
Journal of Number Theory 224 (2021) 323–367
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

Computational Section

Steinberg homology, modular forms, and real 
quadratic fields

Avner Ash a, Dan Yasaki b,∗

a Boston College, Chestnut Hill, MA 02467, United States of America
b UNCG, Greensboro, NC 27412, United States of America

a r t i c l e i n f o a b s t r a c t

Article history:
Received 2 June 2020
Accepted 15 December 2020
Available online 15 January 2021
Communicated by L. Smajlovic

MSC:
primary 20J06
secondary 11F67, 11F75

Keywords:
Arithmetic homology
Steinberg representation
Real quadratic field
General linear group
Arithmetic group
Modular form

We compare the homology of a congruence subgroup Γ of 
GL2(Z) with coefficients in the Steinberg modules over Q
and over E, where E is a real quadratic field. If R is any 
commutative base ring, the last connecting homomorphism 
ψΓ,E in the long exact sequence of homology stemming from 
this comparison has image in H0(Γ, St(Q2; R)) generated by 
classes zβ indexed by β ∈ E \Q. We investigate this image.
When R = C, H0(Γ, St(Q2; C)) is isomorphic to a space of 
classical modular forms of weight 2, and the image lies inside 
the cuspidal part. In this case, zβ is closely related to periods 
of modular forms over the geodesic in the upper half plane 
from β to its conjugate β′. Assuming GRH we prove that the 
image of ψΓ,E equals the entire cuspidal part.
When R = Z, we have an integral version of the situation. 
We define the cuspidal part of the Steinberg homology, 
Hcusp

0 (Γ, St(Q2; Z)). Assuming GRH we prove that for 
any congruence subgroup, ψΓ,E always has finite index in 
Hcusp

0 (Γ, St(Q2; Z)), and if Γ = Γ1(N)± or Γ1(N), then 
the image is all of Hcusp

0 (Γ, St(Q2; Z)). If Γ = Γ0(N)± or 
Γ0(N), we prove (still assuming GRH) an upper bound for 
the size of Hcusp

0 (Γ, St(Q2; Z))/ Im(ψΓ,E). We conjecture that 
the results in this paragraph are true unconditionally.
We also report on extensive computations of the image of ψΓ,E

that we made for Γ = Γ0(N)± and Γ = Γ0(N). Based on these 
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computations, we believe that the image of ψΓ,E is not all of 
Hcusp

0 (Γ, St(Q2; Z)) for these groups, for general N .
© 2021 Elsevier Inc. All rights reserved.

1. Introduction

In this paper, we explore a homological version of the classical concept of a toral period 
for a modular cusp form. Let E be a real quadratic field and Γ a congruence subgroup 
of GL2(Z), which acts on E via fractional linear transformations. Given β ∈ E \Q, the 
stabilizer Γβ modulo ±I is a cyclic group. Let γβ ∈ Γβ be a generator (modulo ±I). If 
f(z) is a holomorphic modular form of weight 2 for Γ, the “β-toral period” of f(z) is the 
integral

γβτ∫
τ

f(z) dz,

where τ is any point in the upper half plane. It is independent of the choice of τ .
We define a homological version of these periods over any commutative ground ring 

R, in terms of the homology of Γ with coefficients in the Steinberg module. It is this 
version that is the main object of the computations and theorems of this paper. When 
R = C we prove that under the Generalized Riemann Hypothesis (GRH) the β-toral 
cycles generate the relevant homology group – see Section 12. This result does not seem 
to be known unconditionally, nor have we seen it conjectured in the literature. (We use 
the term “GRH” to mean the generalized Riemann hypothesis for those number fields 
needed in Lenstra [12, Theorem 3.1].)

For general R, we prove a number of theorems, detailed below, about the group 
generated by these cycles in homology. We also performed extensive computations for 
particular groups when R = Z, which are reported upon in the last portion of this paper.

Given any field K, let St(K2; R) denote the Steinberg module for the vector space K2

with coefficients in a ring R. (In Section 2 we review the definition and basic facts about 
Steinberg modules.) When K = Q, the Steinberg module is isomorphic to the module 
of modular symbols [v, w], where v, w are points in the projective line over Q.

Following [3], we have a long exact sequence of GL2(Q)-modules

0 → St(Q2;R) → St(E2;R) → C → 0. (1)

In [3] it is proven that as an RGL2(Q)-module, C is isomorphic to a direct sum of free 
R-modules of rank 1 indexed by the elements of β ∈ E \ Q, where GL2(Q) acts via 
fractional linear transformations on E \Q.

This short exact sequence gives rise to a long exact sequence of the homology groups 
of Γ with coefficients in St(E2; R), St(Q2; R) and C. The main object of this paper is 
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the connecting homomorphism H1(Γ, C) → H0(Γ, St(Q2; R)). It is more convenient to 
work with its negative:

Definition 1.1. For any subgroup Γ ⊂ GL2(Q), let ψΓ,E = −∂, where ∂ : H1(Γ, C) →
H0(Γ, St(Q2; R)) is the connecting homomorphism described above. When the field E is 
understood, we will just write ψΓ.

We derive an explicit formula for ψΓ,E in terms of modular symbols (Theorem 3.1). 
We define the “cuspidal” part of the target, Hcusp

0 (Γ, St(Q2; R)) and prove that the image 
of ψΓ,E always lies in the cuspidal part. On the basis of our computational evidence for 
R = Z, presented in section 14, we claim it is very unlikely that the image of ψΓ,E is the 
whole of the cuspidal part in general. The question becomes to determine the image.

The study of the image of ψΓ,E naturally leads us to consider certain subgroups 
K̃(Γ, E) ⊂ K(Γ, E) ⊂ Γ. The first is the group generated by all the Γβ’s, as β ranges 
over E \ Q, and the second is generated by K̃(Γ, E) together with all the upper and 
lower triangular matrices in Γ.

The connection to modular forms arises as follows: If 6 is invertible in R and Γ
is an arithmetic group, then H0(Γ, St(Q2; R)) is isomorphic by Borel-Serre duality to 
H1(Γ, R). If R = C, H1(Γ, C) is isomorphic by the Eichler-Shimura theorem to a space 
of modular forms of weight two for Γ.

The rest of this introduction summarizes in further detail the contents of the paper. 
Define the following congruence subgroups.

Definition 1.2. Let N be a positive integer.

• Γ1(N)± is the subgroup of GL2(Z) consisting of matrices congruent to[
±1 ∗
0 ∗

]
(mod N).

• Γ1(N) is the subgroup of SL2(Z) consisting of matrices congruent to[
1 ∗
0 1

]
(mod N).

• Γ0(N)± is the subgroup of GL2(Z) consisting of matrices congruent to[
∗ ∗
0 ∗

]
(mod N).

• Γ0(N) = Γ0(N)± ∩ SL2(Z).

We performed computations to find the image of ψΓ,E (when R = Z) for Γ equal to 
Γ0(N)± and Γ0(N) for N ≤ 1000 and E = Q[

√
Δ] with Δ ≤ 50. We did not compute 
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. 
for Γ equal to Γ1(N)± and Γ1(N) because of the larger index of these groups in GL2(Z). 
Moreover, our theory shows that such computations would not be interesting, because 
for these groups we can prove (given GRH) that ψΓ,E maps onto Hcusp

0 (Γ, St(Q2; R)).
It should be noted that our computations are not definitive when they do not show 

that ψΓ,E maps onto Hcusp
0 (Γ, St(Q2; R)), because there is the possibility that compu-

tation with additional β’s would discover more elements in the image of ψΓ,E. We were 
unable to find an effective bound on the heights of β that would allow us to terminate 
the computations with perfect confidence. However, the computations usually stabilized 
quite rapidly as more β’s were processed. These computations helped us formulate our 
main theorems.

Section 2 gives basic facts about the Steinberg module and about modular symbols. 
Section 3 derives a formula for ψΓ,E in terms of modular symbols. Section 4 determines 
the stabilizers Γβ , and Section 6 gives detailed information about its elements.

Definition 5.2 defines the “cuspidal submodule” Hcusp
0 (Γ, St(Q2; R)) ⊂ H0(Γ, St(Q2; R))

This definition is consistent with the classical definition of cusp forms if R = C. We prove 
(Theorem 5.3) that the image of ψΓ,E lies in Hcusp

0 (Γ, St(Q2; R)). In Section 5, we col-
lect a number of useful results about H0(Γ, St(Q2; R)), Hcusp

0 (Γ, St(Q2; R)), and modular 
symbols.

Our calculations for R = Z suggest that the image of ψΓ,E always has finite in-
dex in Hcusp

0 (Γ, St(Q2; Z)). We prove Theorem 9.3, which says that (assuming GRH) 
if Γ is a subgroup of GL2(Q) that contains some principle congruence subgroup, then 
Hcusp

0 (Γ, St(Q2; R)) modulo the image of ψΓ,E is a finitely-generated torsion R-module.
When Γ is one of the congruence subgroups defined above we have more precise results, 

again assuming GRH:

• For Γ = Γ1(N)± or Γ1(N), ψΓ,E is surjective.
• For Γ = Γ0(N)±, define the subgroup AE(N) (Definition 10.4) of ((Z/NZ)×/{±1}). 

Then there is a surjective map π from ((Z/NZ)×/{±1})/AE(N) onto the cokernel 
of ψΓ,E .

• For Γ = Γ0(N) define the subgroup AE(N)∗ (Definition 10.4) of (Z/NZ)×. Then 
there is a surjective map π∗ from (Z/NZ)×/AE(N)∗ onto the cokernel of ψΓ,E.

An essential ingredient in our work is a beautiful theorem of Lenstra’s, which is the 
source of our need to assume GRH. Our application of Lenstra’s theorem is made in 
Section 7. Then we prove the results in the bullets in Sections 8, 9 and 10.

The key to studying the image of ψΓ,E and proving the bulleted assertions above is the 
group K(Γ, E), defined earlier in this introduction. We prove Lemma 8.2 which asserts 
that for any Γ, the image of ψΓ,E is the R-span of Ψ(g) := [e, ge]Γ as g runs through 
K(Γ, E) and e = (1 : 0). Therefore, the problem of finding the image of ψΓ,E separates 
into (1) determining K(Γ, E) and (2) studying the map Ψ: Γ → Hcusp

0 (Γ, St(Q2; R)). A 
central result about Ψ is given in Theorem 5.9.
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As for K(Γ, E), in Theorem 8.4 we show using Dirichlet’s theorem on primes in an 
arithmetic progression and Lenstra’s theorem that (assuming GRH) for any N and any 
E that K(Γ1(N)±, E) = Γ1(N)± and K(Γ1(N), E) = Γ1(N). These group theoretic 
assertions are of independent interest, and it would be nice to obtain unconditional 
proofs of them.

Perhaps a more natural group to study would be K̃(Γ, E), also defined above. Our 
proof of Theorem 8.4 requires a strong use of the triangular matrices and we have been 
unable to prove anything significant about K̃(Γ, E). Nor do we know of any general 
results in the literature about either K̃(Γ, E) or K(Γ, E).

In Section 12 we discuss the case R = C. We indicate how the theory of toral periods 
of cuspforms possibly might be employed to prove some of our theorems unconditionally 
for R = C, but we point out that in the current state of the field, not enough is known in 
detail about the formulas for the periods nor about non-vanishing of L-functions for this 
approach to bear fruit at present. Assuming GRH, we do show in Theorem 12.7 that the 
E-toral cycles generate the homology of the compact modular curve. We do not know of 
any proof of this fact in the literature.

We describe and justify our computational methods in Section 13. In particular, we 
give an isomorphism between the cuspidal Voronoi homology of the upper half plane 
modulo Γ and Hcusp

0 (Γ, St(Q2; Z)). This is probably known to the experts, but we could 
not find it stated in the literature.

We summarize our computational results in Section 14. We computed for levels N ≤
1000 and E = Q[

√
Δ] for Δ ≤ 50. Based on these results, we conjecture in Section 11

that the bulleted assertions above are true unconditionally. We give details about the 
computation, including how the β’s are selected and how long we spend computing each 
image.

We find in our computations that the torsion in Hcusp
0 is always either trivial, or iso-

morphic to Z/3Z or (Z/3Z)2 for Γ±
0 (N). For Γ0(N), the torsion in Hcusp

0 is always either 
trivial, or isomorphic to Z/3Z or (Z/3Z)3. Perhaps the torsion could be determined by 
careful study of the long exact sequence (4) in the proof of Theorem 5.5.

Thanks to B. Gross, A. Popa, D. Rohrlich, G. Stevens and A. Venkatesh for helpful 
suggestions concerning the material in Section 12. Special thanks to K. Conrad for telling 
us about Lenstra’s paper. Thanks also to R. Gross, P. Gunnells and D. Kelmer for helpful 
comments.

2. Preliminaries on the Steinberg module and Steinberg homology

For more information on the Steinberg module, see the introduction to [2] and its 
references.

Let K be a field, R a ring, and n ≥ 2 an integer. Let Kn be the vector space of column 
vectors. By definition, the Steinberg module St(Kn; R) is the reduced homology of the 
Tits building:
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St(Kn;R) = H̃n−2(T (Kn), R).

The Tits building T (Kn) is the simplicial complex with one vertex for each subvector 
space V ⊂ Kn with 0 
= V 
= Kn, where the vertices V1, . . . , Vk span a simplex if and 
only if they can be arranged into a flag. The Steinberg module is a left-module for the 
group ring RGLn(K). When R = Z we sometimes write St(Kn) instead of St(Kn; Z). 
The Steinberg module St(Kn) is a free Z-module and St(Kn; R) = St(Kn) ⊗Z R.

Definition 2.1. Let v, w ∈ P 1(K). The modular symbol [v, w] denotes the element in 
St(K2; R) which is the fundamental class of the 0-sphere which has vertices v and w, 
oriented so that its boundary is w − v.

The action of an element g ∈ GL2(K) on the symbol [v, w] for v, w ∈ K2 is given by

g[v, w] = [gv, gw],

where g acts on the projective line by linear fractional transformations.
We recall some standard facts about modular symbols and the Steinberg module. 

The first two parts of the following theorem follow from [1, Theorem 5]. Part (iii) follows 
easily from (i) and (ii)(b). Compare also Cremona [8, Proposition 2.14] for K = Q and 
[11, Proposition 5] for K a number field.

Theorem 2.2. Let K be any field.

(i) As abelian group, St(K2) is generated by [v, w] as v, w range over all elements of 
P 1(K).

(ii) The following relations hold:
(a) [v, w] = −[w, v] and in particular [v, v] = 0 for all v, w ∈ P 1(K);
(b) [v, w] = [v, x] + [x, w] for all v, w, x ∈ P 1(K);

(iii) Fix any element y ∈ P 1(K). Then St(K2) has as a free Z-basis the symbols [y, v]
where v runs over all v 
= y ∈ P 1(K).

There are generalizations of all these properties for St(Kn).
We need the following theorem. It follows immediately from a theorem of Bykovskii 

[6, Theorem 1], who proved a similar result for St(Qn) for all n ≥ 2. Also, see [7] for a 
new treatment of this theorem and related results for other fields than Q.

Theorem 2.3. Let e1, e2 be the standard basis of Z2. St(Q2) is isomorphic to the quotient 
of the free abelian group generated by symbols 〈a, b〉 for all Z-bases {a, b} of Z2 modulo 
the following relations:

(i) 〈a, b〉 = −〈b, a〉 and 〈−a, b〉 = 〈a, b〉 for all Z-bases {a, b} of Z2;
(ii) 〈a, b〉 + 〈−b, a + b〉 + 〈a + b, −a〉 = 0 for all Z-bases {a, b} of Z2.
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The isomorphism is given by 〈a, b〉 �→ [a′, b′] where x′ denotes the line through 0 and x.

Remark 2.4. Bykovskii [6] states this theorem in a slightly different form. However, us-
ing the relations in part (i), it is easy to see that what we wrote is equivalent to his 
theorem when n = 2. Our formulation is better suited to the way we actually carry out 
computations with modular symbols, as detailed in Section 13.

Definition 2.5. If Γ is any subgroup of GLn(K), we define the Steinberg homology of Γ
over R to be H∗(Γ, St(Kn; R)).

Definition 2.6. If Γ is any subgroup of GL2(K), we set [v, w]Γ to be the image of [v, w]
in the coinvariants H0(Γ, St(K2; R)).

In the notation [v, w] and [v, w]Γ we suppress mention of R. The base ring R will 
always be clear from the context.

The following corollary follows immediately from Theorem 2.3. We need it in Sec-
tion 13.

Corollary 2.7. The Steinberg homology H0(Γ, St(K2; R)) is isomorphic to the R-module 
in Theorem 2.3 modulo the further relations

[v, w]Γ = [γv, γw]Γ for any γ ∈ Γ.

From [5, Proposition VIII.8.2], it follows that St(Qn) ⊗ det is the dualizing module 
for arithmetic subgroups of GLn(Z) if n is even, and if n is odd, then St(Qn) is the 
dualizing module. Therefore, from the exact sequence [5, (3.6) p. 280] we obtain Brown’s 
generalization of the Borel-Serre duality theorem:

Theorem 2.8. Let Γ be a subgroup of finite index in GL2(Z), and let R be a ring on which 
6 acts invertibly. Then there is a natural isomorphism for i = 0, 1:

λ : Hi(Γ,St(Q2;R)) → H1−i(Γ, R).

In particular, if R = C then we can compose λ with the Eichler-Shimura isomorphism 
to obtain an isomorphism between H0(Γ, St(Q2; C)) and a space of modular forms of 
weight 2 for Γ. We do this in Section 12.

3. The connecting map ψ

In this section, G can be any subgroup of GL2(Q), and R any ring. Until further 
notice, we fix the real quadratic field E and write ψG instead of ψG,E .

Let e = (1 : 0) ∈ P 1(Q). We denote the vector in Q2 with components (1, 0) by e1.
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From item (iii) of Theorem 2.2, for any extension K/Q, the Steinberg module 
St(K2; R) has the R-basis [e, α] where α runs over P 1(K) \ {e}.

Refer to the exact sequence (1) in Section 1 for the definition of the GL2(Q)-module 
C and to Definition 1.1 for the map ψG. From [3, Theorem 5.1], we know that C is a 
free R-module with R-basis [e, b]′, where b ∈ P 1(E) \P 1(Q) and [x, y]′ means the image 
of [x, y] in C.

Let Rb denote the R-span of [e, b]′. Then

C �
⊕

b∈P1(E)\P1(Q)

Rb.

This is an isomorphism of GL2(Q)-modules where on the right hand side, g ∈ GL2(Q)
takes the element n in Rb to the element n in Rgb. (As usual, gb denotes the action of g
on P 1(E) \ P 1(Q) via linear fractional transformations.)

Therefore we may view ψG as a map

ψG : H1(G,
⊕

b∈P1(E)\P1(Q)

Rb) → H0(G,St(Q2;R)).

By Shapiro’s lemma,

H1(G,
⊕

b∈P1(E)\P1(Q)

Rb) �
⊕
b∈B

H1(Gb, R),

where Gb is the stabilizer in G of b, and B is a set of representatives of the G-orbits of 
P 1(E) \ P 1(Q). (Compare [3, Section 5].)

We use the bar resolution to compute the homology of a group Δ with coefficients in 
an RΔ-module M . Use the notation on page 19 of [5]. Then a 1-chain for the homology of 
Δ with coefficients in M is of the form z =

∑
[δ] ⊗Rmδ ∈ (RΔ)2⊗RΔM � RΔ ⊗RM . The 

boundary map is ∂([δ] ⊗Rm) = δm −m ∈ RΔ ⊗RΔ M � M . Let R be the R-submodule 
of M spanned by δm − m as m ranges over M . Then H0(Δ, M) = M/R = MΔ, and 
H1(Δ, M) equals {z |

∑
(δmδ −mδ) = 0} modulo 1-boundaries.

Now set M = R, the trivial module. Fix b ∈ B, and suppose z =
∑

[γ] ⊗ mγ is a 
1-cycle for Gb with coefficients in Rb. Here, γ runs through Gb, mγ = rγ [e, xγ ]′ ∈ Rb

with rγ ∈ R, xγ ∈ P 1(E) \ P 1(Q), 
∑

rγ(γmγ −mγ) = 0 and rγ = 0 for all but finitely 
many γ.

Note that

γ[e, xγ ] = [γe, γxγ ] = [e, γxγ ] + [γe, e]

so that

γmγ = rγγ[e, xγ ]′ = rγ [e, γxγ ]′.
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Since Gb is abelian (see Section 4), there is an isomorphism

Gb ⊗Z R → H1(Gb, Rb)

that sends γ⊗ 1 to [γ] ⊗R [e, b]′, for any γ ∈ Gb. (This makes sense: γ⊗R [e, b]′ is a cycle 
because γb = b.)

Theorem 3.1. Let b ∈ P 1(E) \P 1(Q), and let G be a subgroup of GL2(Q). Let Gb be the 
stabilizer of b in G. Then for any γ ∈ Gb,

ψG([γ] ⊗R [e, b]′) = [e, γe]G.

Proof. Compute the boundary map coming from the short exact sequence (1) as follows: 
Lift [γ] ⊗R [e, b]′ to a 1-chain for G with coefficients in St(E2; R)). In fact we can lift it 
to [γ] ⊗R [e, b]. Now take the boundary in the chain complex, obtaining

(γ − 1)[e, b] = [γe, b] − [e, b] = [e, b] + [γe, e] − [e, b] = [γe, e]

and view the result modulo 1-boundaries to obtain [γe, e]G ∈ H0(G, St(Q2; R)).
Since ψG is the negative of the boundary map, this proves the theorem. �
From Section 4, we see that if G = Γ is a congruence subgroup of GL2(Z) then 

Γb/{±I} is cyclic. It is clear from the formula in the theorem that as a function of 
γ, ψΓ([γ] ⊗R [e, b]′) factors through Γb/{±I}. Let γb be an element of Γb which gener-
ates Γb/{±I}. Then the image of ψΓ restricted to H1(Γb, Rb) is generated over R by 
[e, γbe]Γ. (Note that [e, γk

b e]Γ = [e, γbe]Γ + [γbe, γ2
b e]Γ + · · · + [γk−1

b e, γk
b e]Γ] = k[e, γbe]Γ

and [e, γ−1
b e]Γ = [γbe, e]Γ = −[e, γbe]Γ.) Therefore:

Corollary 3.2. Let Γ be a congruence subgroup of GL2(Z). Then the image of ψΓ is the 
R-span of the symbols [e, γbe]Γ, where b runs over P 1(E) \ P 1(Q).

The image of ψG depends only on a certain subgroup of G. The formula for ψG given 
in Theorem 3.1 suggests we make the following definition.

Definition 3.3. Let K ⊂ L ⊂ GL2(Q) be subgroups, and let ΨK,L : K → H0(L, St(Q2; R))
be given by k �→ [e, ke]L.

Lemma 3.4. Let K ⊂ L ⊂ GL2(Q) be subgroups. Then ΨK,L is a group homomorphism.

Proof. For any x, y ∈ K,

ΨK,L(xy) = [e, xye]L = [e, xe]L + [xe, xye]L = [e, xe]L + [e, ye]L
= ΨK,L(x) + ΨK,L(y). �
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Lemma 3.5. Let S be a subset of G, and let 〈S〉 be the subgroup of G generated by S. 
Then the R-spans in H0(G, St(Q2; R)) of {[e, se]G | s ∈ S} and {[e, te]G | t ∈ 〈S〉} are 
the same.

Proof. The Z-span of {[e, te]G | t ∈ 〈S〉} is the same as the image of Ψ〈S〉,G. By 
Lemma 3.4, this is the same as the Z-span of {[e, se]G | s ∈ S}. Similarly, the R-spans 
are also the same. �
Corollary 3.6. The image of ψG is the span of the symbols [e, ge]G, where g runs over 
the group K̃(G) generated by the stabilizers of b in G, where b runs over P 1(E) \P 1(Q).

4. The stabilizers Γβ

Let (β : 1) ∈ P 1(E) \ P 1(Q). Define the homomorphism ρβ : E× → GL2(Q) by

ρβ(x)
[
β
1

]
= x

[
β
1

]
.

Conversely, suppose g ∈ GL2(Q) stabilizes (β : 1) ∈ P 1(E) \P 1(Q). Then there exists 
x(g) ∈ E× such that

g

[
β
1

]
= x(g)

[
β
1

]
.

Clearly the map g �→ x(g) is an injective homomorphism from the stabilizer of (β : 1)
in GL2(Q) to E×. Therefore, this stabilizer is abelian. We can say more about the 
intersection of this stabilizer with a subgroup of GL2(Z):

Theorem 4.1. Let ε be the fundamental unit of E. Let (β : 1) ∈ P 1(E) \ P 1(Q), and let 
Γ ⊂ GL2(Z) be a congruence subgroup. Let Γβ be the stabilizer of β in Γ. The quotient 
Γβ/{±I} is the infinite cyclic group generated by the matrix γβ (modulo ±I) such that

γβ

[
β
1

]
= εβ

[
β
1

]
,

where εβ is the smallest positive power of ε such that ρβ(εβ) ∈ Γ.

Proof. Consider

γ =
[
A B
C D

]
∈ GL2(Z).

Then γ stabilizes (β : 1) if and only if there exists x ∈ E such that

γ

[
β
1

]
= x

[
β
1

]
.
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Since (β, 1) is a Q-basis of E, the minimal polynomial of x is

x2 − Tr(γ)x + det(γ) = x2 − (A + D)x + (±1) = 0.

So x is a unit in the ring of integers OE, and modulo ±1 it is equal to a power of ε. The 
result is now clear, except for showing that some power εk satisfies ρβ(εk) ∈ Γ.

Let ρ = ρβ(ε). We must show ρk ∈ Γ for some k. Write β = σ/τ for σ, τ ∈ O, the ring 
of integers in E. We have

ρ

[
σ
τ

]
= ε

[
σ
τ

]
.

Let L be the Z-lattice Zσ + Zτ . It is in O and has Z-rank 2 (because β /∈ E) and 
therefore there exists some rational integer M > 0 such that O ⊃ L ⊃ MO. Then ε acts 
by multiplication on the finite set O/MO and therefore for some m > 0, εmσ ≡ σ and 
εmτ ≡ τ modulo MO. Therefore (εm − 1)σ ∈ MO ⊂ L and (εm − 1)τ ∈ MO ⊂ L. In 
other words

(ρm − I)
[
σ
τ

]
= (εm − 1)

[
σ
τ

]
= W

[
σ
τ

]
for some W ∈ M2(Z). It follows that ρm − I = W ∈ M2(Z) and therefore ρm ∈ M2(Z). 
Because det ρm = ±1, we obtain that ρm ∈ GL2(Z). Then some further power of ρm is 
in Γ because Γ contains Γ(N) for some N and GL2(Z)/Γ(N) is finite. �
5. Steinberg homology and cuspidal Steinberg homology

Definition 5.1. For a ring R, let D(R) denote the group of divisors on P 1(Q) with 
coefficients in R. For v ∈ P 1(Q), let (v) denote the corresponding cusp. Define the 
GL2(Q)-module homomorphism ∂ : St(Q2; R) → D(R) by ∂([u, v]) = (v) − (u). When 
R is clear from the context, we may write D instead of D(R).

One checks easily that ∂ is well defined, using Theorem 2.2.
Now fix a ring R. For any G ⊂ GL2(Q), ∂ induces a map

∂ : H0(G,St(Q2;R)) = St(Q2;R)G → H0(G,D) = DG.

Definition 5.2. The cuspial homology Hcusp
0 (G, St(Q2; R)) is the kernel of ∂.

Theorem 5.3. Let G be a subgroup of GL2(Q).

(i) The image of ψG lies in Hcusp
0 (G, St(Q2; R)).

(ii) The image of ψG does not depend on the choice of a base point e. If e and f are 
any two points in P 1(Q) and γ ∈ G, then [e, γe]G = [f, γf ]G.
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Proof. (i) For any γ ∈ G, ∂[e, γe]G = γe − e = 0 in DG.
(ii) For any γ ∈ G,

[f, γf ]G = [f, e]G + [e, γe]G + [γe, γf ]G = [e, γe]G. �
Lemma 5.4. Let G be a subgroup of GL2(Q), and let C be a set of representatives of the 
G-orbits in P 1(Q) containing e = (1 : 0). Let W be the span of the modular symbols of 
the form [e, c]G where c runs over C, and let V be the R-span of the modular symbols of 
the form [e, ge]G where g runs over G. Then

H0(G,St(Q2;R)) = Hcusp
0 (G,St(Q2;R)) ⊕W (2)

and

Hcusp
0 (G,St(Q2;R)) = V. (3)

Proof. It is clear that V is contained in Hcusp
0 (G, St(Q2; R)). Therefore to prove both (2)

and (3), it suffices to show that H0(G, St(Q2; R)) = V + W and Hcusp
0 (G, St(Q2; R)) ∩

W = 0.
Now H0(G, St(Q2; R)) is generated over R by symbols of the form [e, b]G, where b

runs over P 1(Q) \ {e}. Choose any b and show that [e, b]G is in V + W .
Given b, there is an h in G such that b = hc, for some c in C. Then

[e, he]G = [e, b]G + [hc, he]G = [e, b]G + [c, e]G.

So [e, b]G = [e, he]G + [e, c]G is in V + W . Thus H0(G, St(Q2; R)) = V + W .
Now suppose w =

∑
c∈C rc[e, c] ∈ Hcusp

0 (G, St(Q2; R)) ∩ W , for some rc ∈ R. Since 
[e, e]G = 0, without loss of generality re = 0. Then

0 = ∂w =
∑

c∈C\{e}
rc((c)G − (e)G),

where (x)G denotes the cusp x modulo G. Since C consists of G-inequivalent cusps, rc = 0
for all c and w = 0. �

Now let Γ be a subgroup of finite index in GL2(Z). Let Y denote the upper half plane.

Theorem 5.5. Let R be a PID, and let Γ be a subgroup of finite index in GL2(Z).

(i) H0(Γ, St(Q2; R)) and Hcusp
0 (Γ, St(Q2; R)) are finitely generated R-modules.

(ii) The R-torsion in H0(Γ, St(Q2; R)) and Hcusp
0 (Γ, St(Q2; R)) is annihilated by some 

power of 6.
(iii) If 6 is invertible in R, then H0(Γ, St(Q2; R)) and Hcusp

0 (Γ, St(Q2; R)) are free R-
modules of finite rank.
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Proof. Since Y (Γ) = Y/Γ has the homotopy type of a finite graph, H1(Y (Γ), R) is a free 
R-module of finite rank. The stabilizers of Γ on Y are finite groups of orders dividing 6. 
It follows from the spectral sequence [5, (7.10) p. 174] that the R-torsion in H1(Γ, R) is 
annihilated by 6.

From the same spectral sequence, if 6 is invertible in R, then H1(Y (Γ), R) = H1(Γ, R)
so by Theorem 2.8, H0(Γ, St(Q2; R)) and therefore also Hcusp

0 (Γ, St(Q2; R)) are free R-
modules of finite rank. This proves the third statement.

From [5, (3.6) p. 280], we have an exact sequence

H0(Γ, R) → Ĥ0(Γ, R) → H0(Γ,St(Q2;R)) → H1(Γ, R), (4)

where Ĥ denotes Farrell cohomology. The cohomology of Γ with trivial coefficients R is 
a finitely generated R-module in each degree, and so is the Farrell cohomology. (For the 
latter, use for example [5, Exercise (5)(b) p. 281.]) This implies the first statement.

By [5, Exercise (2) p. 280] and [5, Lemma IX.9.2], we see that Ĥ0(Γ, R) is annihilated 
by some power of 6. Together with the first paragraph of the proof, this implies the 
second statement. �

In particular, if R = Z, we have:

Corollary 5.6. The homology groups H0(Γ, St(Q2; Z)) and Hcusp
0 (Γ, St(Q2; Z)) are 

finitely generated Z-modules whose torsion modules are annihilated by a power of 6.

Remark 5.7. From Section 12, it follows that Hcusp
0 (Γ0(N), St(Q2; Z)) modulo torsion has 

rank 2g0(N) and Corollary 12.5 implies that Hcusp
0 (Γ0(N)±, St(Q2; Z)) modulo torsion 

has rank g0(N), where g0(N) is the genus of the modular curve X0(N). We observe these 
ranks in our computations, which gives a check on their correctness.

Recall Definition 3.3.

Lemma 5.8. Let K ⊂ GL2(Q) be a subgroup. Then the R-span of the image of ΨK,K :
K → Hcusp

0 (K, St(Q2; R)) is all of Hcusp
0 (K, St(Q2; R)).

Proof. This follows immediately from (3) of Lemma 5.4. �
Theorem 5.9. Let K ⊂ L ⊂ GL2(Q) be subgroups, and let K̂L denote the normal closure 
of K in L. Set Q = L/K̂L and let R[Im(ΨK,L)] denote the R-span of the image of ΨK,L. 
Then the quotient

X = Hcusp
0 (L,St(Q2;R))/R[Im(ΨK,L)]

is isomorphic as R-module to a quotient of Qab ⊗Z R.
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Proof. For brevity write ΨL,L = Ψ and for any subgroup A of L write ΨA = Ψ|A = ΨA,L. 
Then Ψ: L → Hcusp

0 (L, St(Q2; R)) is given by Ψ(g) = [e, ge]L. By Lemma 3.4, Ψ is a 
group homomorphism.

Consider the commutative diagram:

K

ΨK

K̂L

Ψ
K̂L

L

Ψ

Q

θ
Hcusp

0 (L,St(Q2;R))

π

X

By Lemma 5.8, the image of Ψ generates its target over R. Therefore the R-span of the 
image of π ◦ Ψ equals X.

The group K̂L is generated by elements of the form �k�−1 for � ∈ L and k ∈ K. 
Because the target of Ψ is abelian, Ψ(�k�−1) = Ψ(k). Thus the image of Ψ

K̂L
and the 

image of ΨK are the same.
Define the map θ as follows: Given any x̄ ∈ Q, let x be a lift of it to L. Set θ(x̄) =

π(Ψ(x)). Since (by the preceding paragraph) π ◦ Ψ
K̂L

= 0, this does not depend on the 
choice of x. Check that θ is a homomorphism: we may choose lifts so that x̄ȳ is lifted to 
xy. Then

θ(x̄ȳ) = (π ◦ Ψ)(xy) = (π ◦ Ψ)(x) + (π ◦ Ψ)(y) = θ(x̄) + θ(ȳ).

The homomorphism θ factors through Qab because the target is abelian. Because 
θ = π◦Ψ, the R-span of the image of θ is all of X. Therefore Z-module map θab : Qab → X

extends to an R-module map θab ⊗Z R : Qab ⊗Z R → X which is surjective. �
6. Unital matrices

To determine the image of ψΓ, we need to understand the group generated by the 
stabilizers Γβ (whose members we call “unital matrices”) and the triangular matrices in 
Γ. In this section we begin a detailed investigation of the unital matrices in Γ.

Fix a real quadratic field E = Q(
√

Δ) with Δ a squarefree positive integer and with 
fundamental unit ε. Let the ring of integers OE be generated over Z by 1 and ω. Let a 
superscript prime denote the Galois conjugate of an element in E.

Definition 6.1. Let β ∈ E \Q. We say that γ ∈ GL2(Z) is β-unital if γ(β : 1) = (β : 1). 
If γ is β-unital for some β ∈ E \Q, we say γ is unital.
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By Section 4, γ is β-unital if and only if there exists an integer k such that

γ

[
β
1

]
= ±εk

[
β
1

]
.

In this case, γ equals ±γk
β .

Lemma 6.2. Let γ1, γ2 and γ be β-unital, and let g ∈ GL2(Q). Then

(i) γ−1 and γ1γ2 are β-unital;
(ii) h = gγg−1 is β∗-unital, where g(β : 1) = (β∗ : 1).

Proof. The first statement follows immediately from Section 4. For the second statement, 
note that

h(β∗ : 1) = gγg−1g(β : 1) = gγ(β : 1) = g(β : 1) = (β∗ : 1). �
Clearly, h and g correspond to the same power of the fundamental unit ±εk.

Theorem 6.3. Let p be an odd prime number such that (p) = pp′ splits in E and a ∈ Z

prime to p such that a is congruent to some unit in O×
E modulo p. Then there exists 

β ∈ E \ Q depending only on p and Δ, and a β-unital matrix M(a) ∈ GL2(Z) of the 
form

M(a) =
[
a + ps ∗
pt ∗

]
.

Moreover, for λ = e + f
√

Δ ∈ O×
E such that λ ≡ a (mod p), we may find M(a) such 

that its determinant equals the norm of λ, t = 2f and a + ps = x0f + e for some integer 
x0, which is odd if both e and f are half-integers.

Proof. Let an unknown unital γ be

γ =
[
A B
C D

]
whose unknown β is

β = x + y
√

Δ

with x, y ∈ Q.
Fix λ ∈ O×

E such that λ ≡ a mod p. Write

λ = e + f
√

Δ
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with e, f ∈ Z, unless Δ ≡ 1 mod 4, in which case e, f may be a pair of half-integers.
We solve

γ

[
β
1

]
= λ

[
β
1

]
with the added constraint that p|C and A ≡ a mod p. Note that the determinant of γ
equals the norm of λ. After we solve this problem, we will take M(a) = γ.

This equation is equivalent to[
β β′

1 1

] [
λ 0
0 λ′

] [
β β′

1 1

]−1

=
[
A B
C D

]
or

1
β − β′

[
λβ − λ′β′ −(λ− λ′)N(β)
λ− λ′ −λβ′ + λ′β

]
=

[
A B
C D

]
where N denotes the norm from E to Q.

The left-hand side is in GL2(Q) and has determinant ±1. We need to choose β so 
that A, B, C, D are integers, p|C and A ≡ a mod p.

Note that if z = s + t
√

Δ then z′ = s − t
√

Δ and z − z′ = 2t
√

Δ and Nz = s2 − t2Δ. 
Thus we have

β − β′ = 2y
√

Δ, λ− λ′ = 2f
√

Δ, N(β) = x2 − y2Δ

and

βλ = (ex + fyΔ) + (xf + ey)
√

Δ, βλ− β′λ′ = 2(xf + ey)
√

Δ

and

βλ′ = (ex− fyΔ) + (−xf + ey)
√

Δ, βλ′ − β′λ = 2(−xf + ey)
√

Δ.

Our requirements, expressed in terms of x, y, e, f become

A = βλ− β′λ′

β − β′ = xf + ey

y
= xf

y
+ e ∈ Z and A ≡ a mod p;

C = λ− λ′

β − β′ = f

y
∈ Z and C ≡ 0 mod p;

B = −N(β)C = −(x2 − y2Δ)f
y
∈ Z; and

D = βλ′ − β′λ

β − β′ = −xf + ey

y
∈ Z.
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We have fixed a unit λ = e + f
√

Δ ∈ O×
E such that λ − a ∈ p. Choose y = 1/(2p), 

x = x0/(2p) where x0 ∈ Z satisfies 
√

Δ − x0 ∈ p. Such x0 exists because p is split in E. 
We can always add p to x0, so without loss of generality, we may assume that x0 has 
the same parity as Δ.

Now C = 2pf is an integer and divisible by p.
Next B = −x2

0−Δ
2p f . This is an integer because 1) x0 and Δ have the same parity; 2) 

p divides x2
0 −Δ; and 3) if f is a half-integer, Δ ≡ 1 (mod 4), x0 is odd, and so 4 divides 

x2
0 − Δ.
Now we come to A = x0f + e. This is an integer because e and f are either both 

integers or both half integers and in the latter case Δ is odd and therefore x0 is odd. 
We need A to be congruent to a modulo p. We have chosen λ = e + f

√
Δ such that 

λ −a ∈ p. Now 
√

Δ ≡ x0 mod p and λ ≡ a mod p. Therefore e +x0f −a ≡ 0 mod p. But 
e +x0f − a is an integer, and it is contained in p. Since p ∩Z = (p), A is congruent to a.

Then we see that D = −x0f + e is also an integer, because D + A = 2e ∈ Z.
We have found a unital matrix M(a) of the form[

a + ps B
pt D

]
for some integers s and t. Note that pt = C = p(2f) and A = x0f + e. Its determinant 
is the norm of λ.

To see that β is independent of a, notice that x and y depend only on p and Δ. �
Definition 6.4. Given a positive integer M , let U±

M denote the set of units λ ∈ O×
E which 

are congruent to ±1 modulo M . That is to say, λ ∈ ±1 + MOE .

Definition 6.5. Say that γ ∈ GL2(Q) is triangular if

γ =
[
±1 0
∗ ±1

]
or

[
±1 ∗
0 ±1

]
.

Definition 6.6. For any subgroup Γ of GL2(Q), let K(Γ, E) be the group generated by 
all unital matrices in Γ and all triangular matrices in Γ. If E is understood, we just write 
K(Γ).

Theorem 6.7. Let N be a positive integer, and let p be an odd prime number not divid-
ing N and such that (p) = pp′ splits in E and the reduction of U±

4N modulo p equals 
(OE/p)× � (Z/pZ)×. Let m ∈ Z be prime to 2p and such that m ≡ ±1 (mod N). Then 
there exists MN (m, p) in K(Γ1(N)±) such that

MN (m, p) =
[
m b
pN d

]
for some b, d ∈ Z.
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Proof. Choose a unit λ ∈ U±
4N congruent to m modulo p. The norm of λ is congruent to 

1 modulo 4 and therefore equals 1. Both λ and m are congruent to ±1 modulo NOE . 
First, assume that λ ≡ m mod NOE . Since p and N are relatively prime, we have 
λ ≡ m mod Np.

By Theorem 6.3, there exists a unital matrix

M =
[
m + ps B
p(2f) D

]
∈ GL2(Z),

where λ = e + f
√

Δ and m + ps = x0f + e ∈ Z for some x0 ∈ Z. Furthermore, the 
determinant of M equals the norm of λ, so that det(M) = 1.

Then λ ∈ U±
2N implies that (e − u) + f

√
Δ = 2N(e′ + f ′√Δ) for some u ∈ {1, −1}

and some e′, f ′ either both rational integers or both half rational integers. We see that 
e − u and f are in Z and divisible by N . Also, λ ≡ m ≡ u mod N .

Now ps = x0f +(e −m) ∈ Z and m ≡ u mod N . So N divides both e −m and f , and 
therefore N also divides ps. Since p and N are relatively prime, N | s.

Conjugate M by diag(1, N/(2f)) on the left. We obtain, by Lemma 6.2, a unital 
matrix

M ′ =
[
m + ps B′

pN D

]
∈ GL2(Z).

Premultiply M ′ by the triangular matrix[
1 −s/N
0 1

]
∈ SL2(Z).

We obtain a matrix in K(Γ1(N±)):

M∗
N (m, p) =

[
m b
pN d

]
.

We are now finished in the case, λ ≡ m mod N , taking MN (m, p) = M∗
N (m, p). On the 

other hand, if λ ≡ −m mod N , take MN (m, p) = −sM∗
N (−m, p)s, where s = diag(1, −1). 

(Note that s and −I are triangular and in Γ1(N)±.) �
In our initial computations, we found that for β ∈ OE , the image of ψΓ on γβ always 

vanished, when Γ = Γ0(N)±. In the next theorem, we prove that this must be the case. 
However, when Γ = Γ0(N), there are many examples where ψΓ(γβ) 
= 0. For instance 
for N = 11, if E = Q(

√
2) and β =

√
2, or if E = Q(

√
5) and β = (1 +

√
5)/2, then 

ψΓ0(N),E(γβ) 
= 0.

Theorem 6.8. Let Γ = Γ0(N)±, and let β ∈ E be integral and R = Z. Then ψΓ(γβ) = 0.
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Proof. Let y be in OE \ Z and g be an element in GL2(Z) such that

g

[
y
1

]
= η

[
y
1

]
for some unit η ∈ O×

E .
Suppose

g =
[
a b
c d

]
∈ Γ±

0 (N).

Then (ay + b)/(cy + d) = y. It follows that ay + b = cy2 + dy, and so

y2 + ((d− a)/c)y − b/c = 0.

This must be the minimal polynomial for y, and since y is integral, a ≡ d (mod c).
Now we show [e, ge]Γ = 0. It will be clearer here to write a modular symbol [a1, a2]

as a 2 × 2 matrix, where the i-th column is a vector in Q2 representing the point ai in 
projective space. First note that

[e, ge]Γ = [g−1e, e]Γ = −[e, g−1e]Γ.

Next, since g−1 equals ± 
[
d −b
−c a

]
, we have

[
1 a
0 c

]
Γ

= −
[
1 d
0 −c

]
Γ

= −
[
1 −d
0 c

]
Γ

= −
[
1 d
0 c

]
Γ
,

where the last step uses diag(1, −1) ∈ Γ. But a = d + kc for some integer k, so we can 

multiply the last modular symbol by 
[
1 k
0 1

]
without changing its value. We obtain that [

1 a
0 c

]
Γ

is equal to minus itself and therefore equals 0. �

7. Application of Lenstra’s theorem

In this section we use a theorem of Lenstra [12, p. 203] to prove a result we need in 
the rest of the paper. First we recall Lenstra’s theorem.

Lenstra’s notation: Fix a prime number p. Let K be a global field, F a finite Galois 
extension of K, a subset C ⊂ Gal(F/K) which is a union of conjugacy classes, a finitely 
generated subgroup W ⊂ K× of rank r ≥ 1 modulo its torsion subgroup, and an integer 
k > 0 which is relatively prime to p. If t is an automorphism of a field A and B is a 
subfield of A stable under t, then t|B denotes the restriction of t to B. Let ( , ) denote 
the Artin symbol. For any positive integer a, ζa denotes a primitive a-th root of unity.
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Let K̄p denote the ring of integers of K modulo a prime p of K. For any prime � 
= p, 
q(�) equals the smallest power of � not dividing k and L� = K(ζq(�), W 1/q(�)).

Definition 7.1. M is the set of primes p of K satisfying the following conditions:

(i) (p, F/K) ⊂ C,
(ii) ordp(w) = 0 for all w ∈ W ,
(iii) if ψ : W → K̄×

p is the natural map, then the index of ψ(W ) in K×
p divides k.

Lenstra’s theorem (4.6) (slightly paraphrased):

Theorem 7.2. Let h be the product of those prime numbers � 
= p for which W ⊂ (K×)q(�). 
Then M is infinite if and only if there exists σ ∈ Gal(F (ζh)/K) with

(i) σ|F ∈ C, and
(ii) σ|L�


= idL�
for every � with L� ⊂ F (ζh).

Fix a real quadratic field E. In Lenstra’s notation, set K = E and k = 1, so that 
q(�) = �, for all �. Let W be a subgroup of finite index in O×

E , and assume −1 ∈ W . Let 
h be the product of those primes � such that W ⊂ E�.

Theorem 7.3. Let c be an integer, c 
= 0, m ≥ 5 a rational prime number that is prime 
to hc, prime to the discriminant of E/Q and such that c 
≡ 1 mod m. Assume GRH.

Then there are infinitely many primes p in the arithmetic progression c + km such 
that

(i) pOE = ππ′ splits in E; and
(ii) the image of W modulo π is all of (OE/π)× � (Z/pZ)×.

Proof. Let

F = E(ζm),

and for any prime �,

L� = E(ζ�,W 1/�).

Let n be a positive integer relatively prime to m and such that E ⊂ Q(ζn). Then 
F = E(ζm) ⊂ Q(ζn, ζm). There exists τ ∈ Gal(Q(ζn, ζm)/Q) = Gal(Q(ζn)/Q) ×
Gal(Q(ζm)/Q) such that τ is the identity on Q(ζn) and τ(ζm) = ζcm. Then setting 
σc = τ |F , we have that σc ∈ Gal(F/E) and σc(ζm) = ζcm. Set Lenstra’s C = {σc} the 
singleton conjugacy class in Gal(F/E).

Then [12, Theorem 4.6, p. 208] implies the following:
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Lemma 7.4. Assume GRH. Then the set of prime ideals p in OE such that

(a) the Frobenius of a prime above p in F/E is the automorphism σc; and
(b) the image of W modulo p is all of (OE/p)×

has positive density if (and only if) there exists σ ∈ Gal(F (ζh)/E) such that

(i) σ|F = σc; and
(ii) for every rational prime �, if L� is contained in F (ζh), then σ|L�

is not the identity 
permutation.

With this lemma in mind, we first we construct σ that satisfies (i), and then we verify 
(ii).

Note that F (ζh) = E(ζh, ζm) ⊂ Q(ζn, ζ6h, ζm). Now

Gal(Q(ζn, ζ6h, ζm)/Q) = Gal(Q(ζn, ζ6h)/Q) × Gal(Q(ζm)/Q).

Let φ ∈ Gal(Q(ζn, ζ6h, ζm)/Q) be the element that is complex conjugation on Q(ζn, ζ6h)
and σc|Q(ζm) on Q(ζm). Set σ = φ|F (ζh).

Then (i) is satisfied because E is real, and F is the compositum of E and Q(ζm).
As for (ii), assume that L� ⊂ F (ζh). First suppose � � 6hm. By our supposition,

E(ζ�) ⊂ E(ζm, ζh) = E(ζhm).

Consider the diagram, with the degrees of the extensions as shown:

E(ζ�, ζhm)

1
Q(ζ�, ζhm)

≤2

φ(�)
E(ζhm)

≤2

Q(ζhm)

It follows that φ(�) ≤ 2 and therefore � = 2 or 3, which is contra hypothesis.
Therefore � | 6hm. If � = m, then σ|L�

is not the identity permutation because it 
raises ζm to the c power. If � | 3h, then σ|L�

is not the identity permutation because it 
acts as complex conjugation on ζ�. If � = 2, then σ|L�

is not the identity permutation 
because it acts as complex conjugation on 

√
−1 ∈ L�.
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By Lemma 7.4, we now know there are infinitely many ideals p satisfying (a) and 
(b). We claim that all but finitely many such p are split in E. Suppose p is inert. Then 
OE/p = Fp2 where p lies over the rational prime p. Now (b) says that the image of 
W modulo p is all of (OE/p)×. But W/ ± 1 is cyclic, so this image is generated by ±1
and some x which is the reduction of some power of ε modulo p. Globally, the Galois 
conjugate of ε is ε−1, so the Gal(Fp2/Fp)-conjugate of x is x−1. That means that if 
xk ∈ Fp then xk = x−k and therefore xk = ±1. So {± the powers of x} cannot equal all 
of (OE/p)× if p > 3.

Now we have infinitely primes p satisfying (i) and (ii) of Theorem 7.3 and such that 
(a) and (b) of Lemma 7.4 holds for p = π. We claim that if such a p is sufficiently large, 
then it is in the arithmetic progression c + km. Indeed, (a) says that the Frobenius of a 
prime P above p in E(ζm)/E is the automorphism σc. That means, since p is split, that 
raising to the p-th power in Gal(OE(ζm)/P/OE/p) is induced by σc. Therefore

ζcm ≡ ζpm mod P.

Therefore if the images of the m-th roots of unity in OE(ζm)/P are pairwise distinct, 
then p is congruent to c modulo m. But this will be true if p is sufficiently large. (In 
fact, if S is any finite subset of OE(ζm), the set of prime ideals in OE(ζm) dividing any 
member of the set {s1 − s2 | s1 
= s2, s1, s2 ∈ S} is finite.) �
8. The images of ψΓ1(N)± and ψΓ1(N)

Fix a real quadratic field E, and fix a coefficient ring R. For the first few paragraphs 
of this section, let Γ be any subgroup of GL2(Q). Recall from Definition 6.6 that K(Γ)
is the group generated by all the unital and triangular matrices in Γ.

Let {e1, e2} be the standard basis of Z2 and recall that e is the image of e1 in P 1(Q). 
Let f denote the image of e2 in P 1(Q).

Lemma 8.1. If u ∈ Γ is triangular, then [e, ue]Γ = 0, and hence it is in the image of ψΓ.

Proof. If u ∈ Γ is upper triangular, then [e, ue]Γ = [e, e]Γ = 0.
If u ∈ Γ is lower triangular, then

[e, ue]Γ = [e, f ]Γ + [f, ue]Γ = [e, f ]Γ − [ue, uf ]Γ = 0. �
Lemma 8.2. The image of ψΓ is the R-span of [e, γe]Γ where γ runs over K(Γ).

Proof. By Corollary 3.2, Lemma 3.5, and Lemma 8.1, if k ∈ K(Γ), then [e, ke]Γ ∈ ImψΓ. 
On the other hand, by definition, the image of ψΓ is the R-span of [e, ge]Γ where g runs 
over just the unital matrices in Γ, which are all in K(Γ). �
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Compare Lemma 8.2 to Corollary 3.6. The set of symbols involved is getting larger, 
but their span remains the same.

Lemma 8.3. Let Γ be a subgroup of GL2(Q), R any ring. Suppose K(Γ) = Γ. Then the 
image of ψΓ is all of Hcusp

0 (Γ, St(Q2; R)).

Proof. By Lemma 5.4 (2), Hcusp
0 (Γ, St(Q2; R)) is the R-span of all [e, γe]Γ as γ runs over 

Γ. By Lemma 8.2, the image of ψΓ is the R-span of all [e, ke]Γ as k runs over K(Γ). Since 
K(Γ) = Γ, these two R-spans are the same. �
Theorem 8.4. Let R be any coefficient ring and N ≥ 1. Assume GRH. Let Γ = Γ1(N)±
or Γ1(N) Then:

(i) K(Γ) = Γ.
(ii) The image of ψΓ is all of Hcusp

0 (Γ, St(Q2; R)).

Proof. By Lemma 8.3, assertion (i) implies assertion (ii) It remains to prove (i).
First let Γ = Γ1(N)±. Given

δ =
[

a b
Nc d

]
∈ Γ

we must show that δ ∈ K(Γ). It suffices to show that there exists γ ∈ K(Γ) such that 
γe1 = δe1, because then z = γ−1δ ∈ Γ and stabilizes e1 and so is triangular. For then 
z ∈ K(Γ) and δ = γz is in K(Γ) also.

So we have to prove the following lemma:

Lemma 8.5. Let N ≥ 1, and let Γ = Γ1(N)±. Let a and c be relatively prime integers 
such that a ≡ ±1 mod N . Assume GRH. Then there exists γ ∈ K(Γ) such that

γe1 =
[

a
Nc

]
.

Proof of the lemma: First we assume that c 
= 1.
We may pre- and post-multiply γ by elements in K(Γ) as needed. All unipotent 

triangular matrices that are in Γ are also in K(Γ). We use Dirichlet’s theorem on primes 
in an arithmetic progression and Theorem 7.3. Let

w =
[

a
Nc

]
.

If u ∈ Γ is an upper triangular unipotent matrix with t ∈ Z in the upper right hand 
corner then



346 A. Ash, D. Yasaki / Journal of Number Theory 224 (2021) 323–367
uw =
[
a + tNc

Nc

]
.

Therefore, there exists an upper triangular unipotent matrix u, such that

uw =
[
m
Nc

]
where m is a prime number, prime to 6Nc, prime to the discriminant of E, such that 
U±

4N is not contained in Em, and such that c 
≡ 1 mod m. (Just take m sufficiently large.)
By Theorem 7.3, there are infinitely many primes p in the arithmetic progression 

c + km such that

(i) pOE = ππ′ splits in E;
(ii) The image of U±

4N modulo π is all of (OE/π)× � (Z/pZ)×.

Now if v ∈ Γ is a lower triangular unipotent matrix with Nk in the lower right hand 
corner then

vuw =
[

m
Nc + Nkm

]
.

Choose k so that c + km is an odd prime p satisfying (i) and (ii) and p does not divide 
N .

Now

vuw =
[
m
Np

]
.

By Theorem 6.7, there exists a matrix MN (m, p) in K(Γ) such that MN (m, p)e1 =
vuw.

Finally, we have to take care of the case where c = 1. Given

w =
[
a
N

]
,

a = ±1 + tN . Then premultiplying w by the upper triangular unipotent matrix u with 
−t in the upper right hand corner, we have

uw =
[
±1
N

]
.

Then

v :=
[
±1 0
N ±1

]
∈ K(Γ)
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and u ∈ K(Γ), so u−1v ∈ K(Γ) and u−1ve1 = w.
Now let Γ = Γ1(N) and Γ± = Γ1(N)±. Part (i) asserts that K(Γ±) = Γ±. This 

means that any γ ∈ Γ± is a product of unital and triangular elements of Γ±. However, 
inspection of its proof and the proof of Theorem 6.7 shows that in fact we only need one 
unital element and that of determinant 1: any γ ∈ Γ± can be written as

γ = u1vu2Mu3,

where u1, u2, u3 are upper triangular elements in Γ±, v is a lower triangular element in 
Γ± and M is a unital element in Γ± with det(M) = 1.

Let S denote the 4-group {I, −I, s, −s} where s = diag(1, −1). Note that conjugation 
by S stabilizes Γ, the set of upper triangular matrices, and the set of lower triangular 
matrices, and therefore also K(Γ). For any x ∈ Γ±, there exists an element t ∈ S such 
that xt ∈ Γ.

Now suppose γ ∈ Γ. We may write

γ = u4wu5(Ms1)u6s2,

where s1, s2 ∈ S, u4, u5, u6 are upper triangular elements in Γ, w is a lower triangular 
element in Γ and Ms1 is in Γ. From this it follows that s2 ∈ Γ and hence s2 = ±I (in 
fact if N > 2, s2 = I). Therefore

±γ = u4wu5(Ms1)u6.

Since M has determinant 1, as do γ, u4, w, u5 and u6, it follows that det(s1) = 1 and 
therefore s1 = ±I. Since −I is β-unital for any β, it follows that M ′ = Ms3 is a unital 
element of Γ. We obtain

±γ = u4wu5M
′u6 ∈ K(Γ).

Now assume that N > 2. Then the left hand side is actually γ, and therefore K(Γ) = Γ. 
On the other hand, if N = 1 or 2, then −I ∈ Γ and is triangular, so again γ ∈ K(Γ) and 
therefore K(Γ) = Γ. �
9. The cokernel of ψΓ for other congruence subgroups Γ ⊂ GL2(Q)

Fix a ring R. Let us view ψΓ as a homomorphism with target Hcusp(Γ, St(Q2; R)), so 
we may speak of its cokernel in this regard. In this section, we prove that the cokernel 
of ψΓ is a finitely generated torsion module over R, for all congruence subgroups Γ ⊂
GL2(Q).

To start with, let Γ ⊂ GL2(Q) be any subgroup. Later in this section will assume that 
Γ is a congruence subgroup. This means that there exists an integer N ≥ 1 such that Γ
contains Γ(N) with finite index, where Γ(N) = {g ∈ SL2(Z) | g ≡ I mod N}.

First we prove some lemmas.
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Lemma 9.1. Up to isomorphism, the cokernel of ψΓ doesn’t change up to isomorphism if 
Γ is conjugated by a matrix A ∈ GL2(Q).

Proof. The short exact sequence (1) is equivariant for GL2(Q). The long exact sequence 
of group homology, including the connecting homomorphisms, is functorial. Therefore, 
we obtain a commutative diagram:

H1(Γ, C)

f1

ψΓ
Hcusp

0 (Γ,St(Q2;R))

f0

H1(AΓA−1, C)
ψAΓA−1

Hcusp
0 (AΓA−1,St(Q2;R))

where f1 and f0 are the maps induced by conjugation by A on the group and multiplica-
tion by A on the coefficients. Since f1 and f0 are isomorphisms, the lemma follows. �
Lemma 9.2. Let Γ be a subgroup of GL2(Q). Suppose K(Γ) has finite index in Γ. Then 
Hcusp

0 (Γ, St(Q2; R)) modulo the image of ψΓ is a finitely-generated torsion R-module.

Proof. In the notation of Theorem 5.9, set K = K(Γ) and L = Γ. Then X is equal to 
Hcusp

0 (Γ, St(Q2; R)) modulo the image of ψΓ. Therefore, it suffices to prove that Qab is 
a finite group. But Q = L/K̂L and since K has finite index in L, so does K̂L. �
Theorem 9.3. Let Γ be a subgroup of GL2(Q) that contains Γ(M) with finite index for 
some M . Assume GRH. Then Hcusp

0 (Γ, St(Q2; R)) modulo the image of ψΓ is a finitely-
generated torsion R-module.

Proof. Conjugating by A = diag(1, M), we see that for N = M2, Γ1(N) ⊂ AΓA−1. So 
by Lemma 9.1, we may replace Γ by AΓA−1; and without loss of generality, for some N , 
we assume that Γ1(N) ⊂ Γ with finite index.

Then by Theorem 8.4 we have

Γ1(N) = K(Γ1(N)) ⊂ K(Γ) ⊂ Γ

from which it follows that K(Γ) has finite index in Γ. We are finished by Lemma 9.2. �
10. The image of ψΓ for Γ0(N)± and for Γ0(N)

Let Γ be either Γ0(N)± or Γ0(N). Set Γ1 = Γ1(N)± if Γ = Γ0(N)± and Γ1 = Γ1(N)
if Γ = Γ0(N). In the first case, the quotient Γ/Γ1 is isomorphic to (Z/NZ)×/{±1} and 
in the second case, the quotient is isomorphic to (Z/NZ)×.

Lemma 10.1. Let η ∈ O×
E and fη(x) = x2 − tx + n ∈ Z[x] its characteristic polynomial. 

Then a ∈ (Z/NZ)× is a root of fη modulo N if and only if
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a + na−1 ≡ t mod N.

Remark 10.2. Let prime denote Galois conjugate. Then t = η + η′ is the trace of η and 
n = ηη′ = ±1 is its norm.

Proof. Suppose a is a root of fη modulo N . Then a is invertible mod N because the 
product of the two roots is ±1. So the other root is na−1 and a + na−1 ≡ t mod N . 
Conversely, if a + na−1 ≡ t mod N , then fη(x) modulo N is x2 − (a + na−1)x + n and 
a is a root. �
Lemma 10.3. Let η ∈ O×

E and let fη(x) = x2−tx +n ∈ Z be its characteristic polynomial. 
Suppose a ∈ (Z/NZ)× is a root of fη modulo N . Then there exists a unital γ ∈ GL2(Z)
such that the determinant of γ equals the norm of η and

γ ≡
[
a ∗
0 na−1

]
mod N.

Conversely, if γ ∈ Γ0(N)± is unital then its upper left hand corner modulo N is a 
root of fη modulo N for some η ∈ O×

E whose norm equals the determinant of γ.

Proof. If η = ±1, take γ = ±I. So now assume that η 
= ±1. Lift 
[
a ∗
0 na−1

]
to a matrix 

g =
[
A B
C D

]
∈ GL2(Z) that is congruent to it modulo N .

Then AD−BC ≡ n, A +D ≡ a +na−1, and C ≡ 0 mod N . So the characteristic poly-
nomial of g is congruent to fη. We need to modify g so that its characteristic polynomial 
equals fη on the nose.

Write C = cN . Conjugate g by dc = diag(c, c−1) ∈ GL2(Q). We obtain

g1 = dcgd
−1
c =

[
A cB
N D

]
=

[
A cB
N t−A− rN

]
∈ GL2(Z),

for some r ∈ Z. Post multiply g1 by the upper triangular unipotent matrix ur with r in 
the upper right corner, and call the result γ:

γ = g1ur =
[
A cB
N t−A− rN

] [
1 r
0 1

]
=

[
A B1
N t−A

]
∈ GL2(Z).

Note that the trace of γ is t and the determinant of γ is ±1 and congruent to n modulo 
N , and therefore det γ = n if N ≥ 3. If N = 1 or 2, and if det γ = −n, go back to 
the beginning and redefine g by replacing B, D with −B, −D. That has the effect of 
changing the sign of the determinant. So for any N , we now have γ whose trace is t and 
whose determinant is n.
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Therefore the characteristic polynomial of γ is fη, and

γ ≡
[
a ∗
0 na−1

]
mod N.

It remains to show that γ is unital.
The eigenvalues of γ are η and η′ ∈ E which are not equal. Therefore, γ is diagonal-

izable over E, with an eigenvector 
[
β
1

]
for some β ∈ E \Q. So

γ

[
β
1

]
= η

[
β
1

]
,

and γ is β-unital.
Conversely, suppose

γ =
[
A B
cN D

]
∈ GL2(Z)

is unital. Then there exists η ∈ O×
E and β ∈ E \Q such that

γ

[
β
1

]
= η

[
β
1

]
.

The characteristic polynomial of γ is the same as the characteristic polynomial of η, 
namely fη. In particular the norm of η equals the determinant of γ. Also the characteristic 
polynomial of γ is congruent modulo N to (x −A)(x −D) and has A mod N as a root. �
Definition 10.4. Let E be a real quadratic field and N a positive integer.

Define AE(N) to be the subgroup of (Z/NZ)×/{±1} generated by the images of those 
a ∈ (Z/NZ)× such that a is a root of fη for some η ∈ O×

E .
Define AE(N)∗ to be the subgroup of (Z/NZ)× generated by those a ∈ (Z/NZ)×

such that a is a root of fη for some η ∈ O×
E of norm 1.

Remark 10.5. Given N and E, it is a finite computation to determine AE(N). This is 
because the powers of ε := the image of ε in OE/NOE constitute a finite set Q, which 
can be found by seeing when ε, ε2, . . . begins to repeat. Then by Lemma 10.1, a is a root 
of fη for some η ∈ O×

E if and only if a + na−1 = t, where t = εk + ε′
k and n = εkε′

k

for some εk ∈ Q. However, we do not know any simple formula that describes AE(N)
given N and E. In the range of our computations (N ≤ 1000, Δ ≤ 50), there are 6846
different groups that arise for AE(N) and 6419 for AE(N)∗. A sample (N ≤ 20) is given 
in Tables 1 and 2.

We do not know how to predict AE(N) from AE(N)∗ or vice versa, in general. Of 
course, AE(N)∗ equals AE(N)/{±1} if E has no unit of norm −1, but otherwise, it may 
be equal or it may have index two.
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Let π : Γ0(N)± → (Z/NZ)×/{±1} be the surjective homomorphism that sends a 
matrix to its upper left hand corner modulo N and then modulo ±1. Similarly, let 
π∗ : Γ0(N) → (Z/NZ)× be the surjective homomorphism that sends a matrix to its 
upper left hand corner modulo N .

Theorem 10.6. Assume GRH. Let E be a real quadratic field. Then K(Γ0(N)±, E) =
π−1(AE(N)) and K(Γ0(N), E) = (π∗)−1(AE(N)∗).

The following corollary follows immediately from the theorem and Lemma 8.2:

Corollary 10.7. Assume GRH. Let E and F be real quadratic fields. If AN (E) = AN (F ), 
then the cokernels of ψΓ0(N)±,E and ψΓ0(N)±,F are the same. If AN (E)∗ = AN (F )∗ then 
the cokernels of ψΓ0(N),E and ψΓ0(N),F are the same.

Now we prove the theorem:

Proof. The group K(Γ0(N)±) is generated by K(Γ1(N)±) and the unital elements in 
Γ0(N)± (since the triangular elements of Γ0(N)± are already in Γ1(N)±.) Let prime 
denote reduction modulo {±I}. By definition, π(K(Γ1(N)±)) ⊂ {±1}′ ⊂ AE(N). By 
Lemma 10.3, if γ ∈ Γ0(N)± is unital, then π(γ) ∈ AE(N). So π(K(Γ0(N)±)) ⊂ AE(N). 
Conversely, suppose γ ∈ Γ0(N)± and π(γ) ∈ AE(N). By Lemma 10.3, there exists a 
unital δ ∈ Γ0(N)± such that γδ−1 has its upper left corner congruent to 1 modulo N . 
So γδ−1 ∈ Γ1(N)± and hence in K(Γ1(N)±) by Theorem 8.4. So both δ and γδ−1 are 
in K(Γ0(N)±), and hence so is γ.

For the second assertion, notice that the group K(Γ0(N)) is generated by K(Γ1(N))
and the unital elements in Γ0(N), including ±I (since the triangular elements of Γ0(N)
are in ±Γ1(N).) By definition, π∗(K(Γ1(N))) ⊂ {1} ⊂ A∗

E(N). By Lemma 10.3, if 
γ ∈ Γ0(N) is unital, then π∗(γ) ∈ AE(N)∗. So π∗(K(Γ0(N)) ⊂ AE(N)∗. Conversely, 
suppose γ ∈ Γ0(N) and π∗(γ) ∈ A∗

E(N). By Lemma 10.3, there exists a unital δ ∈ Γ0(N)
such that γδ−1 has its upper left corner congruent to 1 modulo N . So γδ−1 ∈ Γ1(N) and 
hence in K(Γ1(N)) by Theorem 8.4. So both δ and γδ−1 are in K(Γ0(N)), and hence so 
is γ. �
11. Conjectures

Our computational results give us further confidence to make the following conjecture, 
independent of any assumption of GRH. Because in our computations we used R = Z, 
we will assume that R = Z.

Conjecture 11.1. For any level N and real quadratic field E:

(i) If Γ = Γ1(N)± or Γ1(N), then ψΓ,E is surjective onto Hcusp
0 (Γ, St(Q2; Z)).

(ii) The cokernel of ψΓ0(N)±,E is isomorphic to a quotient of ((Z/NZ)×/{±1})/AE(N).
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(iii) The cokernel of ψΓ0(N),E is isomorphic to a quotient of (Z/NZ)×/AE(N)∗.

Our computations strongly support this conjecture. For N ≤ 1000 and E = Q(
√

Δ)
for Δ ≤ 50 we checked the last two statements. We did not compute with the Γ1 groups 
because of their larger index in GL2(Z). But the fact that the first statement enters cru-
cially into the proofs of the latter two statements when we assume GRH in Theorem 11.2
below, suggests that it too is true.

The question arises as to whether the surjections mentioned in (ii) and (iii) might be 
isomorphisms. This is not the case. A glance at the data in the tables in Section 14 shows 
that the cardinality of the cokernel of ψΓ0(N)± may be less than φ(N)/(2|AE(N)|) and 
the cardinality of the cokernel of ψΓ0(N) may be less than φ(N)/|AE(N)∗|.

For N and E where do not get equality, we say “shrinkage has occurred.” In our data 
the shrinkage is always by a factor of 2 or 4. We do not have an explanation for shrinkage, 
but it may be connected with the order of the subgroup of diagonal matrices in Γ0(N)±.

Theorem 11.2. Assume GRH. Then the assertions in Conjecture 11.1 are true.

Proof. Assertion (i) is Theorem 8.4. For assertion (ii) start with Theorem 8.4 (i). Then 
K(Γ0(N)±) ⊃ K(Γ1(N)±) = Γ1(N)±. In the notation of Theorem 5.9, let R = Z, 
K = K(Γ0(N)±) and L = Γ0(N)±. Then Q is a quotient of the abelian group 
Γ0(N)±/K(Γ0(N)±). Now K(Γ0(N)±) contains Γ1(N)± and also by Theorem 10.6, for 
each element α ∈ AE(N), it contains a unital element whose upper left corner is con-
gruent to ±α modulo N . Therefore Q is a quotient of ((Z/NZ)×/{±1})/AE(N) and we 
are finished by Theorem 5.9. The proof of assertion (iii) is similar. �
12. Complex cuspidal Steinberg homology and toral periods of modular forms

In this section we investigate the relationship between Hcusp
0 (Γ, St(Q2; C)) and toral 

periods of holomorphic cusp forms of weight 2. Based on Theorem 11.2, we prove (as-
suming GRH) that the toral homology classes for a fixed real quadratic field E span the 
homology of the compact modular curve, when Γ = Γ1(N)±, Γ1(N), Γ0(N)±, or Γ0(N).

Fix the coefficient ring R to be the complex numbers C. Let Γ be a congruence sub-
group of GL2(Z). We assume that Γ either is in SL2(Z) or else contains J = diag(1, −1).

Let Y denote the upper half plane and let Y (Γ) = Ȳ /Γ, where Ȳ is the Borel-Serre 
compactification of Y . The quotient Ȳ (Γ) is a compact orbifold with boundary, where 
the stabilizers of singular points are finite groups. It is orientable if Γ ⊂ SL2(Z). The 
boundary of Ȳ consists of a line at each cusp v. Fix a base point zv on the line Lv at 
the cusp v and let ẑv denote its image in Y (Γ).

Definition 12.1. Define the map b : H0(Γ, St(Q2; C)) = St(Q2; C)Γ → H1(Y (Γ), ∂Y (Γ),
C) by sending [v, w]Γ to the fundamental class of a path from ẑv to ẑw modulo Γ.
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It does not matter which path is chosen, since Ȳ is contractible. It is easy to see from 
Theorem 2.2 that the map b is well-defined.

Lemma 12.2. The map b is an isomorphism.

Proof. First suppose that Γ ⊂ SL2(Z). By Lefschetz duality, H1(Y (Γ), ∂Y (Γ), C) is 
isomorphic to H1(Y (Γ), C). Because the stabilizers of the action of Γ on Y (Γ) are finite 
groups, H1(Γ, C) is isomorphic to H1(Y (Γ), C). By Theorem 2.8, H0(Γ, St(Q2; R)) and 
H1(Γ, C) are vector spaces of the same (finite) dimension. So the source and target of b
are finite dimensional vector spaces of the same dimension, and it suffices to show that 
b is surjective.

H1(Y (Γ), ∂Y (Γ), C) is generated by the fundamental classes of paths in Y (Γ) which 
either start at one cusp and end at another cusp, or are closed. It suffices to show 
that these are in the image of b. Choose a path π in Y (Γ) whose fundamental class is 
ξ ∈ H1(Y (Γ), ∂Y (Γ), C). If π is a closed path (which may not meet ∂Y (Γ)), choose a 
point p on π and a cuspidal point ẑx, and add to π a path from ẑx to p at the start 
and the same path backwards from p to ẑx at the end. If π is not a closed path, it must 
begin at a point which is the image modulo Γ of some point on the line Lv at some cusp 
v and end at another such point at the same or another cusp. Without changing the 
homology class we may assume that these points are among our chosen base points. So 
without loss of generality, we may assume that the initial and final points of π are ẑv
and ẑw for some cusps v and w. Lift π back to a path on Y from zv to zw. We see that 
b([v, w]Γ) = ξ. So b is surjective and therefore bijective.

Now suppose J = diag(1, −1) ∈ Γ, let Γ̃ = Γ ∩ SL2(Z). The map b for Γ̃ is an 
isomorphism and it is J-equivariant. Here J acts on [v, w]Γ by sending it to [Jv, Jw]Γ and 
on Y by sending z = x +iy to −z = −x +iy. We finish by noting that H0(Γ, St(Q2; C)) =
H0(Γ̃, St(Q2; C))Γ/Γ̃ and H1(Y (Γ), ∂Y (Γ), C) = H1(Y (Γ̃), ∂Y (Γ̃), C)Γ/Γ̃. �

For Γ ⊂ SL2(Z), let S2(Γ) (resp. S2(Γ)) be the space of holomorphic (resp. antiholo-
morphic) modular cuspforms of weight 2 for Γ with trivial character.

The cohomology with compact support H1
c (Y (Γ), C) is canonically isomorphic to 

the relative cohomology H1(Y (Γ), ∂Y (Γ), C). Its image in H1(Y (Γ), C) is denoted 
H1

! (Y (Γ), C) and called “interior cohomology”. It is well-known and not hard to see 
that H1

! (Y (Γ), C) is naturally isomorphic to what is called “parabolic cohomology” in 
[16].

We have a map

S2(Γ) ⊕ S2(Γ) → H1
c (Y (Γ),C) = H1(Y (Γ), ∂Y (Γ),C),

given by sending f ⊕ g to the class that pairs with a cycle ξ in H1(Y (Γ), ∂Y (Γ), C) to 
give the value
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∫
ξ

f(z)dz + g(z)dz.

Composing this map with the defining map from H1
c (Y (Γ), C) to H1

! (Y (Γ), C) gives a 
map

a : S2(Γ) ⊕ S2(Γ) → H1
! (Y (Γ),C).

Lemma 12.3. Let Γ ⊂ SL2(Z) be a subgroup of finite index. Then the map a is an 
isomorphism.

Proof. This is a special case of a theorem of Eichler and Shimura. It follows, for example, 
immediately from Deligne’s statement [9, Théorème 2.10]. �

Let λ : H1(Y (Γ), ∂Y (Γ), C) → H1(Y (Γ), C) be the isomorphism given by Lefschetz 
duality.

Lemma 12.4. Let Γ ⊂ GL2(Z) be a subgroup of finite index.

(i) If Γ ⊂ SL2(Z) then a−1 ◦ λ ◦ b induces an isomorphism

φ : Hcusp
0 (Γ,St(Q2;C)) → S2(Γ) ⊕ S2(Γ).

(ii) If J = diag(1, −1) ∈ Γ, let Γ̃ = Γ ∩SL2(Z). Then Hcusp
0 (Γ, St(Q2; C)) has the same 

dimension as S2(Γ̃).

Proof. First suppose that Γ ⊂ SL2(Z). Then the rows of the following commutative 
diagram are exact:

H1
c (Y (Γ),C) H1(Y (Γ),C) α

H1(∂Y (Γ),C) H2
c (Y (Γ),C)

H0(Γ,St(Q2;C))
β

H0(∂Y (Γ),C) � D

Here, α is induced by restriction of a cocycle to the boundary, and β is the map that sends 
[v, w]Γ to (w)Γ−(v)Γ. The vertical maps are isomorphisms: the one on the left is λ ◦b and 
the one on the right is Poincaré duality, where we identify D with H0(∂Y (Γ), C) in the 
obvious way. The kernel of α is H1

! (Y (Γ), C) and the kernel of β is Hcusp
0 (Γ, St(Q2; C)). 

Together with Lemma 12.3, this proves part (i).
To see part (ii), we first show that φ is J-equivariant up to sign. We begin by making 

explicit the isomorphism a−1 ◦ λ ◦ b|Hcusp
0 (Γ, St(Q2; C)). The resulting integral formula 

is useful in its own right.
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Without loss of generality, by Lemma 5.4, consider a cuspidal modular symbol [v, γv]Γ̃, 
where γ ∈ Γ̃ and let w = γv. Choose zv and then choose zw = γzv and then choose a 
path in the upper half plane from zv to zw and project to the closed path in Y (Γ̃) whose 
fundamental class is ξ. Then [v, w]Γ̃ maps to the de Rham class of the closed differential 
ωξ, where ωξ satisfies ∫

π

ωξ = 〈ξ, π〉

for any closed path π on Y (Γ̃). Here 〈·, ·〉 denotes the intersection pairing. Then ωξ is 
cohomologous to fξ(z)dz + ḡξ(z)dz̄ for some (fξ, ̄gξ) ∈ S2(Γ) ⊕ S2(Γ). Then

(a−1 ◦ λ ◦ b)([v, γv]Γ̃) = (fξ, ḡξ).

Doing the same process to [Jv, Jw]Γ̃, we take Jξ, so the image of [Jv, Jw]Γ̃ is the de 
Rham class of the closed differential ωJξ, where∫

π

ωJξ = 〈Jξ, π〉

for any π. Since J reverses orientation, 〈Jξ, π〉 = −〈ξ, Jπ〉. Because∫
π

Jω =
∫
Jπ

ω

it follows that ωJξ = −Jωξ. We see that the isomorphism φ in part (i) is J-equivariant 
up to sign, i.e. φ(Jx) = −Jφ(x).

If f ∈ S2(Γ̃), J(f(z)dz) = −f̄(z)dz̄ (as may be seen for example from the q-expansion 
of f and the fact that J(q) = q̄ when q = e2πiz.) If ωξ is cohomologous to fξ(z)dz +
ḡξ(z)dz̄, then −Jωξ is cohomologous to f̄ξ(z)dz̄ + gξ(z)dz. So −J acts on S2(Γ) ⊕ S2(Γ)
as complex conjugation, flipping the two factors.

By the homology version of [5, Proposition III.10.4], Hcusp
0 (Γ, St(Q2; C)) is isomor-

phic to the J-coinvariants of Hcusp
0 (Γ̃, St(Q2; C)). The latter vector space has the same 

dimension as the J-invariants of Hcusp
0 (Γ̃, St(Q2; R)). (For any finite dimensional C[〈J〉]-

module V , write V as a direct sum of irreducible components. The trivial module has 
both J-invariants and J-coinvariants of dimension 1, and the nontrivial module has both 
J-invariants and J-coinvariants of dimension 0.)

Under the isomorphism φ, the J-invariants of Hcusp
0 (Γ̃, St(Q2; R)) map to the J-anti-

invariants of S2(Γ̃) ⊕S2(Γ̃), i.e. {y ∈ S2(Γ̃) ⊕S2(Γ̃) | J(y) = −y}. Since J interchanges the 

two summands S2(Γ̃) and S2(Γ̃), we conclude that the dimension of Hcusp
0 (Γ, St(Q2; C))

equals the dimension of S2(Γ̃). �
Let g0(N) be the genus of the modular curve X0(N). Thus dimC S2(Γ0(N)) = g0(N).



356 A. Ash, D. Yasaki / Journal of Number Theory 224 (2021) 323–367
Corollary 12.5. If N ≥ 1, then

dimC Hcusp
0 (Γ0(N),St(Q2;C)) = 2g0(N) and

dimC Hcusp
0 (Γ0(N)±,St(Q2;C)) = g0(N).

These are the dimensions we observe in our computations.
Now fix a quadratic field E and Γ a congruence subgroup of SL2(Z). B. Gross and 

A. Venkatesh have independently suggested to us that it might be possible to prove the 
surjectivity of ψΓ,E over C (at least in some cases) unconditionally as follows.

Definition 12.6. Let γ be a β-unital element in Γ ⊂ GL2(Z) and E = Q(β). Then we 
will say that γ is an E-unital element.

The image of ψΓ,E is spanned by the set of modular symbols [v, γv]Γ, where γ runs 
through all the E-unital elements in Γ.

Let f ∈ S2(Γ) be an eigenform for the Hecke algebra. Let τ be a point in the upper 
halfplane. We call the number

γτ∫
τ

f(z) dz

an E-toral period (or just a toral period if E is understood.)
We call the fundamental class in H1(X(Γ), C) of the closed curve which is the pro-

jection to X(Γ) of the geodesic from τ to γτ an E-toral cycle (or just a toral cycle if E
is understood.)

For simplicity, consider the case of toral periods and cycles for Γ = Γ0(N). If 
[v, γv]Γ ∈ Hcusp

0 (Γ0(N), St(Q2; C)) corresponds as above to the fundamental class ξ, 
then ψΓ([v, γv]Γ) is determined by the values of

〈ξ, π〉 =
∫
π

ωξ =
∫
ξ

ωπ,

as π varies among closed paths on X0(N).
Suppose ψΓ,E is not surjective. It is easy to see that the image of ψΓ,E is Hecke-

equivariant. It follows that there is a cuspidal eigenform f of level N and weight 2 for 
the Hecke algebra such that ∫

ξ

f(z) dz = 0

for any ξ which is the fundamental class of the projection to X(Γ) of the geodesic � from 
zv to zw, where γzv = zw, and γ is an E-unital element in Γ. Consider the geodesic μ



A. Ash, D. Yasaki / Journal of Number Theory 224 (2021) 323–367 357
between the two fixed points of γ in R and fix an interior point τ in μ. We may choose 
a Γ-equivariant homotopy in Ȳ from � to the arc from τ to γτ in μ. Let α be the closed 
curve on Y (Γ) which is the image of this arc. Then the class of α is an E-toral cycle. 
Because f(z) dz is a closed form,∫

ξ

f(z) dz =
∫
α

f(z) dz,

which is an E- toral period. These periods were studied by Waldspurger in [19] and by 
various other authors.

The formulas of Waldspurger [19] in principle may be made explicit so that, given 
certain characters χ, we can write L(f, χ, 1/2) as a linear combination of some of these 
toral periods. If one has a theorem that shows that the L-value is nonvanishing for some 
relevant χ, it follows that at least one of the periods is nonzero. This contradiction would 
establish the surjectivity of ψΓ,E without having to assume GRH.

Successfully implementing this idea does not look easy. The only case we know where 
Waldspurger’s formula has been made sufficiently explicit so that the preceding program 
might be carried out, is Theorem 6.3.1 in [14]. But even in this case, (where we must 
assume that N is squarefree and coprime to the discriminant of E, all the primes dividing 
N split in E and χ is a character of the narrow class group of E) we do not know of any 
sufficiently strong non-vanishing theorem for the central value of the L-function.

However, we can use the preceding ideas to prove the following theorem, which we 
have not seen in the literature.

Theorem 12.7. Assume GRH. Let Γ be a congruence subgroup of SL2(Z). Then, for any 
real quadratic field E, the E-toral cycles generate H1(X(Γ), C).

Proof. Let γ be an E-unital element of Γ. The isomorphism

b : H0(Γ,St(Q2;C)) → H1(Y (Γ), ∂Y (Γ),C)

from Definition 12.1 sends [e, γe]Γ to the fundamental class of the image modulo Γ of 
the geodesic from ẑe to ẑγe, which is homologous to an E-toral cycle corresponding to 
γ. By Theorem 9.3, under GRH, we know that ψΓ,E maps surjectively onto the cuspidal 
Steinberg homology, which is mapped by b onto H1(X(Γ), C) ⊂ H1(Y (Γ), ∂Y (Γ), C). �

For more information about toral periods, see [15,13] and the articles referenced there.

13. Method of computation

We made the computations using already-existing programs that find the Voronoi ho-
mology of arithmetic subgroups of GLn(F ) for arbitrary number fields F . For this reason, 
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we have to show carefully that when n = 2 and F = Q that this Voronoi homology is ex-
actly isomorphic to Hcusp

0 (Γ, St(Q2; R)). We also need to make this isomorphism explicit, 
so that we know how to express the image of ψΓ in terms of the Voronoi homology.

We do these things in this section and also provide a numerical example of the compu-
tation of the cuspidal Steinberg homology Hcusp

0 (Γ, St(Q2; R)). For general background 
on the Voronoi decomposition and Voronoi homology see [18,10].

Let Γ̄ = GL2(Z). We will describe the computational method for the groups Γ0(N)±. 
The method for Γ0(N) is similar.

Let V be the 3-dimensional vector space of real symmetric 2 × 2 matrices. Let C ⊂ V

denote the open cone of positive definite matrices, C its closure in V . Let q : Z2 → V

be the map q(v) = vvt. (All vectors in this section are column vectors.) Let X = C/R+
and X = C/R+, where R+ acts on C by scaling. The group Γ̄ acts on V : for γ ∈ Γ̄
and A ∈ V , γ ·A = γAγt. This action restricts to an action on C, which descends to an 
action on X.

There is one Γ̄-orbit of perfect forms. As a representative, take the one with minimal 
vectors given by ± the columns of [

1 0 1
0 1 1

]
.

The image under q of these minimal vectors are the vertices of an “ideal” triangle in X. 
This is the ideal {∞, 0, 1}-triangle in the complex upper half-plane h under the usual 
identification of X with h. It is ideal in the sense that the vertices are not in X, but in 
X. The Γ̄-orbit of this triangle covers X, yielding an tessellation of X by ideal triangles 
minus their vertices. Let X∗ denote X union the vertices, so that we have an honest 
tessellation of X∗. The triangles are 2-cells. X∗ corresponds to h ∪P 1(Q). Each triangle 
has finite stabilizer in Γ̄.

There is one equivalence class of edge in this tessellation. As representative, we can 
take the edge between q(e) and q(f). In h, this is the geodesic from ∞ to 0. Each edge 
has finite stabilizer in Γ̄. The edges are 1-cells.

There is one equivalence class of vertex in this tessellation. As representative, we can 
take q(e). This is the point ∞ in P 1(Q). The vertices are 0-cells. This is the point ∞ in 
P 1(Q). The stabilizer of each vertex in Γ̄ is infinite.

Fix vectors v1 = e1, v2 = e2, v3 = e1 + e2. Denote the representative cell by the 
vectors defining the cell, using the subscript. For example, {1, 2, 3} is the representative 
triangle, {1, 2} is the representative edge, and {1} is the representative vertex.

The stabilizer of {1, 2, 3} is

Γ̄2 := Γ̄{1,2,3} =
{[

−1 1
−1 0

]
,

[
1 0
0 1

]
,

[
0 1
1 0

]
,

[
1 −1
0 −1

]
,

[
−1 1
0 1

]
,

[
0 1
−1 1

]
,[

1 −1
1 0

]
,

[
−1 0
0 −1

]
,

[
0 −1
−1 0

]
,

[
0 −1
1 −1

]
,

[
−1 0
−1 1

]
,

[
1 0
1 −1

]}
.
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The orientation preserving stabilizer of {1, 2, 3} is

Γ̄+
2 := Γ̄+

{1,2,3} =
{[

−1 1
−1 0

]
,

[
1 0
0 1

]
,

[
0 1
−1 1

]
,

[
1 −1
1 0

]
,

[
−1 0
0 −1

]
,

[
0 −1
1 −1

]}
.

The stabilizer of {1, 2} is

Γ̄1 := Γ̄{1,2} =
{[

−1 0
0 −1

]
,

[
0 −1
1 0

]
,

[
1 0
0 −1

]
,

[
0 −1
−1 0

]
,

[
0 1
1 0

]
,[

1 0
0 1

]
,

[
−1 0
0 1

]
,

[
0 1
−1 0

]}
.

The orientation preserving stabilizer of {1, 2} is

Γ̄+
1 := Γ̄+

{1,2} =
{[

−1 0
0 −1

]
,

[
1 0
0 −1

]
,

[
1 0
0 1

]
,

[
−1 0
0 1

]}
.

The stabilizer of {1} is

Γ̄0 := Γ̄{1} =
{[

±1 ∗
0 ±1

]}
.

Every element of Γ̄0 is deemed to preserve orientation.
Let Γ be a subgroup of finite index in Γ̄. For i = 0, 1, 2, let Σi denote the i-cells in the 

tessellation of X∗. Then Γ acts on Σi, and we compute representatives of the Γ-orbits 
as follows.

For example, Σ2 is the set of Γ̄ translates of the triangle {1, 2, 3}, and by definition 
Γ̄2 stabilizes the cell. Thus the Γ-orbits of Σ2 are parametrized by Γ\Γ̄/Γ̄2. Similarly, 
the Γ-orbits of Σ1 are parametrized by Γ\Γ̄/Γ̄1 and the Γ-orbits of Σ0 are parametrized 
by Γ\Γ̄/Γ̄0.

Now let Γ = Γ0(N)± and i = 0, 1, 2. Since Γ̄ acts transitively on P 1(Z/NZ) from 
the right, and the stabilizer of [0 : 1] is Γ, it follows that Γ\Γ̄ can be identified with 
P 1(Z/NZ), so Γ\Γ̄/Γ̄i is the set of Γ̄i-orbits on P 1(Z/NZ). In other words, each Γ̄i-
orbit in P 1(Z/NZ) can be identified with a Γ-orbit in Σi. There are finitely many such 
orbits. For each one, we fix an element a in P 1(Z/NZ) to represent that orbit.

If one assumes that multiplication by 2 is an injective map R → R and if for i = 1, 2
and a in P 1(Z/NZ) there exists an orientation reversing element γ ∈ Γ̄i − Γ̄+

i such that 
a · γ = a, then the corresponding cell is non-orientable in X∗/Γ, and we will see from 
the proof of Theorem 13.1 that we can (and must) remove it from the chain complex in 
order to compute the cuspidal Steinberg homology.

Again let Γ be an arbitrary subgroup of finite index in Γ̄. For i = 0, 1, 2, let Σi(Γ)
denote the set of Γ-orbits of vertices, edges and triangles respectively.
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For any subgroup Δ of Γ̄, and a homomorphism χ : Δ → R×, Let I(Γ̄, Δ, χ) denote 
the induced left Γ̄-module consisting of functions f : Γ̄ → R such that f(gd) = χ(d)f(g)
for every g ∈ Γ̄ and d ∈ Δ. The action of Γ̄ is given by (xf)(g) = f(x−1g).

For i = 0, 1, 2 let χi : Γ̄i → R× be the orientation character: χi(x) = 1 if x preserves 
the orientation of the basic cell {1}, {1, 2}, {1, 2, 3} respectively, and χi(x) = −1 if x
reverses the orientation. In particular, χ0 is the identity character.

For i = 0, 1, 2, set Ii(Γ) = I(Γ̄, ̄Γi, χi). We have distinguished elements of these induced 
modules, namely Fi, which is defined to equal χi on Γ̄i and 0 otherwise.

The boundary maps that send an oriented triangle to the sum of its oriented edges 
and an edge to the difference of its vertices induce R-module maps ∂2 : I2 → I1 and 
∂1 : I1 → I0. We define these maps carefully as follows.

First, the boundary of the triangle (123) is (12) +(23) +(31). This triangle corresponds 
in the induced representation to the function F2. Define the matrices

U =
[

0 1
−1 1

]
, V =

[
1 −1
1 0

]
.

Then ∂2(F2) = (1 + U + V )F1. Since the boundary map is Γ̄-equivariant, for any g ∈ Γ̄, 
∂2(gF2) = g(1 + U + V )F1.

Second, the boundary of the edge (12) is (2) − (1). This edge corresponds in the 
induced representation to the function F1. Define the matrix

S =
[

0 1
−1 0

]
.

Then ∂1(F1) = (S − 1)F0. Since the boundary map is Γ̄-equivariant, for any g ∈ Γ̄, 
∂1(gF1) = g(S − 1)F0.

Let Γ be a subgroup of finite index in Γ̄ and let AΓ denote the submodule of Γ-
invariants in any Γ̄-module A. For i = 0, 1, 2 set Ii(Γ) = IΓ

i .
The boundary maps defined above are Γ̄-equivariant, and therefore we get a complex:

I2(Γ)
∂̄2

I1(Γ)
∂̄1

I0(Γ).

What we compute by computer is the homology of this complex, also called “the 
cuspidal Voronoi homology.” We will show that it is naturally isomorphic to the cuspidal 
Steinberg homology of Γ. In the statement and proof of this theorem we will use the 
notation [g] for a modular symbol, where g ∈ M2(Q) with neither column the 0-vector, 
and where [g] stands for the modular symbol [ge, gf ] (where as usual e = (1 : 0), f =
(0 : 1) ∈ P 2(Q)).

Theorem 13.1. Let R be an integral domain. Let Γ be a subgroup of finite index in Γ̄
and define the modules and maps ∂̄2 : I2(Γ) → I1(Γ) and ∂̄1 : I1(Γ) → I0(Γ) as in the 
preceding discussion. Then there is a natural isomorphism
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Ker(∂̄1)/ Im ∂̄2 → Hcusp
0 (Γ,St(Q2;R)).

This isomorphism takes the class of F ∈ Ker(∂̄1) to 
∑

g∈R1
F (g)[g]Γ, where R1 denotes 

a set of representatives of the double cosets Γ\Γ̄/Γ̄1.

Proof. Many of the details of this proof consist of tedious checking and will be omitted. 
For i = 0, 1, 2, write Ii instead of Ii(Γ), for brevity. Let Ri denote a set of representatives 
of the double cosets Γ\Γ̄/Γ̄i. Let J denote the free R-module on Γ̄. If g ∈ Γ̄ we write 
g = (u, v) where u and v are the columns of g.

Let A be the submodule of J generated by the relations (u, v) − (±u, ±v) and (u, v) +
(v, u), where all four choices of ± are used. Note that these relations are those generated 
by Γ̄1 acting on J on the right, taking the character χ1 into account. Let B be the 
submodule of J generated by the relations (u, v) − (γu, γv), where γ runs over Γ.

Define an R-module map

θ : I1 → J/(A + B)

by θ(F ) =
∑

g∈R1
F (g)g mod (A +B). The first task is to prove that θ is an isomorphism 

of R-modules and does not depend on the choice of double coset representatives R1. A 
key point here is to distinguish between oriented and unoriented objects.

For i = 0, 1, 2 let us say that g ∈ Γ̄ is “i-unoriented” if and only if there exist γ ∈ Γ
and δ ∈ Γ̄1 such that γgδ = g and χi(δ) 
= 1. Otherwise, say that g is “i-oriented.” 
The property of being i-oriented or i-unoriented depends only on the double coset ΓgΓ̄i, 
and we call the double coset i-oriented or i-unoriented accordingly. Let R∗

i be a set of 
representatives for the i-oriented double cosets.

Given an i-orientable g, define F i
g ∈ Ii to be the function

F i
g(γgδ) =

{
χi(δ) for γ ∈ Γ and δ ∈ Γ̄i,
0 otherwise.

Then we check that any F ∈ Ii is supported on the union of the orientable double 
cosets, that the set of functions {F i

g | g ∈ R∗
i } is a free R-basis of Ii, and that θ is an 

isomorphism. We omit the details.
We now have to determine θ(Im(∂̄2)). Let C be the submodule of J generated by 

g(1 + U + V ) as g runs over Γ̄. Our claim is that θ(Im(∂̄2)) is congruent to C modulo 
A + B. The key point here is what we observed earlier, that ∂2(F2) = (1 + U + V )F1. 
We omit the details.

By Corollary 2.7, J/(A +B + C) is naturally isomorphic to H0(Γ, St(Q2; R)) via the 
map x �→ [x]Γ. So we see that θ induces an isomorphism θ̄ : I1/ Im ∂̄2 → H0(Γ, St(Q2; R)), 
and this verifies the explicit form of the isomorphism asserted in the theorem.

It remains to show that θ̄ takes the kernel of ∂̄1 to Hcusp
0 (Γ, St(Q2; R)). This can be 

done using Definition 5.2 and the fact (observed earlier) that ∂1(F1) = (S − 1)F0. �
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Example 13.2. In this example, we assume that multiplication by 2 is injective on the 
coefficient ring R. This allows us to use a much smaller chain complex, because there are 
many unorientable cells. If there exists an orientation reversing element γ ∈ Γ̄{1,2,3} \
Γ̄+
{1,2,3} such that a · γ = a, then that triangle is non-orientable in X∗/Γ, and we remove 

it from the cell complex. Similar we remove non-orientable edges from the cell complex.
Let N = 11 and Γ = Γ0(11)±. The finite projective space P 1(F11) has 12 points: 

[0 : 1], [1 : 0], [1 : 1], . . . , [1 : 10]. We represent any given cell by a matrix, whose columns 
determine the vertices of the cell.

Using the stabilizer Γ̄{1,2,3}, the points of P 1(F11) get grouped into 3 orbits:

t1 = {[0 : 1], [1 : 0], [1 : 10]}
t2 = {[1 : 1], [1 : 5], [1 : 9]}
t3 = {[1 : 2], [1 : 3], [1 : 4], [1 : 6], [1 : 7], [1 : 8]}.

Only t3 is orientable, so C2 is 1-dimensional. We choose as a representative 2-cell σ =[
0 −1 −1
1 2 3

]
.

Using the stabilizer Γ̄{1,2}, the points of P 1(F11) get grouped into 4 orbits:

e1 = {[0 : 1], [1 : 0]}
e2 = {[1 : 1], [1 : 10]}
e3 = {[1 : 2], [1 : 5], [1 : 6], [1 : 9]}
e4 = {[1 : 3], [1 : 4], [1 : 7], [1 : 8]}.

We have e1, e3, and e4 are orientable, so C1 is 3-dimensional. We choose as representatives

τ1 =
[
1 0
0 1

]
, τ2 =

[
0 −1
1 2

]
, and τ3 =

[
0 −1
1 3

]
.

We now compute the boundary map ∂2 : C2 → C1,

∂2(σ) =
[
−1 −1
2 3

]
−
[
0 −1
1 3

]
+

[
0 −1
1 2

]
=

[
−1 −1
2 3

]
− τ3 + τ2.

Since [
−1 −1
2 3

]
=

[
−4 −1
11 3

] [
0 −1
1 3

] [
0 1
−1 0

]
,

it follows that the cell 
[
−1 −1
2 3

]
is −τ3. Thus ∂2(σ) = τ2 − 2τ3, and so the matrix 

representing this boundary operator is [∂2] =
[ 0

1
]
.

−2
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Using the stabilizer Γ, the points of P 1(F11) get grouped into 2 orbits:

v1 = {[0 : 1], [1 : 1], [1 : 2], . . . , [1 : 10]}
v2 = {[1 : 0]}.

It follows that C0 is 2-dimensional. We choose as representatives ρ1 =
[
1
0

]
and ρ2 =

[
0
1

]
. 

We now compute the boundary map ∂1 : C1 → C0.

∂2(τ1) =
[
0
1

]
−
[
1
0

]
= ρ2 − ρ1,

∂2(τ2) =
[
−1
2

]
−
[
0
1

]
=

[
−1
2

]
− ρ2,

∂2(τ3) =
[
−1
3

]
−
[
0
1

]
=

[
−1
3

]
− ρ2.

Since [
−1
2

]
=

[
6 −1
11 2

] [
0
1

]
and

[
−1
3

]
=

[
4 −1
11 2

] [
0
1

]
,

we have that 
[
−1
2

]
and 

[
−1
3

]
are both ρ2 so

∂1(τ2) = ∂1(τ3) = 0.

Thus the matrix representing this boundary operator is [∂1] =
[
−1 0 0
1 0 0

]
.

For the homology computation, the kernel of ∂1 is generated by τ2 and τ3, and in the 
quotient by the image of ∂2, we have [τ2] = 2[τ3]. Here, we use square brackets to signify 
a homology class.

14. Remarks on the computations and on tables of results

We performed computations to find the image of ψΓ,E, when R = Z, for Γ equal to 
Γ0(N)± and Γ0(N)± for N ≤ 1000 and E = Q[

√
Δ] with Δ ≤ 50. There are 29,610 pairs 

[N, Δ] for which the Steinberg homology is nontrivial. All of the computations are done 
in [4], with some processing of the data done with SageMath [17]. We first computed the 
cuspidal Steinberg homology groups over Z as described in Section 13. Then for each 
pair [N, Δ], we computed the image of ψΓ,E as follows.

From Corollary 3.2, the image is generated by the symbols of the form [e, γβe]Γ, for 
(β : 1) ∈ P 1(E) \P 1(Q). We generate β-unital matrices by looking at higher and higher 
powers of the fundamental unit ε of E, and finding β such that γβ is in Γ. For each power 
of ε, we find several β before moving on to the next power of ε. This turned out to be 
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more efficient than first looping through β’s of growing height and for each β finding the 
smallest k such that ρβ(εk) is in Γ. For each γβ , the symbol [e, γβe]Γ is computed using 
the usual continued fractions technique for modular symbols [8, page 14].

For each pair [N, Δ], the computation generates elements in the image of ψΓ,E. These 
elements generate a submodule of the image of ψΓ,E. There are quick exits if we find this 
submodule is equal to the whole cuspidal Steinberg homology, since in that case ψΓ,E

is surjective onto it. Otherwise, the computation runs for 100 seconds. We know this 
tabulated result is a subspace of the true image of ψΓ,E. In practice, this subspace of the 
image of ψΓ,E almost always stabilized quickly, in which case we record it as our output, 
and have confidence that it is the true image. In the few cases where stabilization did 
not occur by 100 seconds, we computed further until we were satisfied that the result 
had stabilized.

Given N and E, it is true that if we were to compute for more and more β’s, the 
reported image of ψΓ0(N),E could get bigger. For instance, it is consistent with our 
calculations that ψΓ0(N),E is always surjective. We do not have an effective bound on 
the height of β that would ensure the correctness of our reported image.

The following facts lend additional credibility to our calculations. Let R(N, E)± de-
note the reported image of ψΓ0(N)±,E , and let R(N, E) denote the reported image of 
ψΓ0(N),E . Then

(i) The rank of R(N, E)± is always the genus g(N) of the compact modular curve 
X0(N), and the rank of R(N, E) is always 2g(N), consistent with the results of 
Section 12.

(ii) π(R(N, E)±) always contains AE(N) as a subgroup of index at most 4, and 
π∗(R(N, E)) always contains A∗

E(N) as a subgroup of index at most 4, consistent 
with the results of Section 11.

See Tables 1 and 2 in Section 15 for a small sample of the computational results. The 
full set of results for level N ≤ 1000 and real quadratic fields Q(

√
Δ) for Δ ≤ 50 are 

available online (https://mathstats .uncg .edu /yasaki /data/).

15. Tables of sample data

In the following tables, the meaning of the column headings is as follows:
For Γ = Γ0(N)±: U± = (Z/NZ)×/{±1}, A± = AE(N), and Q± = U±/A±. We also 

list the free rank r± and torsion subgroup T± of Hcusp
0 (Γ0(N)±, St(Q2)), the cokernel 

C± of ψΓ,Q(
√

Δ), and the shrinkage s± = |Q±|/|C±|. The Δ±-list is a list of squarefree 

Δ ≤ 50, such that Q(
√

Δ) has the given information.
For Γ = Γ0(N): U = (Z/NZ)×, A = A∗

E(N), and Q = U/A. We also list the free 
rank r and torsion subgroup T of Hcusp

0 (Γ0(N), St(Q2)), the cokernel C of ψΓ,Q(
√

Δ), 
and shrinkage s = |Q|/|C|.

https://mathstats.uncg.edu/yasaki/data/
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Table 1
Data for Γ±

0 (N).

N U± A± Q± C± r± T± s± Δ±-list

7 C3 C3 C1 C1 0 C3 1 [2, 11, 15, 23, 29, 30, 37, 39, 43, 46]
7 C3 C1 C3 C3 0 C3 1 [3, 5, 6, 7, 10, 13, 14, 17, 19, 21, 22, 

26, 31, 33, 34, 35, 38, 41, 42, 47]
11 C5 C5 C1 C1 1 C1 1 [3, 5, 14, 15, 23, 26, 31, 34, 37, 38, 

42, 47]
11 C5 C1 C5 C5 1 C1 1 [2, 6, 7, 10, 11, 13, 17, 19, 21, 22, 

29, 30, 33, 35, 39, 41, 43, 46]
13 C6 C6 C1 C1 0 C3 1 [3, 14, 17, 22, 23, 29, 30, 38, 43]
13 C6 C3 C2 C1 0 C3 2 [10, 35]
13 C6 C2 C3 C3 0 C3 1 [2, 5, 13, 26, 37, 41, 42]
13 C6 C1 C6 C3 0 C3 2 [6, 7, 11, 15, 19, 21, 31, 33, 34, 39, 

46, 47]
14 C3 C3 C1 C1 1 C1 1 [2, 11, 15, 23, 30, 37, 39, 43, 46]
14 C3 C1 C3 C3 1 C1 1 [3, 5, 6, 7, 10, 13, 14, 17, 19, 21, 22, 

26, 29, 31, 33, 34, 35, 38, 41, 42, 47]
15 C4 C4 C1 C1 1 C1 1 [6, 10, 11, 13, 19, 21, 31, 34, 37, 39, 

46]

15 C4 C2 C2 C2 1 C1 1 [2, 3, 5, 15, 17, 22, 23, 26, 29, 30, 
35, 41, 42, 43, 47]

15 C4 C1 C4 C2 1 C1 2 [7, 14, 33, 38]
17 C8 C8 C1 C1 1 C1 1 [2, 13, 15, 21, 30, 33, 35, 42]
17 C8 C4 C2 C2 1 C1 1 [26, 38, 43, 47]
17 C8 C2 C4 C4 1 C1 1 [5, 10, 17, 19, 29, 37, 41]
17 C8 C1 C8 C4 1 C1 2 [3, 6, 7, 11, 14, 22, 23, 31, 34, 39, 

46]

19 C9 C9 C1 C1 1 C3 1 [5, 6, 7, 17, 23, 26, 30, 35, 39, 42, 
43]

19 C9 C3 C3 C3 1 C3 1 [11, 47]
19 C9 C1 C9 C9 1 C3 1 [2, 3, 10, 13, 14, 15, 19, 21, 22, 29, 

31, 33, 34, 37, 38, 41, 46]
20 C4 C4 C1 C1 1 C1 1 [5, 6, 13, 14, 17, 21, 34, 37, 39, 41, 

46]

20 C4 C2 C2 C2 1 C1 1 [2, 3, 7, 10, 11, 15, 19, 22, 23, 26, 
29, 30, 31, 33, 35, 38, 42, 43, 47]

65 C2 × C12 C3 C2 × C4 C2 5 C1 4 [35]

65 C2 × C12 C1 C2 × C12 C6 5 C1 4 [7, 47]
285 C2 × C36 C3 C2 × C12 C6 37 C1 4 [7]

285 C2 × C36 C1 C2 × C36 C18 37 C1 4 [14]

983 C491 C1 C491 C491 82 C1 1 [5, 10, 11, 13, 15, 17, 22, 26, 29, 30, 
33, 34, 35, 39]

991 C495 C1 C495 C495 82 C3 1 [3, 6, 7, 11, 14, 15, 17, 22, 23, 30, 
34, 35, 37, 39, 41, 46, 47]
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Table 2
Data for Γ0(N).

N U A Q C r T s Δ-list

7 C6 C6 C1 C1 0 C3 1 [2, 11, 15, 23, 29, 30, 37, 39, 43, 46]
7 C6 C2 C3 C3 0 C3 1 [3, 5, 6, 7, 10, 13, 14, 17, 19, 21, 22, 

26, 31, 33, 34, 35, 38, 41, 42, 47]
11 C10 C10 C1 C1 2 C1 1 [3, 5, 14, 15, 23, 26, 31, 34, 37, 38, 

42, 47]
11 C10 C2 C5 C5 2 C1 1 [2, 6, 7, 10, 11, 13, 17, 19, 21, 22, 

29, 30, 33, 35, 39, 41, 43, 46]
13 C12 C12 C1 C1 0 C3 1 [3, 14, 22, 23, 30, 38, 43]
13 C12 C6 C2 C1 0 C3 2 [10, 17, 29, 35]
13 C12 C4 C3 C3 0 C3 1 [42]

13 C12 C2 C6 C3 0 C3 2 [2, 5, 6, 7, 11, 13, 15, 19, 21, 26, 31, 
33, 34, 37, 39, 41, 46, 47]

14 C6 C6 C1 C1 2 C1 1 [2, 11, 15, 23, 30, 37, 39, 43, 46]
14 C6 C2 C3 C3 2 C1 1 [3, 5, 6, 7, 10, 13, 14, 17, 19, 21, 22, 

26, 29, 31, 33, 34, 35, 38, 41, 42, 47]
15 C2 × C4 C2 × C4 C1 C1 2 C1 1 [6, 11, 19, 21, 31, 34, 39, 46]
15 C2 × C4 C2 × C2 C2 C2 2 C1 1 [2, 3, 5, 10, 13, 15, 17, 22, 23, 26, 

29, 30, 35, 37, 41, 42, 43, 47]
15 C2 × C4 C2 C4 C4 2 C1 1 [7, 14, 33, 38]
17 C16 C16 C1 C1 2 C1 1 [15, 21, 30, 33, 35, 42]
17 C16 C8 C2 C2 2 C1 1 [2, 13, 38, 43, 47]
17 C16 C4 C4 C4 2 C1 1 [19, 26]
17 C16 C2 C8 C4 2 C1 2 [3, 5, 6, 7, 10, 11, 14, 17, 22, 23, 29, 

31, 34, 37, 39, 41, 46]
19 C18 C18 C1 C1 2 C3 1 [5, 6, 7, 17, 23, 26, 30, 35, 39, 42, 

43]

19 C18 C6 C3 C3 2 C3 1 [11, 47]
19 C18 C2 C9 C9 2 C3 1 [2, 3, 10, 13, 14, 15, 19, 21, 22, 29, 

31, 33, 34, 37, 38, 41, 46]
20 C2 × C4 C2 × C4 C1 C1 2 C1 1 [6, 14, 21, 34, 39, 46]
20 C2 × C4 C2 × C2 C2 C2 2 C1 1 [2, 3, 5, 7, 10, 11, 13, 15, 17, 19, 22, 

23, 26, 29, 30, 31, 33, 35, 37, 38, 41, 
42, 43, 47]

65 C4 × C12 C6 C2 × C4 C2 10 C1 4 [35]

65 C4 × C12 C2 C2 × C12 C6 10 C1 4 [2, 5, 7, 13, 17, 37, 41, 47]
85 C4 × C16 C2 C2 × C16 C8 14 C1 4 [5, 10, 17, 37, 41]
130 C4 × C12 C6 C2 × C4 C2 34 C1 4 [35]

130 C4 × C12 C2 C2 × C12 C6 34 C1 4 [2, 5, 7, 13, 17, 37, 41, 47]

983 C982 C2 C491 C491 164 C1 1 [5, 10, 11, 13, 15, 17, 22, 26, 29, 30, 
33, 34, 35, 39]

991 C990 C2 C495 C495 164 C3 1 [3, 6, 7, 11, 14, 15, 17, 22, 23, 30, 
34, 35, 37, 39, 41, 46, 47]
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The Δ-list is a list of squarefree Δ ≤ 50, such that Q(
√

Δ) has the given infor-
mation. For Δ ∈ {2, 5, 10, 13, 17, 26, 29, 37, 41}, Q(

√
Δ) has a unit of norm −1. For 

Δ ∈ {3, 6, 7, 11, 14, 15, 19, 21, 22, 23, 30, 31, 33, 34, 35, 38, 39, 42, 43, 46, 47}, Q(
√

Δ) does 
not have a unit of norm −1.

Each table includes: all the data for levels N ≤ 20, a few examples with shrinkage 
equal to 4, and the cokernels found with largest cardinality.

Note: The cokernel is not always cyclic. We have several examples of (Γ0(N)±, E)
where the cokernel has 2 cyclic factors although none with 3 or more cyclic factors. For 
(Γ0(N), E), we have several examples with 3 cyclic factors. For instance, the cokernel 
for Γ0(840) is isomorphic to C2 × C2 × C6 when Δ = 37.
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