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1. Introduction

1.1. Notation

In this paper, k ⊂ C will be a number field, k ⊂ C a fixed algebraic closure of k, Ak

the ring of adeles of k, Ωk the set of places of k, and kv the completion of k at v ∈ Ωk. For 
any variety X over k, we endow X(Ak) with the adelic topology and 

∏
v∈Ωk

X(kv) with 
the product topology; when X is proper, X(Ak) =

∏
v∈Ωk

X(kv) and the product and 
adelic topologies are equivalent. A variety that is smooth, projective, and geometrically 
integral over k will be called a nice variety over k. Let {Xω}ω be a family of smooth, 
geometrically integral varieties over k. If X(Ak) �= ∅ ⇐⇒ X(k) �= ∅ for all X ∈ {Xω}ω, 
we say that {Xω}ω satisfies the Hasse principle (HP), while if X(k) = X(Ak) (that is, 
the image of the diagonal map X(k) → X(Ak) is dense in X(Ak)) for all X ∈ {Xω}ω, 
we say that {Xω}ω satisfies strong approximation (SA). When the varieties in the family 
{Xω}ω are moreover proper, strong approximation is equivalent to weak approximation
(WA), i.e. to the property that X(k) =

∏
v∈Ωk

X(kv) (that is, the image of the diagonal 
map X(k) → ∏

v∈Ωk
X(kv) is dense in 

∏
v∈Ωk

X(kv)) for all X ∈ {Xω}ω; in general, 
however, we just have the chain of implications (SA) ⇒ (WA) ⇒ (HP). For any smooth 
variety X over k, the Brauer group of X is BrX := H2

ét(X, Gm) and the Brauer–Manin 
set of X is

X(Ak)Br :=
⋂

α∈Br X

{
(xv) ∈ X(Ak) :

∑
v∈Ωk

invv(α(xv)) = 0
}
,

where the invv : Br kv → Q/Z are the local invariant maps coming from class field 
theory. The algebraic Brauer group of X is Br1(X) := ker(BrX → BrX), where X :=
X ×Spec k Spec k and where BrX → BrX is the canonical map induced by the natural 
morphism X → X. We define the algebraic Brauer–Manin set X(Ak)Br1 by restricting 
the intersection in the definition of the Brauer–Manin set to the elements in Br1 X. 
One can show that both X(Ak)Br and X(Ak)Br1 are closed in X(Ak) and that X(k) ⊂
X(Ak)Br ⊂ X(Ak)Br1 (see e.g. [Sko01, §5.2]).

Let Lk := {G : G is a linear algebraic k-group}/ ∼, where G1 ∼ G2 if and only if G1

and G2 are k-isomorphic as k-groups. We will abuse notation and write G ∈ Lk also to 
mean a representative of the k-isomorphism class of G. For any A, B ⊂ Lk, we let

Ext(A,B) = {G ∈ Lk : G is an extension of A by B, for some A ∈ A and B ∈ B}/ ∼ .

For any S ⊂ Lk, the S-descent set is

X(Ak)S :=
⋂
G∈S

⋂
[f :Y→X]∈H1 (X,G)

⋃
[τ ]∈H1 (k,G)

fτ (Y τ (Ak));

ét ét
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when S = ∅, we define X(Ak)∅ := X(Ak), while when S = Lk, the Lk-descent set is just 
called descent set. For any S ⊂ Lk, the set X(Ak)S is closed in X(Ak) and contains the 
adelic closure of X(k) (see [CDX16, Prop. 6.4]). Let Fk := {G ∈ Lk : G is finite}/ ∼.

The étale-Brauer set of X is

X(Ak)ét Br :=
⋂

F∈Fk

⋂
[f :Y→X]∈H1

ét(X,F )

⋃
[τ ]∈H1

ét(k,F )

fτ (Y τ (Ak)Br).

Similarly, we can define the algebraic étale-Brauer set X(Ak)ét Br1 by replacing “Br” with 
“Br1” in the definition above. Both X(Ak)ét Br and X(Ak)ét Br1 are closed in X(Ak)
(see the discussion after [CDX16, Prop. 6.6]), and they both contain the adelic closure 
of X(k). Finally, for any S, S ′ ⊂ Lk and any � ∈ {∅, Br, Br1, ét Br, étBr1, S ′}, we define

IterS(X/k, �) :=
⋂
G∈S

⋂
[f :Y→X]∈H1

ét(X,G)

⋃
[τ ]∈H1

ét(k,G)

fτ (Y τ (Ak)�).

1.2. Motivation

The aim of this paper is to give some evidence and partial answers to various conjec-
tures and open questions about the arithmetic behaviour of rational points on certain 
classes of varieties over k. More specifically, the conjectures that we are interested in are 
the following.

Conjecture 1.1 (Colliot-Thélène, [CT03, p. 174]). Let X be a nice geometrically ratio-
nally connected variety over k. Then X(k) = X(Ak)Br. In other words, the Brauer–
Manin obstruction is the only one for strong (equivalently, weak) approximation.

(Recall that X is geometrically rationally connected if any two general points x1, x2 ∈
X can be joined by a chain of k-rational curves; examples of geometrically rationally 
connected varieties include geometrically unirational varieties and Fano varieties.)

Conjecture 1.2 (Skorobogatov). Let X be a nice K3 surface over k. Then X(k) =
X(Ak)Br. In other words, the Brauer–Manin obstruction is the only one for strong 
(equivalently, weak) approximation.

Conjecture 1.3. Let X be a nice Enriques surface over k. Then X(k) = X(Ak)ét Br. In 
other words, the étale-Brauer obstruction is the only one for strong (equivalently, weak) 
approximation.

Remark 1.4. In general, K3 surfaces over k do not satisfy X(k) = X(Ak); see [HVA13]
for an example over k = Q violating the Hasse principle. Similarly, in [BBM+16], the 
authors have constructed an Enriques surface X over k = Q such that X(Ak)Br �= ∅ but 
X(k) = ∅; this implies that, for Enriques surfaces, X(k) = X(Ak)Br does not hold in 
general.
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Another source of motivation for this paper is the following: for any nice variety X
over k, the étale-Brauer set X(Ak)ét Br is currently the smallest general obstruction set 
known. Unfortunately, the étale-Brauer set is not small enough to explain all the failures 
of the Hasse principle: see e.g. [Poo10] for a counterexample. We thus want a way to 
construct obstruction sets smaller than X(Ak)ét Br. A possible strategy is to mimic the 
construction of the étale-Brauer set itself: for any nice variety X over k, the results 
in [Dem09b] and [Sko09] imply that X(Ak)ét Br = X(Ak)Lk ; if S ⊂ Lk contains the 
trivial group, then the obstruction set IterS(X/k, Lk) is certainly potentially smaller than 
X(Ak)ét Br. It turns out, however, that for certain choices of S the set IterS(X/k, Lk)
is the same as the original étale-Brauer set: this is the case, for example, when S = Fk

(cf. [Sko09, Thm 1.1]). It is natural to ask about the case when S is maximal, i.e. when 
S = Lk; in this case, we can think of IterLk

(X/k, Lk) as an “iteration” of the descent 
set.

Question 1.5 (Poonen). Let X be a nice variety over k. Is IterLk
(X/k, Lk) = X(Ak)ét Br?

Remark 1.6. In [CDX16, Thm 7.5], the authors show that Y (Ak)Lk = Y (Ak)ét Br for any 
smooth, quasi-projective, geometrically connected variety Y over k, thus removing the 
properness condition from the earlier results in [Dem09b] and [Sko09]. As a consequence, 
we have that IterLk

(X/k, Lk) = IterLk
(X/k, ét Br) for any nice variety X over k.

We focus on a question similar to Question 1.5: we want to iterate the algebraic 
étale-Brauer set X(Ak)ét Br1 . To make sense of this, we first need an analogue of the 
result X(Ak)ét Br = X(Ak)Lk for X(Ak)ét Br1 . Such an analogue is given by [Bal16, 
Thm 5.8]: if X is a nice variety over k, then

X(Ak)ét Br1 = X(Ak)Ext(Fk,Tk),

where Tk := {G ∈ Lk : G is a torus}/ ∼.

Question 1.7. Let X be a nice variety over k. Is IterExt(Fk,Tk)(X/k, étBr1) = X(Ak)ét Br1?

Remark 1.8. By putting together the results in [CDX16] and [Bal16], we have 
Y (Ak)Ext(Fk,Tk) = Y (Ak)ét Br1 for any smooth, quasi-projective, geometrically con-
nected variety Y over k. From this, we can easily deduce that IterExt(Fk,Tk)(X/k,

Ext(Fk, Tk)) = IterExt(Fk,Tk)(X/k, étBr1) for any nice variety X over k.

1.3. Main result

Motivated by the above conjectures and questions, our main theorem is the following.

Theorem 1.9 (Main Theorem). Let X be a nice variety over k such that πét
1 (X) is finite. 

Then IterExt(Fk,Tk)(X/k, ét Br1) = X(Ak)ét Br1 .
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Some comments:

• Let X be a nice geometrically rationally connected variety over k. Then πét
1 (X) = 0, 

meaning that Theorem 1.9 holds. (Compare this with the assertion in [CTS77b] that 
“la descente sur une variété rationnelle, lisse et complète, est une opération en un 
coup.”) If moreover BrX = 0, as is the case when dimX = 2 or H3

ét(X, Z�(1))tors = 0
for all primes � (cf. [CTS13, Lemma 1.3]), then X(Ak)ét Br1 = X(Ak)Br1 = X(Ak)Br. 
Hence, in this case, Theorem 1.9 tells us that IterTk

(X/k, étBr1) = X(Ak)Br, thus 
giving some evidence for Conjecture 1.1.

• Let X be a nice K3 surface over k. Then πét
1 (X) = 0, and thus the hypotheses of 

Theorem 1.9 are satisfied. When, moreover, BrX = 0 (see e.g. the comment after 
[SZ12, Prop. 5.1]), then Theorem 1.9 yields IterTk

(X/k, ét Br1) = X(Ak)Br, thus 
giving some evidence for Conjecture 1.2.

• Let X be a nice Enriques surface over k. Then πét
1 (X) ∼= Z/2Z, and so the hypotheses 

of Theorem 1.9 are satisfied. When X(Ak)ét Br = X(Ak)ét Br1 (e.g. in [VAV11]), then 
IterExt(Fk,Tk)(X/k, étBr1) = X(Ak)ét Br, which is some evidence for Conjecture 1.3. 
Theorem 1.9 also applies to some higher-dimensional analogues of Enriques surfaces 
(cf. [BNWS11, §2]).

• Theorem 1.9 gives a positive answer to Question 1.7, assuming the finiteness of 
πét

1 (X); it would be interesting to see whether this condition can be weakened 
or removed (a possible weakening could be that of considering nice varieties X
over k such that PicY is finitely generated as a Z-module for any finite cover 
Y → X).

• In the literature, there are several conditional proofs of the existence of nice vari-
eties X over k with πét

1 (X) = 0, X(k) = ∅, and X(Ak)Br �= ∅: see [SW95] for an 
example conditional on Lang’s conjectures, [Poo01] for one conditional on the exis-
tence of a complete intersection satisfying certain properties, and [Sme17, Thm 4.1]
for one conditional on the abc conjecture. Theorem 1.9 would apply to these exam-
ples.

2. Some properties of universal torsors

Let X be a variety over k with k[X]× = k
× and with PicX finitely generated as 

a Z-module. Let Mk := {G ∈ Lk : G is of multiplicative type}/ ∼ and let S ∈ Mk. 
An S-torsor Y → X is a universal torsor for X if its type λY : Ŝ → PicX is an iso-
morphism (for the definition of the type of a torsor, see e.g. [Sko01, Cor. 2.3.9]); here 
Ŝ := HomGrpSch

k
(S, Gm,k) denotes the Cartier dual. As explained in [Sko01, §2.3], 

universal torsors do not always exist over k, as a universal torsor over k might not de-
scend to k. The following proposition, proven in [Sko99] by Skorobogatov (who extended 
earlier results from [CTS76,CTS77b,CTS77a,CTS87]), gives sufficient conditions for the 
existence of universal torsors with non-empty sets of adelic points.
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Proposition 2.1 ([Sko01, Cor. 6.1.3(1)]). Let X be a variety over k such that k[X]× =
k
×, PicX is finitely generated as a Z-module, and X(Ak)Br1 �= ∅. Then there exists a 

universal torsor W → X with an adelic point.

When universal torsors exist, they have some desirable properties. The following lem-
mas (which can be deduced from [CTS76,CTS77b,CTS77a], [CTS87, §2.1, Prop. 2.1.1 
and Thm 2.1.2]) give some of these properties.

Lemma 2.2. Let X be a nice variety over k with PicX torsion-free. Suppose that there 
exists a universal torsor W → X under S (a torus). Then W is geometrically connected, 
k[W ]× = k

×, and PicW = 0.

Lemma 2.3. Let W be a smooth, geometrically integral variety over k such that k[W ]× =
k
× and PicW = 0. Then Br1(W ) = Br k. In particular, W (Ak)Br1 = W (Ak).

Finally, universal torsors satisfy the following universal property: let X be a variety 
over k such that PicX is finitely generated as a Z-module and k[X]× = k

×; given a 
universal torsor W → X and any other torsor Y → X under some M ∈ Mk, there is a 
[σ] ∈ H1

ét(k, M) such that there exists a map W → Y σ of X-torsors (see the discussion 
after [Sko01, Defn 2.3.3]).

Remark 2.4. Using universal torsors, one can easily prove results such as the follow-
ing: if X is a nice variety over k with PicX finitely generated as a Z-module, then 
IterMk

(X/k, Br1) = X(Ak)Br1 (compare this with [CDX16, Cor. 4.2]).

Lemma 2.5. Let W be a smooth and geometrically integral variety over k with πét
1 (W ) = 0. 

Let F ∈ Fk and let U → W be a torsor under F . Then there exists some σ ∈ H1
ét(k, F )

such that Uσ → W is a trivial torsor under Fσ.

Proof. Since W is geometrically integral, we have the exact sequence of fundamental 
groups (omitting base-points)

1 → πét
1 (W ) → πét

1 (W ) → Gal(k/k) → 1.

From the hypothesis that πét
1 (W ) = 0, we deduce that πét

1 (W ) ∼= Gal(k/k). Since F ∈ Fk, 
using the Grothendieck–Galois theory we have that H1

ét(W, F ) = H1(πét
1 (W ), F (k)), 

where the action of πét
1 (W ) on F (k) is via Gal(k/k). By using [Ser01, §5.8(a)], we deduce 

that H1
ét(k, F ) = H1

ét(W, F ). Hence, U → W is the pullback of some F -torsor V →
Spec k under the structure morphism W → Spec k. Let σ = [V → Spec k] ∈ H1

ét(k, F ). 
Since V σ → Spec k is a trivial Fσ-torsor (that is, it admits a section), by the universal 
property of pullbacks it follows that the Fσ-torsor Uσ → W also admits a section, as 
required. �
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3. Proof of the main theorem

Lemma 3.1. Let X be a nice variety over k with πét
1 (X) finite. Then PicX is finitely 

generated as a Z-module.

Proof. Let r ∈ N, and consider the Kummer sequence

0 → μr,k → Gm,k

t�→tr−−−→ Gm,k → 0.

Passing to cohomology and identifying (non-canonically) μr,k with Z/rZ, we ob-
tain an isomorphism H1

ét(X, Z/rZ) ∼= (PicX)[r], where we have used the fact that 
H0(X, Gm) = k[X]× = k

× is divisible. Further, H1
ét(X, Z/rZ) ∼= Hom(πét

1 (X), Z/rZ)
(cf. [Fu11, Prop. 5.7.20]), and hence

Hom(πét
1 (X),Z/rZ) ∼= (PicX)[r].

Since πét
1 (X) is finite, say with |πét

1 (X)| = d, it follows that (PicX)[r] = (Pic0 X)[r] = 0
for any r ∈ N with gcd(r, d) = 1. Since X is proper, Pic0 X is an abelian variety 

over k; if Pic0 X �= 0, then Pic0 X[r] ∼= (Z/rZ)2 dim Pic0 X is non-trivial for all r ∈ N, 
a contradiction to the fact that (Pic0 X)[r] = 0 when gcd(r, d) = 1. Hence, Pic0 X = 0, 
which implies that PicX = NSX is finitely generated as a Z-module. �
Proposition 3.2. Let Y be a smooth and geometrically connected variety over k with 
πét

1 (Y ) = 0. Let W → Y be a torsor under some connected linear algebraic group T
over k. Then πét

1 (W ) is abelian.

Proof. Since k is an algebraically closed field of characteristic 0 and since the étale fun-
damental group does not change under base-change over extensions K/k of algebraically 
closed fields (cf. [Sza09, Second proof of Cor. 5.7.6 and Rmk 5.7.8] together with [Gro71, 
XII] and [Org03]), there is a “Lefschetz principle” and we can work over C instead 
of k. Let LFTC and ANC denote, respectively, the category of schemes locally of finite 
type over C and the category of complex analytic spaces. The analytification functor 
(−)an : LFTC → ANC (cf. [Gro71, XII]) induces an equivalence of categories from 
the category of finite étale covers of X ∈ LFTC to the category of finite étale covers 
of Xan ∈ ANC (cf. [Gro71, XII, Thm 5.1 “Théorème d’existence de Riemann”]); by 
[Gro71, XII, Cor. 5.2], if X ∈ LFTC is connected, then (omitting base-points)

πét
1 (X) ∼= ⁄�πtop

1 (Xan).

The fibration obtained by applying (−)an to the TC-torsor WC → YC induces the 
homotopy (exact) sequence

πtop
1 ((TC)an) → πtop

1 ((WC)an) → πtop
1 ((YC)an) → πtop

0 ((TC)an),
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where πtop
1 ((TC)an) is abelian (since (TC)an is a topological group) and where 

πtop
0 ((TC)an) = 0 as (TC)an is connected (cf. [Gro71, XII, Prop. 2.4]). Since taking 

the profinite completion is right-exact (cf. [RZ00, Prop. 3.2.5]), we obtain the exact 
sequence

πét
1 (TC) → πét

1 (WC) → πét
1 (YC) → 0,

where πét
1 (TC) is abelian (as the profinite completion of an abelian group is abelian); 

since, by assumption (and by the Lefschetz principle) πét
1 (YC) = 0, from the above 

sequence we deduce that πét
1 (WC) (and thus πét

1 (W )) is a quotient of an abelian group 
and hence abelian, as required. �
Lemma 3.3. Let W be a geometrically integral variety over k with k[W ]× = k

× and PicW
torsion-free. Then πab

1 (W ) = 0, where πab
1 denotes the abelianised étale fundamental 

group.

Proof. From e.g. [Sko01, pp. 35–36], we have that

πab
1 (W ) = lim←−−

n

Hom(H1(W,μn), k×).

For any n ∈ N, the Kummer sequence yields the short exact sequence of Gal(k/k)-
modules (cf. [Sko01, p. 36])

0 → k[W ]×/k[W ]×,n → H1(W,μn) → PicW [n] → 0

and, since k[W ]× = k
× is divisible (implying that k[W ]×/k[W ]×,n = 0) and 

PicW [n] = 0, we get that H1(W, μn) = 0 for each n and thus that πab
1 (W ) = 0, as 

required. �
Proof of Theorem 1.9. The inclusion IterExt(Fk,Tk)(X/k, ét Br1) ⊂ X(Ak)ét Br1 holds by 
construction, so we just need to prove the opposite inclusion. We may assume that 
X(Ak)ét Br1 �= ∅, since otherwise the conclusion of the theorem is trivially true as 
IterExt(Fk,Tk)(X/k, étBr1) ⊂ X(Ak)ét Br1 . Let (xv) ∈ X(Ak)ét Br1 . We need to prove 
that, for any G ∈ Ext(Fk, Tk) and for any [Z → X] ∈ H1

ét(X, G), there exists some 
[ξ] ∈ H1

ét(k, G) such that, for any F ′ ∈ Fk and for any [U → Zξ] ∈ H1
ét(Zξ, F ′), there 

exists some [ψ] ∈ H1
ét(k, F ′) such that (xv) lifts to a point in Uψ(Ak)Br1 .

Step 1. Let Z → X be a torsor under G, for some G ∈ Ext(Fk, Tk), say with G fitting 
into a short exact sequence

1 → T → G → F → 1,

with T ∈ Tk and F ∈ Fk. Let Y := Z/T and decompose the G-torsor Z → X into 
the T -torsor Z → Y and the F -torsor Y → X. By [Dem09a, Lemme 2.2.7] (see also 
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[CDX16, Lemma 7.1]) there exists some [σ] ∈ H1
ét(k, F ), some F1 ∈ Fk, some F1-torsor 

Y1 → X, and a X-torsor morphism Y1 → Y σ such that Y1 is geometrically integral, 
and (xv) lifts to a point in Y1(Ak)Br1 . Moreover, since X is smooth and projective and 
Y1 → X is étale, it follows that Y is smooth, projective, and geometrically integral over k. 
By [Dem09a, Prop. 2.2.9] (see also [CDX16, Prop. 7.4]), we have that [σ] ∈ H1

ét(k, F )
lifts to some [τ ] ∈ H1

ét(k, G), meaning that the diagram

X

Y σY1

Zτ

Fσ

T τ

G
τ

F
1

is commutative.

Step 2. Since πét
1 (X) is finite, so is πét

1 (Y 1). We now construct a geometrically con-
nected torsor Y2 → Y1 under some F2 ∈ Fk such that πét

1 (Y 2) = 0. Let U ′ → Y 1 be a 
torsor under some B′ ∈ Fk with πét

1 (U ′) = 0 and U ′ (geometrically) connected. We claim 
that, up to twisting Y1 by some element in H1(k, F1), there exists some F2 ∈ Fk and 
some F2-torsor Y2 → Y1 such that the B′-torsor U ′ → Y 1 is obtained from the F2-torsor 
Y2 → Y1 by base-changing k to k; in particular, such a Y2 is geometrically connected 
and satisfies πét

1 (Y 2) = 0. Indeed, by [HS02, Prop. 2.2 and §3.1] and [HS12, Thm 2.1 
and Rmk 2.2(1)], the torsor U ′ → Y 1 has a k-form over Y1 if Y1(Ak)Fk �= ∅. But the 
latter is true, up to twisting Y1, by [Sto07, Prop. 5.17]. Hence, U ′ → Y 1 has a k-form, 
say Y2 → Y1 under some F2 ∈ Fk satisfying πét

1 (Y 2) = 0, as claimed.
We now claim that, without loss of generality, (xv) lifts to a point in Y2(Ak)Br1 . 

Indeed, by [Sko09, Prop. 2.3] there exists a B-torsor V → X under some B ∈ Fk

and a surjective X-torsor morphism h : E → Y1 under ker(B → F1); moreover, when 
considered as a Y1-torsor via h, E admits a surjective Y1-torsor morphism to Y2. By 
a modification of [Sko09, Lemma 2.2] (we replace the assumption “(xv) ∈ X(Ak)desc” 
with “(xv) ∈ X(Ak)ét Br1” and then use [Sto07, Prop. 5.17] to check that the proof holds 
under this new assumption), there exists some γ ∈ H1(k, ker(B → F1)) and some point 
(Mv) ∈ Eγ(Ak)Br1 which lifts (xv). Let γ̃ be the image of γ in H1(k, F2) under the 
image of ker(B → F1) → F2. Then Eγ → Y1 factors through Y γ̃

2 → Y1, implying that 
we can use the functoriality of Br1 to push (Mv) to a point in Y γ̃

2 (Ak)Br1 above (xv). 
Hence, without loss of generality (up to twisting everything as above if necessary), we 
can assume that (xv) lifts to a point in Y2(Ak)Br1 .

Let R := Y2 ×Y σ Zτ → Y2 be the pullback of Zτ → Y σ along Y2 → Y1 → Y σ; this 
is naturally a T τ -torsor. By Lemma 3.1, PicY 2 is finitely generated as a Z-module and 
(PicY 2)tors = 0; since Y2(Ak)Br1 �= ∅, by Proposition 2.1 there is a universal torsor 
W2 → Y2 under a torus T2 ∈ Tk with W2(Ak) �= ∅. Since the type λW2 : T̂2 → PicY 2



JID:YJNTH AID:5806 /FLA [m1L; v1.221; Prn:27/07/2017; 10:13] P.10 (1-12)
10 F. Balestrieri / Journal of Number Theory ••• (••••) •••–•••
is an isomorphism, from the exact sequence of Colliot-Thélène and Sansuc (cf. [CTS87, 
(2.1.1)])

0 → k[W2]×/k
× → T̂2

λT2−−→ PicY 2 → PicW 2 → 0,

we deduce that PicW 2 = 0 and k[W2]× = k
×. By the universal property of universal 

torsors, there is also a morphism of Y2-torsors W2 → Rμ, for some [μ] ∈ H1
ét(k, T τ ). 

Let μ̃ be the image of μ under the map Z1(k, T τ ) → Z1(k, Gτ ). Then (Zτ )μ = (Zτ )μ̃. 
Let tτ : Z1(k, Gτ ) → Z1(k, G) be the bijection as in [Ser94, §I.5.3, Prop. 35bis], and let 
ν := tτ (μ̃). Then (Zτ )μ̃ = Zν , (Gτ )μ̃ = Gν , and (T τ )μ = T ν . Since (xv) lifts to a point 
in Y2(Ak)Br1 and since by [Sko99, Thm 3] we have that Y2(Ak)Br1 = Y2(Ak)Mk , there is 
some [λ] ∈ H1

ét(k, T2) such that (xv) lifts to a point in Wλ
2 (Ak). Let λ̃ be the image of λ

under the map Z1(k, T2) → Z1(k, T ν) induced by the type λRμ : ”T ν → PicY 2; then we 
get a morphism of Y2-torsors Wλ → (Rμ)λ̃. Let ω be the image of λ̃ under the morphism 
H1

ét(k, T ν) → H1
ét(k, Gν). Then (Zν)λ̃ = (Zν)ω. Let tν : Z1(k, Gν) → Z1(k, G) be the 

bijection as in [Ser94, §I.5.3, Prop. 35bis], and let ξ := tν(ω). Then (Zν)ω = Zξ and 
(Gν)ω = Gξ. Summarising, we have the commutative diagram

X.

ZξWλ
2 (Rμ)λ̃

Y2 Y1 Y σ

G ξ
T λ2

Fσ

T ξ T ξ

Step 3. Since πét
1 (Y 2) = 0, by Proposition 3.2 we have that πét

1 (Wλ
2 ) is abelian; hence, 

since Wλ
2 is geometrically connected, k[Wλ

2 ]× = k
×, and PicWλ

2 = 0, by Lemma 3.3 we 
deduce that πét

1 (Wλ
2 ) = 0.

Let F ′ ∈ Fk and let [U → Zξ] ∈ H1
ét(Zξ, F ′). Consider the fibred product V :=

Wλ
2 ×Zξ U ; this is naturally an F ′-torsor over Wλ

2 . Since πét
1 (Wλ

2 ) = 0, by Lemma 2.5
there exists some [ρ] ∈ H1

ét(k, F ′) such that V ρ → Wλ
2 is a trivial torsor, that is, it 

admits a section Wλ
2 → V ρ. Hence, by using Wλ

2 (Ak) = Wλ
2 (Ak)Br1 , the fact that (xv)

lifts to a point (wv) ∈ Wλ
2 (Ak)Br1 implies by functoriality of Br1 that (xv) lifts to a 

point (uv) ∈ V ρ(Ak)Br1 , which can then be pushed to a point (u′
v) ∈ Uψ(Ak)Br1 above 

(xv), as required. �
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