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1. Introduction

Fibonacci numbers are prominent as well as being ancient. Their first known occur-
rence dates back to around 200BC, (see [5], [8]) in the earliest known treatise on Sanskrit 
prosody (poetry meters and verse in Sanskrit) entitled Chandah. śāstra and authored by 
Piṅgala. This work is eight chapters in the late Sūtra style and therefore quite complex 
and not fully comprehensible without commentary. The Fibonacci numbers appear again 
(much later this time) in the work of Virahāṅka (700AD). Virahāṅka’s original work has 
been lost, but is nevertheless cited clearly in the work of Gopāla (c. 1135); below is a 
translation of [9, pg. 101];

“For four, variations of meters of two [and] three being mixed, five happens. For five, 
variations of two earlier – three [and] four, being mixed, eight is obtained. In this way, 
for six, [variations] of four [and] of five being mixed, thirteen happens. And like that, 
variations of two earlier meters being mixed, seven morae [is] twenty-one. In this way, 
the process should be followed in all mātrā–vr.ttas.”

The sequence is discussed rigorously and most concisely in the work of Jain scholar 
Acharya Hemachandra (c. 1150, living in what is known today as Gujarat) about 50 years 
earlier than Fibonacci’s Liber Abaci (1202). Hemachandra, just like Piṅgala, Virahāṅka 
and Gopāla, was in fact studying Sanskrit prosody and not mathematics. Given a verse 
with an ending of n beats to fill, where the choice of beats consists of length 1 (called 
short) and length 2 (called long), in how many ways can one finish the verse? The answer 
lies within the fundamental sequence, defined by the recurrence;

Hn+2 = Hn+1 + Hn, H1 = 1, H2 = 2, n ≥ 1, (♦)

where Hemachandra makes the concise argument that any verse that is to be filled with 
n beats must end with a long or a short beat. Therefore, this recurrence is enough to 
answer the question: given a verse with n beats remaining, one has Hn ways of finishing 
the prosody, with Hn satisfying (♦).

Since the 12th century, the Hemachandra/Fibonacci numbers have sat in the spotlight 
of modern number theory. They have been vastly studied; intrinsically for their beautiful 
identities but also for their numerous applications, for example, the golden ratio has a 
regular appearance in art, architecture and the natural world!

Finding all perfect powers in the Fibonacci sequence was a fascinating long-standing 
conjecture. In 2006, this problem was completely solved by Y. Bugeaud, M. Mignotte 
and S. Siksek (see [4]), who innovatively combined the modular approach with classical 
linear forms in logarithms. In addition to this, Y. Bugeaud, F. Luca, M. Mignotte and 
S. Siksek also found all of the integer solutions to

Fn ± 1 = yp p ≥ 2, (1)
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(see [2]). The authors found a clever factorisation which descended the problem to finding 
solutions of Fn = yp.

In this paper, we consider the natural generalisation,

Fn ± Fm = yp, p ≥ 2. (2)

Theorem 1. All solutions of the Diophantine equation (2) in integers (n, m, y, p) with 
n ≡ m (mod 2) either have max{|n|, |m|} ≤ 36, or y = 0 and |n| = |m|.

Since F1 = F2 = 1, it follows that every solution (n, y, p) of equation (1) can be 
thought of as a solution (n, m, y, p) of equation (2) with m = 1, 2 according to whether 
n is odd or even. Therefore, Theorem 1 is a genuine generalisation of the main result 
from [2].

For a complete list of solutions to equation (2) with max{|n|, |m|} ≤ 1000 without 
the parity restriction, see Section 5.
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2. Preliminaries

Let (Fn)n≥0 be the Hemachandra/Fibonacci sequence given by;

Fn+2 = Fn+1 + Fn, F0 = 0, F1 = 1, n ≥ 0.

Recall that (Fn)n≥0 can be extended to be defined on the negative indices by using 
the above recurrence and giving n the values n = −1, −2, . . .. Thus the formula F−n =
(−1)n+1Fn holds for all n.

Let (Ln)n≥0 be the Lucas companion sequence of the Hemachandra/Fibonacci se-
quence given by;

Ln+2 = Ln+1 + Ln, L0 = 2, L1 = 1, n ≥ 0.

Similarly, this can also be extended to negative indices n, and the formula Ln =
(−1)nL−n holds for all n.

The Binet formulas for Fn and Ln are;

Fn = 1√ (αn − βn) and Ln = αn + βn for all n ∈ Z, (3)

5
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where (α, β) = ((1 +
√

5)/2, (1 −
√

5)/2). There are many formulas relating Hemachan-
dra/Fibonacci numbers and Lucas numbers. Two of which are useful for us are;

F2n = FnLn and L3n = Ln(L2
n − 3(−1)n), (4)

which hold for all n. They can be proved using Binet’s formulae (3).
The following result is well-known and can also be proved using Binet’s formulae (3).

Lemma 2.1. Assume n ≡ m (mod 2). Then

Fn + Fm =
{
F(n+m)/2L(n−m)/2 if n ≡ m (mod 4),
F(n−m)/2L(n+m)/2 if n ≡ m + 2 (mod 4).

Similarly,

Fn − Fm =
{
F(n−m)/2L(n+m)/2 if n ≡ m (mod 4),
F(n+m)/2L(n−m)/2 if n ≡ m + 2 (mod 4).

The following result can be found in [6].

Lemma 2.2. Let n = 2an1 and m = 2bm1 be positive integers with n1 and m1 odd integers 
and a and b nonnegative integers. Let d = gcd(n, m). Then

i) gcd(Fn, Fm) = Fd.
ii) gcd(Ln, Lm) = Ld if a = b and it is 1 or 2 otherwise.
iii) gcd(Fn, Lm) = Ld if a > b and it is 1 or 2 otherwise.

The following results can be extracted from [1], [3] and [4] and will be useful for us.

Theorem 2. If

Fn = 2s · yb

for some integers n ≥ 1, y ≥ 1, b ≥ 2 and s ≥ 0 then n ∈ {1, 2, 3, 6, 12}. The solutions 
of the similar equation with Fn replaced by Ln have n ∈ {1, 3, 6}.

Theorem 3. If

Fn = 3s · yb

for some integers n ≥ 1, y ≥ 1, b ≥ 2 and s ≥ 0 then n ∈ {1, 2, 4, 6, 12}. The solutions 
of the similar equation with Fn replaced by Ln have n ∈ {1, 2, 3}.

The following result is due to McDaniel and Ribenboim (see [7]).
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Theorem 4.

i) Assume u | v are positive integers such that Fv/Fu = y2. Then, either u = v or 
(v, u) ∈ {(12, 1), (12, 2), (2, 1), (6, 3)}.

ii) Assume that u | v, v/u is odd and Lv/Lu = y2. Then, u = v or (v, u) = (3, 1).

3. Perfect powers from products of a Fibonacci and a Lucas number

Theorem 5. The only solutions to

FN · LM = 2s · yp

with N , M , y positive integers, s ≥ 0 and p ≥ 2 satisfy

(N,M) = (1, 1), (1, 3), (1, 6), (2, 1), (2, 3), (2, 6), (3, 1), (3, 3),

(3, 6), (4, 2), (4, 6), (6, 1), (6, 3), (6, 6), (12, 1), (12, 2),

(12, 3), (12, 6), (24, 12).

Proof. We shall in fact show that N ≤ 24 and M ≤ 12. The proof is then completed by 
a simple program. Write

N = 2aN1, M = 2bM1,

where N1, M1 are odd. If a ≤ b, then by Lemma 2.2, we know gcd(FN , LM ) = 1 or 2, so 
FN = 2uyp1 and LM = 2vyp2 . By Theorem 2, we deduce that N ≤ 12 and M ≤ 6.

Thus, we may assume that a > b. Let r = a − b ≥ 1 and d = gcd(N, M). Therefore, 
d = 2b gcd(N1, M1). Write N = 2rkd where k is odd. Then we obtain;

2syp = FN · LM = F2rkd · LM = Fkd · Lkd · L2kd · · ·L2r−1kd · LM ,

by repeated application of (4). Note that

υ2(kd) = υ2(M), υ2(kd) ≤ υ2(2ikd) for i ≥ 0.

Thus, by Lemma 2.2, the greatest common divisor of Fkd and Lkd ·L2kd · · ·L2r−1kd ·LM

is a power of 2. Hence,

Fkd = 2uyp1 .

By Theorem 2, since kd ≥ 1, u ≥ 0, y1 ≥ 1 and p ≥ 2, with kd, u, y1 and p all integers, 
we deduce that kd ∈ {1, 2, 3, 6, 12}. Moreover,

Lkd · L2kd · · ·L2r−1kd · LM = 2vyp2 .
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Suppose r ≥ 2. Then υ2(2r−1kd) > υ2(M). Once more, we use Lemma 2.2 to see that 
the greatest common divisor of L2r−1kd and Lkd · L2kd · · ·L2r−2kd · LM is a power of 2. 
Hence,

L2r−1kd = 2wyp3 .

By Theorem 2, we conclude that 2r−1kd ∈ {1, 3, 6}. Therefore, r = 2 and kd = 3. This 
then tells us that N = 2rkd = 12. Otherwise, r = 1 and N ∈ {2, 4, 6, 12, 24}.

If N = 2 or 6 then FN = 1 or 8 so LM = 2σyp. Theorem 2 allows us to readily conclude 
that M ≤ 6. The cases N = 4, 12 and 24 remain and require delicate treatment. First, 
we deal with the cases N = 4 and N = 12. Since F4 = 3 and F12 = 24 × 32 we have 
LM = 2α3βyp0 where y0 is odd. If α = 0 then by Theorem 3 we know that M ≤ 3 and 
so we may suppose that s ≥ 1. Thus, 2 | LM . Note that 2 || M (as r = 1 and a = 2). As 
6 | LM , we have 3 | M . Thus, we can write M = 2 · 3t · �, where � is coprime to 6. Now, 
observe that

L3δ = Lδ(L2
δ − 3)

for δ = 2 ·3i ·� with i = t −1, t −2, . . . , 0. Hence, we obtain inductively L2·3i·� = 2si3wiypi . 
For i = 0, we have 3 � 2� and so s0 = 0. Using Theorem 3, we infer that � = 1. Hence, 
M = 2 · 3t. Note that 107 || L18 | LM and 1072 � Ln unless (18 × 107) | n. We conclude 
that t ≤ 1 and so M ≤ 6.

Finally, let N = 24, whence F24 = 25 · 32 · 7 · 23. Moreover, M = 22 ·M1 where M1 is 
odd. Thus, d = 22 · gcd(3, M1) = 4 or 12. However, gcd(FN , LM ) = Ld. We may rewrite 
the equation FN · LM = 2syp as

L2
d ·

FN

Ld
· LM

Ld
= 2syp.

If d = 4 then Ld = 7 and we see that 23 divides the left-hand side exactly once, giving 
a contradiction. Thus, d = 12 and so Ld = 2 × 7 × 23. In this case the left-hand side is 
divisible by 3 exactly twice and therefore p = 2. Thus, LM/L12 = 2αy2

1 . Since M is an 
odd multiple of 12, we can easily see that LM/L12 is odd and so α = 0. Hence, we can 
apply Theorem 4 to draw the inference that M = 12. �
4. Proof of Theorem 1

If either n = 0 or m = 0, then the theorem follows from [4]. Via the identity F−n =
(−1)n+1Fn, we can suppose that n ≥ m > 0. Note that changing signs does not change 
parities, so we maintain the assumption n ≡ m (mod 2).

If n = m, then we need to solve 2Fn = yp, which is equivalent to solving Fn = 2p−1yp1 . 
By Theorem 2, we have that n ≤ 12.
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Thus, we may suppose that n > m > 0. By Lemma 2.1, there is some ε = ±1 such 
that letting N = (n +εm)/2 and M = (n −εm)/2, we have Fn±Fm = FN ·LM . Observe 
that N and M are both positive. By Theorem 5, we know that N ≤ 24 and M ≤ 12. 
We finally conclude that n = N + M ≤ 36 and m = |N −M | < 24. This completes the 
proof.

5. An open problem

It is still an open problem to find all solutions to equation (2) in the case n �≡ m

(mod 2). Under the condition, n �≡ m (mod 2), no factorisation is known for the left-hand 
side. We searched for solutions with 0 ≤ m ≤ n ≤ 1000 and found the following:

F0 + F0 = 0, F1 + F0 = 1, F2 + F0 = 1, F3 + F3 = 22, F4 + F1 = 22,

F4 + F2 = 22, F5 + F4 = 23, F6 + F0 = 23, F6 + F1 = 32, F6 + F2 = 32,

F6 + F6 = 24 = 42, F7 + F4 = 24 = 42, F9 + F3 = 62, F11 + F10 = 122,

F12 + F0 = 122, F16 + F7 = 103, F17 + F4 = 402, F36 + F12 = 38642.

Fn − Fn = 0, F1 − F0 = 1, F2 − F0 = 1, F2 − F1 = 0, F3 − F1 = 1,

F3 − F2 = 1, F4 − F3 = 1, F5 − F1 = 22, F5 − F2 = 22, F6 − F0 = 23,

F7 − F5 = 23, F8 − F5 = 24 = 42, F8 − F7 = 23, F9 − F3 = 25,

F11 − F6 = 34 = 92, F12 − F0 = 122, F13 − F6 = 152, F13 − F11 = 122,

F14 − F9 = 73, F14 − F13 = 122, F15 − F9 = 242.

We conjecture that the above lists all of the solutions to equation (2) with the restriction 
n ≥ m ≥ 0.
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