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the author’s previous paper.
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1. Introduction

Consider the discriminant function Δ(z) = q
∏∞

n=1(1 − qn)24 (where q = e2πiz). 
A famous observation, due to Ramanujan, is that the Fourier coefficients τ(n) of Δ
satisfy the congruence:

τ(n) ≡ σ11(n) mod 691.
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A natural way to view this is as a congruence between the Hecke eigenvalues of the 
unique normalised weight 12 cusp form Δ and the weight 12 Eisenstein series E12. The 
modulus 691 appears since it divides the numerator of ζ(12)π12 , a quantity which appears 
in the constant term of E12.

Since the work of Ramanujan there have been many generalizations of his congruences. 
Indeed by looking for big enough primes dividing the numerator of ζ(k)

πk , i.e. Bk

2k , one 
can provide similar congruences at level 1 between cusp forms and Eisenstein series 
of weight k [3]. In fact one can also give “local origin” congruences between higher 
level cusp forms and level 1 Eisenstein series by extending the divisibility criterion to 
include Euler factors of ζ(k) rather than the global values of ζ(s) (see [4] for results and 
examples).

One can study Eisenstein congruences for genus 2 Siegel modular forms. There are 
many ways to generalise. In this paper we consider a particular conjectural congruence 
for paramodular forms of level p, an extension of a congruence predicted at level 1 by 
Harder [7].

Given k′ ≥ 0 and N ≥ 1 let Sk′(Γ0(N)) denote the space of weight k′ elliptic cusp 
forms for Γ0(N) and let Snew

k′ (Γ0(N)) denote the subspace of new forms.
For j, k ≥ 0 let Vj,k denote the representation Symmj(C2) ⊗ detk of GL2(C). Then 

Sj,k(K(N)) will denote the space of genus 2, Vj,k-valued Siegel cusp forms for the 
paramodular group:

K(N) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

∗ N∗ ∗ ∗
∗ ∗ ∗ N−1∗
∗ N∗ ∗ ∗
N∗ N∗ N∗ ∗

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

∩ Sp4(Q),

where the stars represent integers. The symplectic group above is given with respect to 

the standard symplectic form described by the matrix J =
(

0 I2
−I2 0

)
.

For a normalised eigenform f ∈ Sk(Γ0(N)) let Λ(f, s) denote its completed L-function. 
For each critical value 1 ≤ m ≤ k − 1 there exists a Deligne period Ωm such that 
Λalg(f, m) = Λ(f,m)

Ωm
∈ Q, well defined upto multiplication by O×

Qf
. In fact Ωm only 

depends on the parity of m.
With this choice of period it makes sense to talk about divisibility of critical values 

of the L-function. Harder’s original congruence suggests that for N = 1, large enough 
primes dividing the numerators of these L-values should give Eisenstein congruences. In 
this paper we will be interested in the following level p version.
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Conjecture 1.1 (Level p paramodular Harder’s conjecture).
Let j > 0 and k ≥ 3 and let f ∈ Snew

j+2k−2(Γ0(p)) be a normalized Hecke eigenform 
away from p with eigenvalues aq ∈ Of . Suppose that ordλ(Λalg(f, j + k)) > 0 for some 
prime λ of Qf lying above a rational prime l > j + 2k − 2 (with l 	= p).

Then there exists a Hecke eigenform F ∈ Snew
j,k (K(p)) away from p with eigenvalues 

bq ∈ OF for Tq (double coset operator for diag(1, 1, q, q)) satisfying

bq ≡ qk−2 + aq + qj+k−1 mod Λ

for all primes q 	= p (where Λ is some prime lying above λ in the compositum QfQF ).

The j = 0 version of the above conjecture gives congruences between newforms for 
K(p) and Saito–Kurokawa lifts of forms for Γ0(p). Such congruences have been studied 
in detail, for example in [2].

It should be noted that Harder’s level 1 congruence remains unproved and evidence is 
rare. The same can be said about higher level generalisations. In the author’s previous 
paper computational evidence was given for Conjecture 1.1 at levels p = 2, 3, 5, 7 by 
using algebraic modular forms [5].

Naturally one asks why there is a preference of considering paramodular forms over 
say Γ0(p). The aim of this paper is to show that, given the existence of a “generic” level 
p congruence of the above type, it is likely that the genus 2 form can be taken to be 
paramodular.

More specifically we consider an automorphic representation πF = ⊗πF,q attached 
to a Siegel modular form of genus 2, weight (j, k). Assuming πF,q is unramified for all 
q 	= p and that F satisfies the congruence in Conjecture 1.1 the following result gives the 
required limitations on πF,p (assuming a widely believed conjecture mentioned below).

Theorem 1.2. Let e(Λ), f(Λ) be the ramification index and the inertia degree of the ex-
tension KΛ/Ql. Let k′ = j + 2k − 2.

(1) If l ≥ max{6f(Λ) + 2, e(Λ) + 2} then πF,p is induced from the Borel subgroup of 
GSp4(Qp).

(2) If further we have pj+2t−2 	≡ 1 mod Λ for t = 0, 1, 2, 3 then πF,p is of type I or II 
(see the Appendix for the classification).

(3) If further ordΛ

(
Bk′ (pk′−1)

2k′

)
= 0 then either πF,p is of type IIa or there exists g ∈

Sk′(SL2(Z)) satisfying the congruence.

Being of type IIa guarantees the existence of a new K(p) fixed vector, hence that we 
may find F ∈ Snew

j,k (K(p)) satisfying the congruence.

If ordΛ

(
Bk′ (pk′−1)

2k′

)
> 0 then it is known that f will satisfy a simpler Ramanujan 

congruence [4]. Thus we see that the condition in part three of the above is controlling 
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the existence of a “simpler” congruence. The conditions in parts (1) and (2) are not very 
restrictive since l is large in general relative to p, e(Λ) and f(Λ).

We require different tools in order to prove each part of the above theorem. We will 
in fact work backwards to make the exposition clearer.

Part (3) requires a detailed study of the Λ-adic Galois representations associated to 
f and F and their reductions mod Λ.

Part (2) follows by studying the L-parameters of πF,p modulo Λ, requiring Local 
Langlands results for GL2 and GSp4.

Part (1) follows by studying the Weil–Deligne representation attached to πF,p. In 
particular we show that the condition in part (1) is sufficient to prove that inertia at p
has unipotent image, which will be enough to deduce that πF,p is induced from the Borel 
subgroup of GSp4(Qp).

To fully prove part (1) we need to assume a folklore conjecture about local–global 
compatibility between automorphic representations and Galois representations. Such 
conjectures are widely believed to be true and we will see precise references for the 
GSp4 case later.

2. Proving Theorem 1.2

We wish to justify the use of paramodular forms in the statement of Conjecture 1.1. 
As discussed in the introduction we will do this by proving Theorem 1.2. In order to do 
this we will fix the following notation:

• πF = ⊗q≤∞πF,q is an automorphic representation of GSp4 attached to some Siegel 
modular form of weight (j, k). We will assume that πF is unramified away from 
p. The form F is assumed to be a Hecke eigenform away from p with eigenvalues 
bq ∈ OF for the Tp operator.

• f ∈ Snew
j+2k−2(Γ0(p)) is a normalized Hecke eigenform away from p, with eigenvalues 

aq ∈ Of . We write k′ = j + 2k − 2. Attached to f is an automorphic representation 
πf = ⊗q≤∞πf,q of GL2.

• K = QfQF is the compositum of coefficient fields of f and F .
• Λ is a prime of K lying above a rational prime l 	= p satisfying l > j + 2k − 2 > 4. 

Associated to Λ is a completion KΛ, valuation ring OΛ and residue field FΛ.
• ρf is the 2-dimensional Λ-adic Galois representation associated to f , realised over 

OΛ. The mod Λ semisimple reduction of this is ρF . Also for each prime q we have 
the restriction ρf,q to Gal(Qq/Qq).

• ρF is the 4-dimensional Λ-adic Galois representation associated to F , also realised 
over OΛ. See [17] for details. Again we have a mod Λ semisimple reduction ρF and 
restrictions ρF,q to Gal(Qq/Qq).

From now on we assume that the pair (f, F ) satisfy Conjecture 1.1, with Λ being the 
modulus of the congruence. We will prove the parts of Theorem 1.2 in reverse order.
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We will need the following well known results about Galois representations attached 
to elliptic modular forms.

Theorem 2.1 (Deligne). Let f ∈ Sk(Γ0(N)) be a Hecke eigenform for all Hecke operators 
q � N with eigenvalues aq. Let l be a prime satisfying 2 ≤ k ≤ l + 1 and al 	≡ 0 mod l. 
Then ρf,l is reducible and

ρf,l ∼
(
χk−1
l λa−1

l
	

0 λal

)
,

where λa is the unramified character Gal(Ql/Ql) −→ Z
×
l such that λa(φl) = a (here φl

is a frobenius element in Gal(Ql/Ql)).

Theorem 2.2 (Fontaine). Suppose that f and l are as above but that al ≡ 0 mod l. Then 
ρf,l is irreducible.

Naturally one asks about the structure of ρf,p for p|N . The following theorem can be 
found on p. 309 of [9].

Theorem 2.3 (Langlands–Carayol). Suppose p is a prime such that ordp(N) = 1. Then:

ρf,p ∼
(
χlλa 	

0 λa

)

for some fixed a.

2.1. Proving Theorem 1.2(3)

Assume that πF,p is of type I or II. Our aim is to show that if ordΛ

(
Bk′ (pk′−1)

2k′

)
= 0

then either πF,p is of type IIa (so that πF,p has new K(p)-fixed vectors) or that there 
exists g ∈ Sk′(SL2(Z)) replacing f in the congruence.

To do this we first we translate the congruence into a result about Galois representa-
tions.

Lemma 2.4.

ρF ∼ ρf ⊕ χk−2
l ⊕ χj+k−1

l ,

where χl is the l-adic cyclotomic character.

Proof. By assumption we have for each q 	= p:

bq ≡ aq + qk−2 + qj+k−1 mod Λ.
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In terms of mod Λ representations this gives tr(ρF (φq)) = tr((ρf ⊕χk−2
l ⊕χj+k−1

l )(φq))
for all q 	= p, l.

The Cebotarev density theorem gives

tr(ρF ) = tr(ρf ⊕ χk−2
l ⊕ χj+k−1

l ).

Then since l > 4 the result follows by the Brauer–Nesbitt theorem. �
It will be handy to know when ρ̄f is irreducible. The Bernoulli criterion forces this.

Lemma 2.5. If ρf is reducible then ordΛ

(
Bk′ (pk′−1)

2k′

)
> 0.

Proof. Suppose ρf is reducible. Then after a suitable choice of basis:

ρf =
(
α 	

0 β

)
,

where α, β are two characters Gal(Q/Q) → F×
Λ . Notice that the image of these characters 

is abelian.
Now it is known that ρf is unramified at all primes q � pl and so α and β must be 

unramified at the same primes. This forces α = χm
l ε1 and β = χn

l ε2 where ε1, ε2 are 
unramified outside p.

To see this let χ : Gal(Q/Q) → F×
Λ be a character unramified at all q � pl. Note that 

by global class field theory α and β factor through Gal(Q(μp∞ , μl∞)/Q) (where μp∞

denotes the set of pth power roots of unity, similarly for l). The field Q(μp∞ , μl∞) is the 
maximal abelian extension of Q unramified outside pl.

We find that Gal(Q(μp∞ , μl∞)/Q) ∼= Gal(Q(μp∞)/Q) ×Gal(Q(μl∞)/Q) since p and l
are coprime. Hence χ = δε where δ is unramified outside of l and ε is unramified outside 
of p.

To prove the claim that δ is a power of χl note that Gal(Q(μl∞)/Q) ∼= Z×
l

∼=
(Z/(l − 1)Z)×Zl (using the fact that l > 2). By continuity of Galois representations we 
know that δ has to be trivial on ltZl for some t ≥ 0 and so δ induces a representation 
of (Z/(l − 1)Z) × (Z/ltZ). But since l is coprime to |F×

Λ | = N(Λ) − 1 the image of the 
second component must be trivial. The characters of (Z/(l − 1)Z) ∼= (Z/lZ)× are exactly 
the powers of χl. Thus χ = χs

l ε for some integer s.
Continuing we now see that since det(ρf (φq)) ≡ qk

′−1 mod Λ for all q � pl it must be 
that ε2 = ε−1

1 .
Thus:

ρf =
(
χm
l ε 	

0 χnε−1

)
.

l
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A comparison of Artin conductors (p. 39 of [18]) shows that ε is trivial. Indeed the Artin 
conductor of ρf is known to be p whereas if ε is non-trivial then the Artin conductor 
would be at least p2 > p.

Now recall 4 < k′ < l. Also it must be the case that al 	≡ 0 mod Λ (otherwise ρf,l is 
irreducible by Theorem 2.2, contradicting the reducibility of ρf ).

Thus by Theorem 2.1 we see that ρf,l must possess an unramified composition factor, 
hence one of χm

l , χn
l must be unramified at l. Since all non-trivial powers of χl are 

ramified at l this means one of the composition factors is trivial. It is then clear that the 
other composition factor must be χk′−1

l .
Hence:

ρf =
(

1 	

0 χk′−1
l

)
or

(
χk′−1
l 	

0 1

)
.

In either case comparing traces of Frobenius at q 	= p, l gives the Ramanujan congru-
ence:

aq ≡ 1 + qk
′−1 mod Λ.

By Proposition 4.2 of [4] it must then be that ordΛ

(
Bk′ (pk′−1)

2k′

)
> 0. �

Proposition 2.6. Suppose πF,p is of type I or II and that ordΛ

(
Bk′ (pk′−1)

2k′

)
= 0. Then 

either πF,p is of type IIa or there exists a level one normalized newform g ∈ Sk′(SL2(Z))
that satisfies Harder’s congruence with F .

Proof. We know that ρf is irreducible by the previous result. However by Theorem 2.3
we have, under a suitable choice of basis:

ρf,p =
(
λa 	

0 χlλa

)
or

(
χlλa 	

0 λa

)
.

In either case the restriction of ρf,p to the inertia subgroup Ip of Gal(Qp/Qp) is as 
follows:

ρf,p
∣∣
Ip

=
(

1 	′

0 1

)
.

We have two cases. First it could be the case that 	′ ≡ 0 mod Λ. If this is the case then 
we may use Ribet’s level lowering theorem for modular representations (Theorem 1.1 in 
[11]) to produce g ∈ Sk′(SL2(Z)) such that ρg ∼ ρf . We would then observe a level one 
version of Harder’s congruence as required.
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Now suppose that 	′ 	≡ 0 mod Λ, so that ρf,p is ramified. If πF,p is of type I or IIb
then πF,p is unramified. By the Local Langlands Correspondence for GSp4 (proved in 
[6]) we see that ρF,p is unramified so that ρF,p is unramified, giving a contradiction. The 
only other possibility for πF,p is to be of type IIa as required. �

To summarise our progress, given that πF,p is of type I or II then either:

• f itself satisfies a simpler Ramanujan congruence, detected by a simple divisibility 
criterion,

• a replacement level 1 elliptic form satisfies Harder’s congruence with F . The level at 
which F appears could be 1 or p since we did not place any ramification restrictions 
on πF,p in our assumptions,

• or πF,p is of type IIa, implying that a new paramodular form of level p exists satisfying 
the congruence.

The first possibility is a rare occurrence and is easy to check for in practice. We will 
see later that the second possibility rarely occurs for F ∈ Snew

j,k (K(p)). The case where 
F ∈ Sj,k(Sp4(Z)) is of course the original Harder conjecture at level 1.

From this discussion one should believe that the third possibility is most likely to 
occur if F is not a lift from level 1.

2.2. Proving Theorem 1.2(2)

Let us now assume that πF,p is induced from the Borel subgroup of GSp4(Qp). Then 
πF,p must be of type I–VI. We will show that if pj+2k−2 	≡ 1 mod Λ for t = 0, 1, 2, 3 then 
πF,p is of type I or II.

Let W ′
Qp

= C �WQp
be the Weil–Deligne group of Qp. The multiplication on this group 

is given by (z, w)(z′, w′) = (z + ν(w)z′, ww′), where ν : WQp
−→ C× is the character 

corresponding to | · |p by local class field theory.
By the Local Langlands Correspondence for GSp4 we may associate to each irreducible 

admissible representation π of GSp4(Qp) its L-parameter, a certain representation:

ρπ : W ′
Qp

−→ GSp4(C).

One can view such a representation as a pair (ρ0, N) where:

ρ0 : WQp
−→ GSp4(C)

is a continuous homomorphism and N ∈ Mn(C) is a nilpotent matrix such that:

ρ0(w)Nρ0(w)−1 = ν(w)N,

for all w ∈ WQp
. Given ρ0 and N we recover the L-parameter via ρπ(z, w) =

ρ0(w)exp(zN).
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Let π1, π2 be irreducible admissible representations of GSp4(Qp). Then π1 ∼= π2 im-
plies ρπ1

∼= ρπ2 under the Local Langlands Correspondence. However the converse does 
not hold. A fixed L-parameter can arise from different isomorphism classes, but only 
finitely many (those in the same “L-packet”).

Roberts and Schmidt discuss the L-parameters of non-supercuspidal representations 
of GSp4(Qp) in [12]. If π is parabolically induced from the Borel subgroup of GSp4(Qp)
then it is non-supercuspidal and ρπ is simple to describe. In particular the ρ0 part is 
semisimple given by four characters μ1, μ2, μ3, μ4 of WQp

(which by local class field 
theory correspond to four characters of Q×

p ). See the Appendix for a complete table of 
L-parameters for Borel induced representations.

The four complex numbers [μ1(p), μ2(p), μ3(p), μ4(p)] are the Satake parameters of π. 
Unramified representations are uniquely determined by their Satake parameters up to 
scaling (much in the same way as unramified local Galois representations are determined 
by the image of Frobenius).

Let us now return to our congruence between f and F . We have already seen that the 
existence of this congruence for all q 	= p leads to a residual equivalence of global Galois 
representations:

ρF ∼ ρf ⊕ χk−2
l ⊕ χj+k−1

l .

In particular we can compare these representations locally at p, the level of f . Since 
we have the local equality χl|WQp

= ν−1 it follows that:

ρF,p|WQp
∼ ρf,p|WQp

⊕ ν2−k ⊕ ν1−j−k.

Given the existence of the congruence we see that the local representations ρF,p|WQp

and ρf,p|WQp
⊕ ν2−k ⊕ ν1−j−k of WQp

have the same composition factors mod Λ.
Recall that to F we have attached a “global” Galois representation ρF and a “global” 

automorphic representation πF . Similarly for f . By local–global compatibility results 
(see [14] for GSp4 and [16] for GL2) we know that ρF,p|WQp

corresponds to πF,p and 
ρf,p|WQp

corresponds to πf,p under the corresponding local Langlands correspondences.
Tying all of this together, the existence of the congruence forces the L-parameter of 

πF,p to be congruent modulo Λ to that of πf,p ⊕ | · |2−k
p ⊕ | · |1−j−k

p (up to scaling by 

p
k′−1

2 = p
j+2k−3

2 in the first component). In particular the Satake parameters should 
match mod Λ.

Since f is a newform of level p it is known that πf,p
∼= St or πf,p

∼= εSt where St is the 
Steinberg representation of GL2(Qp) and ε is the unique unramified non-trivial quadratic 
character of Q×

p . In either case the Satake parameters are known to be αp and α−1
p where 

αp = p
1
2 or ε(p)p 1

2 = −p
1
2 . Applying the scaling gives [αp, α−1

p ] = [p j+2k−2
2 , p

j+2k−4
2 ] or 

[−p
j+2k−2

2 , −p−
j+2k−4

2 ].
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It is now clear that the Satake parameters of πf,p ⊕ | · |2−k
p ⊕ | · |1−j−k

p are

[a, b, c, d] =
[
±p

j+2k−2
2 ,±p

j+2k−4
2 , pk−2, pj+k−1

]
(where the sign is the same for a and b). Note that these are all integral powers of p.

Theorem 2.7. Suppose πF,p is of type I–VI and pj+2t−2 	≡ 1 mod Λ for t = 0, 1, 2, 3. Then 
πF,p cannot be of type III, IV, V or VI.

Proof. Suppose πF,p is of one of the types III, IV, V, VI. We show that if the corre-
sponding Satake parameters are congruent mod Λ then pj+2t−2 ≡ 1 mod Λ for some 
t = 0, 1, 2, 3. Then the result follows.

We work in reverse order. Here ε0 will stand for the trivial character. Whenever there 
is a choice of sign this will be fixed by a choice of upper or lower row.

Type VI ρ0 is given by the four characters

ν
1
2σ, ν

1
2σ, ν−

1
2σ, ν−

1
2σ.

Since the central character of πF,p is trivial we have σ2 = ε0, so that σ is trivial or 
quadratic.

Thus in some order the Satake parameters are given by

±p
1
2 ,±p

1
2 ,±p−

1
2 ,±p−

1
2 .

Scaling by p
k′−1

2 gives

±p
j+2k−2

2 ,±p
j+2k−2

2 ,±p
j+2k−4

2 ,±p
j+2k−4

2 .

Notice that there are two equal pairs here. Thus for [a, b, c, d] to be congruent to these 
four numbers mod Λ we would have to have that a is equivalent to one of b, c or d mod Λ.

Setting a ≡ b mod Λ gives p ≡ 1 mod Λ.
Setting a ≡ c mod Λ gives p j+2

2 ≡ ±1 mod Λ.
Setting a ≡ d mod Λ gives p j

2 ≡ ±1 mod Λ.
Type V ρ0 is given by the four characters

ν
1
2σ, ν

1
2 ξσ, ν−

1
2 ξσ, ν−

1
2σ.

Since the central character of πF,p is trivial we have σ2 = ε0, so that σ is trivial or 
quadratic.

Thus in some order the Satake parameters are given by

±p
1
2 ,∓p

1
2 ,∓p−

1
2 ,±p−

1
2 .

Scaling by p
k′−1

2 gives
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±p
j+2k−2

2 ,∓p
j+2k−2

2 ,∓p
j+2k−4

2 ,±p
j+2k−4

2 .

Notice that there are two pairs of the form (α, −α). Thus for [a, b, c, d] to be congruent 
to these four numbers mod Λ we would have to have that a is equivalent to one of −b, −c

or −d mod Λ.
Setting a ≡ −b mod Λ gives p ≡ 1 mod Λ.
Setting a ≡ −c mod Λ gives p j+2

2 ≡ ∓1 mod Λ.
Setting a ≡ −d mod Λ gives p j

2 ≡ ∓1 mod Λ.
Type IV ρ0 is given by the four characters

ν
3
2σ, ν

1
2σ, ν−

1
2σ, ν−

3
2σ.

Since the central character of πF,p is trivial we have σ2 = ε0, so that σ is trivial or 
quadratic.

Thus in some order the Satake parameters are given by

±p
3
2 ,±p

1
2 ,±p−

1
2 ,±p−

3
2 .

Scaling by p
k′−1

2 gives

±p
j+2k

2 ,±p
j+2k−2

2 ,±p
j+2k−4

2 ,±p
j+2k−6

2 .

If [a, b, c, d] are congruent to these numbers mod Λ then there are four possibilities for c.
Setting c ≡ ±p

j+2k
2 mod Λ gives p j+4

2 ≡ ±1 mod Λ.
Setting c ≡ ±p

j+2k−2
2 mod Λ gives p j+2

2 ≡ ±1 mod Λ.
Setting c ≡ ±p

j+2k−4
2 mod Λ gives p j

2 ≡ ±1 mod Λ.
Setting c ≡ ±p

j+2k−6
2 mod Λ gives p j−2

2 ≡ ±1 mod Λ.
Type III ρ0 is given by the four characters

ν
1
2χσ, ν−

1
2χσ, ν

1
2σ, ν−

1
2σ.

Since the central character of πF,p is trivial we have χσ2 = ε0, so that χσ = σ−1.
Thus in some order the Satake parameters are given by

p
1
2β−1, p−

1
2β−1, p

1
2β, p−

1
2β,

where β = σ(p). Scaling by p
k′−1

2 gives

p
j+2k−2

2 β−1, p
j+2k−4

2 β−1, p
j+2k−2

2 β, p
j+2k−4

2 β.

If [a, b, c, d] are congruent to these numbers mod Λ then there are four possibilities for a
(each giving the value of β mod Λ). However replacing β by β−1 gives the same Satake 
parameters, so it suffices to set a congruent to just the last two Satake parameters.
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Setting a ≡ p
j+2k−2

2 β mod Λ gives β ≡ ±1 mod Λ. This gives Satake parameters 
equivalent to

±p
j+2k−2

2 ,±p
j+2k−2

2 ,±p
j+2k−4

2 ,±p
j+2k−4

2 .

However we have already dealt with these in Type VI.
Setting a ≡ p

j+2k−4
2 β mod Λ gives β ≡ ±p mod Λ. This gives Satake parameters 

equivalent to

±p
j+2k

2 ,±p
j+2k−2

2 ,±p
j+2k−4

2 ,±p
j+2k−6

2 .

However we have already dealt with these in Type IV.
Suppose now that none of the following holds:

pj−2 ≡ 1 mod Λ

pj ≡ 1 mod Λ

pj+2 ≡ 1 mod Λ

pj+4 ≡ 1 mod Λ.

Then none of the conditions found above hold and so we must have that πF,p is of type 
I or II, as required. �

Note that if one compares the Satake parameters [a, b, c, d] to those from a repre-
sentation of type I or II then no conditions arise. It is always possible for these to be 
congruent mod Λ.

2.3. Proving Theorem 1.2(1)

We now move on to our final task, finding conditions that guarantee πF,p is induced 
from the Borel subgroup of GSp4(Qp). We will show that if l ≥ max{6f(Λ) +2, e(Λ) +2}
then πF,p is induced from the Borel subgroup of GSp4.

In this section Λ′ will be an arbitrary prime of K = QFQf , lying above a rational 
prime l′.

Recall that πF,p corresponds via Local Langlands to a representation of the Weil–
Deligne group W ′

p, which itself is parametrized by a continuous representation ρ0 :
WQp

→ GSp4(C) and a nilpotent matrix N ∈ M4(C) with certain properties (men-
tioned in the previous subsection). However if we fix a choice of embeddings Q ↪→ C and 
Q ↪→ Ql′ then one can convert these representations into l′-adic representations with 
open kernel (p. 77 of [15]).

It is also known that local Galois representations give rise to Weil–Deligne represen-
tations.
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Theorem 2.8 (Grothendieck–Deligne). Let p 	= l′ and fix a continuous n-dimensional 
Λ′-adic representation:

ρ : Gal(Qp/Qp) −→ GLn(KΛ′).

Then associated to ρ is a unique l′-adic representation of W ′
Qp

, given by a pair (ρ′0, N ′)
satisfying:

• ρ′0 : WQp
−→ GLn(KΛ′) is continuous with respect to the discrete topology on 

GLn(KΛ′). In particular ρ′0(Ip) is finite.
• ρ′0(φp) has characteristic polynomial defined over OΛ′ with constant term a Λ′-adic 

unit.
• N ′ ∈ Mn(KΛ′) is nilpotent and satisfies

ρ′0(σ)N ′ρ′0(σ)−1 = ν(σ)N ′,

for all σ ∈ WQp
.

Fixing a tamely ramified character tl′ : Ip → Zl′ , the relationship between ρ and ρ′0 is:

ρ(φn
pu) = ρ′0(φn

pu)exp(tl′(u)N ′),

for all n ∈ Z, u ∈ Ip.

Now consider the local Galois representation ρF,p. By the above theorem it has an 
associated Weil–Deligne representation, given by a pair (ρ′0, N ′). A Local–Global Com-
patibility conjecture of Sorensen (pages 3–4 of [14], proved in certain cases by Mok in 
Theorem 4.14 of [10]) shows that the Weil–Deligne representations attached to πF,p and 
ρF,p are isomorphic (up to Frobenius semi-simplification). In particular this implies that 
ρ0 ∼= ρ′0 up to semi-simplification. We make this identification from now on and use ρ0
to denote the Frobenius semi-simplification of both representations.

A useful corollary of the above theorem is the following:

Corollary 2.9 (Grothendieck monodromy theorem). With the above setup there exists a 
finite index subgroup JΛ′ ⊆ Ip such that ρ(σ) = exp(tl′(σ)N) for each σ ∈ JΛ′ , i.e. each 
element of JΛ′ acts unipotently.

See the appendix of [13] for a proof of this.
By the Grothendieck Monodromy Theorem there exists a (maximal) finite index sub-

group JΛ′ ⊆ Ip acting by unipotent matrices, i.e. if σ ∈ JΛ′ then:

ρF,p(σ) = exp(tl′(σ)N).

Note then that as a consequence, for each σ ∈ JΛ′ :
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ρ0(σ) = ρF,p(σ)exp(−tl′(σ)N) = I.

Thus ρ0 factors through Ip/JΛ′ :

ρ0 : Ip −→ Ip/JΛ′ −→ GL4(OΛ′).

Note that ρ0(Ip/JΛ′) is finite. It is conjectured that the size of this image is indepen-
dent of Λ′ (see Conjecture 1.3 of [15]).

We wish to show that πF,p is induced from the Borel subgroup of GSp4. It suffices to 
show that JΛ′ = Ip for some Λ′ (this case is commonly known as “semi-stable”).

Proposition 2.10. If Λ′ satisfies JΛ′ = Ip then πF,p is induced from the Borel subgroup of 
GSp(Qp).

Proof. It suffices to show that there is a basis of K4
Λ′ such that

ρ0 ∼=

⎛
⎜⎜⎜⎝

χ1 	 	 	

0 χ2 	 	

0 0 χ3 	

0 0 0 χ4

⎞
⎟⎟⎟⎠ ,

for four unramified characters χ1, χ2, χ3, χ4 of WQp
. Then since the image of ρ0 lies in 

GSp4 we must have that χ3 = χ−1
1 and χ4 = χ−1

2 . Then by Local Langlands for GSp4 it 
must be that πF,p is induced from the Borel subgroup.

To this end we already know that Ip acts unipotently and so it remains to study the 
action of Frobenius φp. Recall the condition ρ0(φp)Nρ0(φp)−1 = p−1N . We will rewrite 
this as ρ0(φp)N = p−1Nρ0(φp).

By Theorem 2.8 the characteristic polynomial of ρ0(φp) has constant term in O×
Λ′ . 

Choosing an eigenvector v of ρ0(φp) with non-zero eigenvalue α ∈ OΛ′ , notice that

ρ0(φp)(Nv) = p−1Nρ0(φp) = αp−1(Nv).

This shows that if Nv 	= 0 then Nv is another eigenvector of ρ0(φp) with eigenvalue 
αp−1 	= α.

Consider the list v, Nv, N2v, N3v. If all of these vectors are non-zero then we have a 
basis of eigenvectors for ρ0(φp). Then ρ0(φp) is diagonal.

If for some i ≤ 3 we have N iv = 0 then we can quotient out by the subspace generated 
by v, Nv, ..., N i−1v and apply the same argument to the quotient, lifting basis vectors 
to K4

Λ′ where necessary.
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Continuing in this fashion we then construct a basis of K4
Λ′ such that:

ρ0(φp) =

⎛
⎜⎜⎜⎝

α1 	 	 	

0 α2 	 	

0 0 α3 	

0 0 0 α4

⎞
⎟⎟⎟⎠ .

It is then clear that ρ0 is of the required form with unramified characters defined by 
χi(φp) = αi for i = 1, 2, 3, 4 (since Ip acts unipotently). �

If JΛ = Ip then the Proposition shows that πF,p is induced from the Borel. It is 
our aim to find a condition guaranteeing this. First we study the possible sizes of 
ρ0(Ip/JΛ′).

Lemma 2.11. Suppose G is a finite subgroup of GLn(OΛ′) and that l′ > e(Λ′) + 1 (where 
e(Λ′) is the ramification index of KΛ′/Ql′). Then the reduction map injects G into 
GLn(FΛ′).

Proof. We show that the reduction map GLn(OΛ′) → GLn(FΛ′) is torsion-free. Then 
the restriction of this map to G must have trivial kernel, so that G injects into GLn(FΛ′).

To prove the claim we take A ∈ GLn(OΛ′) with A 	= I and A ≡ I mod Λ′. We wish 
to prove that Am 	= I for each m. We already know this for m = 1.

Suppose that A has finite order m > 1. Choose a prime q | m, so that m = qk for 
some k ≥ 1. Letting B = Ak we see that Bq = I, B 	= I and that B ≡ I mod Λ′. Thus 
we can assume without loss of generality that A has prime order q.

To this end we write A = I + M with M 	= 0 and M having entries in Λ′. Choose 
an entry mu,v of M such that |mu,v|Λ′ = δ is maximal among all entries of M . Then 
0 < δ ≤ 1

N(Λ′) .
Note that:

Aq = (I + M)q = I + qM +
(
q

2

)
M2 + ... +

(
q

q − 1

)
Mq−1 + Mq.

Case 1: Suppose q 	= l′. Then the entries of 
(
q
j

)
M j for j ≥ 2 all have Λ′-adic absolute 

value less than or equal to δ2. However qM contains the entry qmu,v of absolute value 
δ > δ2 (since q 	= l′). Hence Aq − I must contain an entry of absolute value δ > 0 and so 
Aq − I 	= 0 as required.

Case 2: q = l′. We need sharper inequalities for this case since qM has no entry 
of absolute value δ. It is now the case that qmu,v has absolute value δ

N(Λ′)e (where 
e = e(Λ′)).

For 2 ≤ j ≤ q − 1 we know that q divides 
(
q
j

)
so the matrices 

(
q
j

)
M j have entries of 

maximal absolute value δ2

N(Λ′)e < δ
N(Λ′)e . Also the matrix Mq has entries of absolute value 

greater than or equal to δq < δe+1 ≤ δ
′ e (using here the condition q = l′ > e + 1).
N(Λ )
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Thus we see that Aq − I contains an entry of absolute value δ
N(Λ′)e > 0 and so 

Aq − I 	= 0 as required. �
We now know that mΛ′ = |ρ0(Ip/JΛ′)| divides |GL4(FΛ′)| whenever l′ > e(Λ′) + 1. 

By using the existence of the congruence we may find a further restriction on the size of 
this image.

Lemma 2.12. If l > e(Λ) + 1 and JΛ 	= Ip then N(Λ)|mΛ′ for all Λ′.

Proof. Note that mΛ′ = |ρF,p(Ip/JΛ′)|. As mentioned earlier it is conjectured that mΛ′

has order independent of Λ′. Thus it suffices to show that N(Λ)|mΛ.
Now G = ρF,p(Ip/JΛ) is a finite subgroup of GL4(OΛ) and l > e(Λ) +1. By Lemma 2.11

the reduction map injects G into GL4(FΛ). Thus |G| = |ρF,p(Ip/JΛ′)|.
However by the existence of the congruence we know that the mod Λ reduction ρF,p

has composition factors ρf,p, χk−2
l , χj+k−1

l .

Then since ρf,p|Ip =
(

1 	

0 1

)
and χl is unramified at p we have:

ρF,p(Ip/JΛ) ⊆

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎛
⎜⎜⎜⎝

1 	 	 	

0 1 	 	

0 0 1 	

0 0 0 1

⎞
⎟⎟⎟⎠
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

.

However JΛ 	= Ip by assumption, so that ρF,p(Ip/JΛ) is non-trivial. This shows that 
N(Λ) divides mΛ, as required. �
Corollary 2.13. If l ≥ max{6f(Λ) + 2, e(Λ) + 2} then JΛ = Ip (here f(Λ) is the residue 
degree of KΛ/Ql).

Proof. Suppose JΛ 	= Ip. Then we know that N(Λ)|mΛ′ for all Λ′. But for each Λ′

satisfying l′ > e(Λ′) +1 we know that mΛ′ divides |GL4(FΛ′)| and so (writing f = f(Λ))

l|l′ 6f (l′ f − 1)(l′ 2f − 1)(l′ 3f − 1)(l′ 4f − 1).

It remains to prove that l′ can be chosen to contradict this. To contradict the divisi-
bility condition it suffices to choose l′ 	= l such that l′ 3f 	≡ 1 mod l and l′ 4f 	≡ 1 mod l.

There are at most 3f + 4f = 7f classes mod l that have order dividing 3f or 4f . 
However note that the classes of order dividing hcf(3f, 4f) = f are counted twice and 
so there must be at most 7f − f = 6f classes of order dividing 3f and 4f . But since 
l ≥ 6f + 2 there must be a non-zero class a mod l that has order coprime to 3f and 4f . 
By Dirichlet’s theorem there are infinitely many primes in this class mod l. It suffices to 
choose l′ ≡ a mod l such that l′ > e(Λ′) + 1. �
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Of course it is highly likely that l ≥ max{6f(Λ) + 2, e(Λ) + 2} in practice since l is a 
“large” prime.

3. Congruences of local origin

One can use similar techniques to Subsection 3.2 to explain why congruences of “local 
origin” are rare for new paramodular forms. To explain the theory of such congruences we 
first survey the known results for elliptic modular forms. For a more in depth discussion 
see [4].

Recall that, for all primes p we have the Ramanujan congruence:

τ(p) ≡ 1 + p11 mod 691.

This shows a congruence between Hecke eigenvalues of a level 1 cuspform of weight 12
and the Hecke eigenvalues of the weight 12 Eisenstein series.

The modulus 691 can be interpreted in many ways. Naively this prime just happens to 
appear in the q-expansion of E12. A better interpretation is that it divides the numerator 
of B12

24 (the relevant quantity in the coefficients of E12). However the best interpretation 

is that it divides the numerator of ζ(12)π12 .
Ramanujan’s congruence can be extended to give other Eisenstein congruences for 

even weights k ≥ 12. The following is proved in [3].

Theorem 3.1. Suppose ordl
(

ζ(k)
πk

)
> 0 for some prime l. Then there exists a normalised 

eigenform f ∈ Sk(SL2(Z)) with eigenvalues an such that:

ap ≡ 1 + pk−1 mod Λ,

for all primes p (here Λ | l in Qf ).

One can ask whether such Eisenstein congruences arise for elliptic modular forms of 
higher level. Indeed they do. Consider the question of finding a normalized eigenform 
f ∈ Sk(Γ0(p)) satisfying for all q 	= p:

aq ≡ 1 + qk−1 mod λ

where λ is some prime of Qf . For technical reasons we must demand that k 	= 2 and 
that λ does not lie above 2 or 3.

Of course if ordλ

(
ζ(k)
πk

)
> 0 then the above theorem provides a level 1 cuspform that 

satisfies the congruence (i.e. an oldform in Sk(Γ0(p))). However newforms can satisfy 
such congruences too. How do we account for these?

It turns out that instead of looking for primes dividing (global) zeta values we can 
instead look for primes dividing incomplete zeta values. Let:
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ζ{p}(s) =
∏
q �=p

(
1 − 1

qs

)−1

=
(

1 − 1
ps

)
ζ(s) = (pk − 1)

ps
ζ(s).

The following is proved in [4].

Theorem 3.2. Let p be prime and k ≥ 4 be even. Suppose l > 3 satisfies ordl
(

ζ{p}(k)
πk

)
> 0. 

Then there exists f ∈ Sk(Γ0(p)), a normalized Hecke eigenform away from p with eigen-
values aq ∈ Of satisfying:

aq ≡ 1 + qk−1 mod Λ,

for all q 	= p and for some Λ | l in Qf .

Notice ζ{p}(k)
πk ∼ Bk(pk−1)

2k , a condition we saw in Theorem 1.2. The term “local origin” 
is used to describe the new congruences arising from divisibility of a (local) Euler factor. 
As mentioned above, the local origin congruences generally come from newforms (since 
divisibility of the zeta value gives a congruence at level 1).

We can do this in more generality. Let Σ be a finite set of primes and set

ζΣ(s) =
∏
p/∈Σ

(
1 − 1

ps

)−1

=
∏
p∈Σ

(
1 − 1

ps

)
ζ(s) =

∏
p∈Σ

(pk − 1)
ps

ζ(s).

Then one can predict similar congruences for higher level newforms coming from divisi-
bility of the special values ζΣ(k)

πk .
Naturally we may ask whether “local origin” analogues of Conjecture 1.1 exist. Indeed 

these are also predicted to occur and a plentiful supply of evidence has been found [1]. 
However, unlike the GL2 case, these congruences are still conjectural.

Given a normalized Hecke eigenform f ∈ Sk′(SL2(Z)) with eigenvalues aq ∈ Of and 
a fixed prime p we define an incomplete L-function of f :

L{p}(f, s) = (1 − app
−s + pk

′−1−2s)L(f, s) = (p2s − app
s + pk

′−1)
p2s L(f, s).

The following congruences are then predicted by Harder in [8].

Conjecture 3.3. Let j > 0 and k ≥ 3. Let f ∈ Sj+2k−2(SL2(Z)) be a normalized Hecke 

eigenform with eigenvalues ap ∈ Of . Suppose ordλ
(

L{p}(f,j+k)
Ωj+k

)
> 0 for some prime λ

in Qf . Then there exists F ∈ Sj,k(Γ0(p)), a Hecke eigenform away from p with eigenval-
ues bq ∈ OF satisfying

bq ≡ qk−2 + aq + qj+k−1 mod Λ

for all q 	= p and for some Λ | λ in QfQF .
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As in the GL2 case, congruences arising from divisibility of the Euler factor are de-
scribed as local origin congruences. It is also expected, in analogy, that local origin 
congruences generally come from newforms (since divisibility of the L-value would give 
a congruence at level 1, by the original Harder conjecture).

One may ask whether it is possible to find local origin congruences for paramodular 
newforms. We will see below that these are surprisingly very rare. To this end suppose 
an eigenform F ∈ Snew

j,k (K(p)) away from p satisfies a local origin congruence with a 
normalized eigenform f ∈ Sk′(SL2(Z)) and modulus Λ | λ in QfQF .

Recall that, by discussions in Subsection 3.2, the existence of the congruence forces 
πF,p to have Satake parameters congruent to αp, α−1

p , pj+k−1, pk−2 mod λ. However now 
that f is of level 1 the values of αp, α−1

p are different.
Fortunately we only need to know these values mod Λ and the divisibility of the Euler 

factor at p gives this. Indeed:

Λ | (p2(j+k) − app
j+k + pk

′−1) = (pj+k + αpp
k′−1

2 )(pj+k + α−1
p p

k′−1
2 )

and so αp ≡ p
±
(

j+3
2

)
mod Λ. Scaling by p

j+2k−3
2 gives Satake parameters [pj+k, pk−3] for 

πf,p.
So, assuming the existence of a local origin congruence the Satake parameters [a, b, c, d]

of πF,p must be congruent to [pj+k, pk−3, pj+k−1, pk−2] in some order.

Theorem 3.4. If a local origin congruence occurs for F ∈ Snew
j,k (K(p)) with modulus Λ

then pj+2t ≡ 1 mod Λ for some t = 0, 1, 2, 3.

Proof. Since F ∈ Snew
j,k (K(p)) we know that πF,p is of type IIa, IVc, Vb, Vc or VIc (these 

are the only types with new K(p) fixed vectors).
Comparing Satake parameters as in Theorem 2.7 gives the result. The details are 

omitted. �
Appendix A. Borel induced representations of GSp4

The following table, extracted from p. 297 of Roberts and Schmidt [12], lists the 
classification of all non-supercuspidal irreducible admissible representations of GSp4(Qp)
induced from the Borel subgroup. For simplicity only the induced representations are 
given, rather than their irreducible constituents.

Contained in the table is information about dim(V K) for certain interesting open 
compact subgroups K of GSp4(Qp) (i.e. GSp4(Zp) and the local paramodular group 
K(p)).

Here ε0 is the trivial character and ξ is the unique unramified quadratic character 
of Qp. Also χ1, χ2, σ are unramified characters.
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Type Constituent of Conditions dim(V GSp4(Zp)) dim(V K(p))

I χ1 × χ2 � σ χ1, χ2 �= | · |±1
p , χ1 �= | · |±1

p χ±1
2 1 2

IIa | · |
1
2
p χ × | · |−

1
2

p χ � σ χ �= | · |±
3
2

p , χ2 �= | · |±1
p 0 1

IIb 1 1

IIIa χ × | · |p � | · |−
1
2

p σ χ �= ε0, | · |±2
p 0 0

IIIb 1 2

IVa | · |p × | · |2p � | · |−
3
2

p σ 0 0
IVb 0 0
IVc 0 1
IVd 1 1

Va | · |pξ × ξ � | · |−
1
2

p σ ξ2 = ε0, ξ �= ε0 0 0
Vb 0 1
Vc 0 1
Vd 1 0

VIa | · |p × ε0 � | · |−
1
2

p σ 0 0
VIb 0 0
VIc 0 1
VId 1 1

The following table, extracted from p. 283 of Roberts and Schmidt [12], gives the 
corresponding L-parameters. The matrices N will not be needed so have been omitted.

Type ρ0 Central character

I χ1χ2σ, χ1σ, χ2σ, σ χ1χ2σ
2

II χ2σ, ν
1
2 χσ, ν− 1

2 χσ, σ (χσ)2

III ν
1
2 χσ, ν− 1

2 χσ, ν
1
2 σ, ν− 1

2 σ χσ2

IV ν
3
2 σ, ν

1
2 σ, ν− 1

2 σ, ν− 3
2 σ σ2

V ν
1
2 σ, ν

1
2 ξσ, ν− 1

2 ξσ, ν− 1
2 σ σ2

VI ν
1
2 σ, ν

1
2 σ, ν− 1

2 σ, ν− 1
2 σ σ2
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