg f3
15 £18 14 fldf f12f9
=659 1 36q ¥ + 1444228 + 33645252
f??4f18 f323f18 f3?2f18 ??1

11 10
+ 576¢ +Jo Jois f9f18 + 576¢ 5o Jo iy f9f18 + 384q 6f6f18. (3.2)

It follows that

& 13 10
> Csa(12n + 11)q" —144;22; 576" f3f6. (3.3)
n=0 1 J6

Conjecture (1.4) follow from (3.3).

4 Proof of Theorems 1.1-1.6

Theorem 4.1. If p is prime with p =5 (mod 6) and o > 0, then

o

> Csi (24970 + %) ¢" = 36p" (1) (:0)% (g% g% (mod 128).  (4.1)
n=0

Proof. Tt follows from (3.2) that

e 14 11
> Csa(12n+7)g" = 36 23 +576 f2 f3f6. (4.2)
o g
Using (2.6) in (4.2), we have
Z (120 +7)g" = 5612712 +64qfof,  (mod 128). (4.3)
f1f3
Substituting (2.10) into (4.3), we have
> Csa(12n+7)g" = 363 fiz (fs f24> +64qfof3  (mod 128),
n=0 f f4

= 36/3fs +100qfof>, (mod 128). (4.4)

From (4.4), we have

o

Z (240 +7)¢" = 36f3f,  (mod 128), (4.5)



which is the o = 0 case of (4.1). Now suppose that (4.1) holds for some a > 0.
Substituting (2.11) and (2.12) in (4.1), we have

(o)

Z 24p2“n + 7p2a) "
n=0

-1

) Z b S (1) 2pn + 2 D)
=0
2

”8

= 36p~(—1 )

n=0
1

¢ (¢ ¢") | (mod 128). (4.6)

For a prime p > 5, 0 < k <p—1 and —
congruence

, now consider the

k*+ k 3m?+m _ Tpr -7
5 +4- 5 =2 (mod p), (4.7)

which is equivalent to
32k +1)°+ (12m +2)* =0 (mod p).

—_ — —1
Since <—> = —lasp =75 (mod 6) the solution (4.7) is k = b and m = pT
p
Therefore, extracting the terms involving qanr 27 from both sides of (4.6) and then

replacing ¢ by ¢, we find that

ST (249% 0+ TF) " = 36p T (—1) T (5 ¢7) (475 ¢ (mod 128).
n=0

(4.8)



Extracting the terms containing ¢*” from both sides of identity (4.8) and then re-
placing ¢ by ¢, we find that

3" Ca (24920 + Tp*2) ¢ = 36p° T (1) TV (g:0)2 (g% ¢*)se  (mod 128)
n=0

(4.9)
This completes the proof by induction of (4.1). O

We can now prove Theorem 1.1.

Proof of Theorem 1.1

Empolying (2.11) and (2.12) and then comparing the coefficients of ¢#"*/ 1 < j <
p — 1, on both side of (4.8), we deduce Theorem 1.1

Theorem 4.2. If p is prime with p =5 or 7 (mod 8) and o > 0, then
S Ca (2470 + 19p%) ¢ = 100p°(—1)°"5 (6% ¢°)% (¢: @)oo (mod 128) (4.10)
n=0

Proof. From (3.2) we have

> Csa(24n +19)¢" = 100£ i (mod 128) (4.11)
n=0

which is the e = 0 case of (4.10). Now suppose that (4.10) holds for some o > 0.
Substituting (2.11) and (2.12) in (4.10), we have

263,1 (24p2°‘n + 19p2a) q"
n=0

p—1 00

= 100p°(~1)75 1) (~1)Fg5 ST (1) (2pn + 2k + 1) T

ki?% n=0
_ 2_
+p(=1)"7 ¢*F (¢ ¢ )%,
p—1
o q —-q , —q
k=—P=1

=+ 21
st E2=1
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4p—1 p2—1

+(=1)7e gz

(@0 )| (mod 128). (4.12)

4

—(p—1 -1
For a prime p > 5, 0 <k <p—1 and % <m< (p2 ), now consider the
congruence
+k 3m?>+m  19p* —19
. = 4.1
6 5 + 5 o (mod p), (4.13)

which is equivalent to

2(6k +3)* + (6m +1)>=0 (mod p).

-2 -1
Since <—> =—lasp=5or7 (mod 8) the solution to (4.13) is k = b and
p
p—1 . . . 19p2 19 .
m = ——. Therefore, extracting the terms involving ¢t~ 22 from both sides of

(4.12) and then replacing ¢* by ¢, we find that

263,1 (24p** T 4+ 19p°*7?) ¢ = 100p°‘+1(—1)(°‘+1)'%(q6”; 0%)2 (q%; ¢¥) oo (mod 128).
n=0

(4.14)
Extracting the terms containing ¢ from both sides of the above and then replacing
¢® by q, we find that

> _ 2
20371 (24p2a+2n + 19p2a+2) q’rL = 100pa+1(_1)(a+1)p7(q6’ QG)io(q, q)oo (mod 128),
n=0

(4.15)
This completes the proof by induction of (4.10). O

We can now prove Theorem 1.2.

Proof of Theorem 1.2

Empolying (2.11) and (2.12) and then comparing the coefficients of ¢#"*/ 1 < j <
p — 1, from both side of (4.14) we deduce Theorem 1.2

Proof of Theorem 1.3

From (1.3) we have

(mod 2). (4.16)

=ls

2612,3(71)61” =
n=0
Using (2.10) in (4.16), we found

iam@n +1)¢" = fc—g (mod 2). (4.17)
n=0 2
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It follows that B -
Cr23(dn+1) = Cia3(n)  (mod 2) (4.18)

and B
Cr23(4n+3) =0 (mod 2). (4.19)

The results (1.5) and (1.6) follow by induction, using (4.18) and (4.19) respectively.
Again from (4.16) we have

Cla3(2n) = fg (mod 2). (4.20)
It follow that -
Ci23(16n) = f;  (mod 2) (4.21)
and B
Ch23(16n+2m) =0 (mod 2), (4.22)

for 1 <m < 7 using (1.5) in (4.22) we have the result (1.7).
Proof of Theorem 1.4
Again from (1.3) we have

2
204411 )" = % (mod 2). (4.23)

Substituting (2.15) in (4.23) and extracting the terms involving ¢** from both sides
of the congruence and then replacing ¢ by ¢, we have

IR A
ZC““ PG, <w<q ot

Using (2.9) in (4.24) and extracting the terms involving ¢***! from both sides of the
congruence, dividing both sides by ¢ and then replacing ¢* by ¢, we have

- f33f11
E C dn +2)q¢" = ,=
2 44,11( )q qfuf

Extracting the terms involving ¢***! from both sides of the congruence, dividing
both sides by ¢ and then replacing ¢* by ¢, we have

> (mod 2). (4.24)

qfis (mod 2). (4.25)

> Cun(16n+6)g" = fi  (mod 2) (4.26)

n=0

The results (1.8)-(1.10), follow from (4.25). The result (1.11) follows from (4.26).
Proof of Theorem 1.5
Again from (1.3) we have

2075 25 (n)g" = ff— (mod 2). (4.27)
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Substituting (2.13) in (4.27), extracting the terms involving ¢°*** from both sides
of the congruence, dividing both sides by 4 and then replacing ¢° by ¢, we have

D Crsps(n+4)g" = 22 =12 (mod 2). (4.28)
2 Al
The result (1.12) follow from (4.28). Also from (4.28) we have
oo 3
> Crsas(10n+ 4)q" = f—f; _ Jufs (mod 2). (4.29)
i fh

3
Il
o

Substituting (2.14) in (4.29), extracting the terms involving ¢! from both sides
of the congruence, dividing both sides by ¢ and then replacing ¢ by ¢, we have

Z 75, 25 2OTL + ].4) f4f40

n=0

The result (1.13) follows from (4.30).

(mod 2). (4.30)

Theorem 4.3. For any non-negative integer k, we have

= _ 7.232k+L _ 73
Z Co2.23 (2 - 232 4 T) q" = f223 + Qf1f233 (mod 2). (4-31)
n=0

Proof. Again from (1.3) we have

© 2
> Cazas(n)g" = ff‘*f; (mod 2). (4.32)

Now, from [6, Eq. (1.9)], we have

> psa(n+ )" = 220 LD, (4.33)
e 123 1
where ppi1231)(n) is defined by
- 1
n)q" = . 4.34
nz_op[llz?,l]( )q 1 fas ( )

Extracting the terms involving ¢*" ! from both sides of (4.32), replacing ¢ by q and
then employing (4.33), we have

oo

Z 92, 23 27'[, + 1 f223 + qf1f233 (mod 2), (435)



which is the k& = 0 case of (4.31).
Setting Uy =a = —q, Vi = b= —¢* and n =

13

Now suppose (4.31) holds for some k& > 0.

23 in (2.16) and using the identity

fla,b) = af(at, a®), we find the following 23-dissection of f(—q, —¢*) = fi.
fi= 0 —0)  af (0, 0™~ 0™, 0 - (a0
g (=M, ™) — 12f( 989 _ %) — 15f( 575 _ 1012y
4 ¢2f(—q 1058 )+ (= — %) — B f(— q1127 ¢*6%)
B q40f(—q43 ¢ + P f(—g 1196 @) 4 (g%, = 1)
g F (=g, ) T (g 2% 4+ quf( q1334 _q253)
4O (P 1Ty T q1403 _q1s4) §126 f(— 161, —g1426)
(- q1472 — ") 4 " (=g, — M) — VO f(—g 541 — ')
TR, '), (4.36)

Employing (4.36) in (4.31) extracting the terms involving ¢**" from both sides of
the resulting congruence, replacing ¢** by ¢, we have

7. 232k+1
88

o0
g C92,23

n=0

(2 - 23%Fn 4

—-73\ .,
q

fi+afi fos

= fot+qfifafos (mod 2)(4.37)
Next, squaring (4.36), we have
£ = f2(_q7827 805) RPN =) AP =)+ g2 (— g%, — )
bt (g q943) " — )+ O A7, — g1
oM q1058 —q )+q52f2(— 6 081y g0 f2(_gH12T _160)
bGP, gty 02 2 11967 ) gt (P8, 1219y
oM q1265 —q322) PP, g g IS (g1 25
b R0 (B0 1T q14o3 ) BP0, —g1426)
o~ q1472 ) P22 M) 4 P22 (g 15417_q46)
+ (g%, ") (mod 2). (4.38)

Employing (4.36) and (4.38) in (4.37), extracting the terms involving ¢**"*2! from

both sides of the congruence, dividing both sides by ¢*!

q, we have

nz_% Ca 88

2,23 (2 . 232k+1n +

This completes the proof by induction of (4.31).

7. 232k+2 _

and then replacing ¢** by

= 35+ afif3s (4.39)

73
q

O
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Next we prove Theorem 1.6.

Proof of Theorem 1.6

Employing (4.36) in (4.31) and then equating the coefficients of ¢**"™™ from both
sides we deduce Theorem 1.6.

5 More congruences for Andrews’ singular over-
partitions:

From (4.26), we have

644,11(17671 +6)¢" = fi (mod 2) (5.1)

WE

i
o

T

Theorem 5.1. For any prime p > 5, > 1, and n >0
2(24i +p ol _ >

Cias (16p2°‘n (mod 2), (5.2)

Forve=1,2,--- ,p—1. Foranyprimep>5 a>0,and n > 0,
2(24i + 1)p*™ —
2 ” >E (mod 2), (5.3)

24]—1—1 >

612’3 (16p2°‘+1n +

where j is an integer with 0 < j < p — 1 such that <

Proof. We note for 2-regular partitions modulo 2
Zb2 n)¢" = fi  (mod 2).

In [12] Cui and Gu have proved several interesting results, for example, for any
prime p > 5, a« > 1, and n > 0,

24i + p)p*t — 1

by <p2an+ (24 “’;Z ) —0 (mod 2). (5.4)
And for any prime p > 5, a > 0, and n > 0,

247 + 1)p** — 1

by (pQO‘Hn L Zip ) =0 (mod 2), (5.5)
245 + 1
where j is an integer with 0 < j < p — 1 such that It —1). Theorem 5.1
p

follows from (4.21) and the results (5.2) and (5.3). O

Remark: Similar results can be obtained for (5.1).
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