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Sifting limits for the Λ2Λ− sieve, Selberg’s lower bound sieve,
are computed for integral dimensions 1 < κ � 10. The evidence
strongly suggests that for all κ � 3 the Λ2Λ− sieve is superior to
the competing combinatorial sieves of Diamond, Halberstam, and
Richert. A method initiated by Grupp and Richert for computing
sieve functions for integral κ is also outlined.
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1. Introduction

Let A be a sequence of integers, and P a set of primes. Recall that the goal of the sieve method
is to obtain bounds for

S(A, P, z) =
∑
n∈A

(n,P (z))=1

1, (1)

where

P (z) =
∏
p∈P
p<z

p.
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One expects that the sequence A is well-behaved in that Ad , the elements of A divisible by d, satisfy

|Ad| = X

f (d)
+ Rd, (2)

where f (d) is some multiplicative function, and the errors, Rd , are relatively small, at least on aver-
age. In fact, suppose that there exists a constant A � 1 such that

∑
d< X

logA X

μ2(d)7ν(d)|Rd| � X

logκ+1 X
. (3)

In addition, one assumes that

∑
p<s

log p

f (p)
= κ log s + O (1), (4)

and refers to κ as the dimension, or density, of the sieve.
H. Diamond and H. Halberstam, in association with the late professor H.-E. Richert, constructed

a class of sieves for all dimensions κ � 1. Their sieves (DHR sieves for short) combine elements of
Selberg’s Λ2 upper bound sieve and the combinatorial sieves of Rosser and Iwaniec. For an account
of their work, we refer the reader to their recent book [4]. An important parameter in a sieve is the
sifting limit βκ , beyond which the lower bound sieve yields a positive lower bound. The calculations
in Chapter 17 of [4] show that for the DHR sieves, βκ � 2.44κ .

Selberg investigated an alternative lower bound sieve method, known as the Λ2Λ− sieve, for large
dimensions κ . The starting point for this sieve, similar to the Λ2 upper bound sieve, is the observation
that for any set of real numbers λd , normalized so that λ1 = 1,

S(A, P, z) �
∑
n∈A

(
1 −

∑
p|n
p<z

1

)( ∑
d|n

d|P (z)

λd

)2

.

Selberg proved that for sufficiently large κ , this sieve yields βκ � 2κ + 19/36. As a consequence, the
Λ2Λ− sieve is superior to the DHR sieves if κ is taken sufficiently large. How large is sufficiently
large? For small integer κ with 2 � κ � 10, we prove

Theorem 1. Suppose S(A, P , z) is as defined in (1), and that A satisfies (2), (3), and (4). Letting |A| = x, and
z = x1/βκ , we have

S(A, P, z) � x

logκ x

for pairs κ and βκ listed in the table below.

κ 2 3 4 5 6 7 8 9 10

βκ 4.516 6.520 8.522 10.523 12.524 14.524 16.524 18.525 20.525

Thus, Selberg’s sifting limit is approached rapidly from below. Indeed, although we have restricted
the argument to integer 2 � κ � 10, we expect that βκ � 2κ + 19/36 for all κ . When compared with
the DHR sieves, the Λ2Λ− sieve gives a better sifting limit βκ for integral κ � 3. Table 1 gives a
comparison of the two sieves.
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Table 1
Sifting limit comparison.

κ 2 3 4 5 6 7 8 9 10

DHR βκ 4.266 6.640 9.072 11.534 14.014 16.504 18.998 21.495 23.992
Λ2Λ−βκ 4.516 6.520 8.522 10.523 12.524 14.524 16.524 18.525 20.525

More improvements are certainly possible. Recently, Sara Blight [1, pp. 28–29] has shown that β2 <

4.45, β3 < 6.458, and β4 < 8.47. Her work features a set of weights that take into account numbers
composed of up to three prime factors. These weights were suggested by Selberg as a modification to
the Λ2Λ− sieve.

One interesting application of these sieves is to almost-primes in polynomial sequences. In a forth-
coming paper, the author will show that a weighted Λ2Λ− sieve is capable of producing better results
than the weighted DHR sieves when the polynomial is a product of linear irreducible factors, for ex-
ample. However, the DHR sieves still perform quite well in the higher dimensional setting when the
irreducible factors of the polynomial are each of a large degree, owing to the optimal nature of the
DHR construction when κ = 1.

2. Sieve setup

Following Selberg, we define f ′ := f ∗μ and let λd be an arbitrary sequence of real numbers with
the property that λd = 0 if d is not squarefree, or if d > ξ . Next, define ζr by the relation

μ(r)ζr

f ′(r)
=

∑
d

λdr

f (dr)
. (5)

By Möbius inversion, we also have

μ(d)λd

f (d)
=

∑
r

ζdr

f ′(dr)
.

In the classical Selberg sieve, the ζr are constant.
Assume that λ1 �= 0, and let λ′

d = λd
λ1

. Since λ′
1 = 1,

∑
n∈A

(n,P (z))=1

1 �
∑
n∈A

(
1 −

∑
p|n
p<z

1

)( ∑
ν|n

ν|P (z)

λ′
ν

)2

.

The right-hand side can be rearranged using a well-known identity. In particular, we have

Lemma 1. With ζr defined as in (5), we have

∑
n∈A

( ∑
d|n

d|P (z)

ad

)( ∑
ν|n

ν|P (z)

λν

)2

= |A|SA + EA, (6)

where

SA =
∑

m

∑
d

(d,m)=1

μ2(m)

f ′(m)

ad

f (d)

(∑
r|d

μ(r)ζrm

)2

, (7)
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and

EA =
∑

d,ν1,ν2|P (z)

adλν1λν2 R[d,ν1,ν2]. (8)

For our purposes, we divide both sides of this identity by λ2
1 and choose

ad =
⎧⎨⎩

1, if d = 1,

−1, if d is prime and d < z,

0, otherwise.

(9)

The identity in (6) distinguishes (7) as the main term and (8) as the error term for the sum. This
identity is the starting point of the Λ2Λ− method and has appeared in various forms in the works
of Selberg [8, see Section 7 on p. 82], Bombieri [2, see Theorem 18 on p. 65], Cojocaru and Murty [3,
see Theorem 10.1.1 on p. 178], Greaves [5, see Lemma 1 on p. 286], and others.

To produce a positive lower bound for (1) we will show that

|A|SA
λ2

1

+ EA
λ2

1

� |A|V (z)
(
c + o(1)

)
,

where c is some small positive constant, and

V (z) =
∏
p<z

(
1 − 1

f (p)

)
.

To begin, suppose that |A| = x, and let z = x1/u . It is easy to see that

V (z)−1 � logκ x.

Next, choosing

zξ2 = x1−ε, (10)

and recalling (3), we have

EA
λ2

1

�
∑

m<zξ2

m|P (z)

|Rm|
∑

d,ν1,ν2[d,ν1,ν2]=m

1 =
∑

m<zξ2

m|P (z)

7ν(m)|Rm|

�
∑

m<zξ2

μ2(m)7ν(m)|Rm| � x

logκ+1 x
.

Here we have used the fact that λd
λ1

is bounded, which will be explained below.
The ζr will be chosen as

ζr = P

(
log ξ/r

log z

)
,
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where P (w) is a polynomial that is positive for 0 � w � u. Therefore,

λ1 =
∑
r<ξ

ζr

f ′(r)
� sup

0�w�u
P (w)

∑
r<ξ

r|P (z)

1

f ′(r)
�

∑
r|P (z)

1

f ′(r)
= 1

V (z)
. (11)

In the case when ζr = 1, the λν are well-understood. We will refer to this choice of λν as λ̃ν . It is
known, for example, that |̃λν | � |̃λ1|. Since

|λd| � sup
0�w�u

∣∣P (w)
∣∣̃λ1, (12)

and

λ1 =
∑
r<ξ

r|P (z)

μ2(r)

f ′(r)
P

(
log ξ/r

log r

)
� inf

0�w�u
P (w )̃λ1,

it is clear that

|λν |
|λ1| �

sup0�w�u |P (w)|
inf0�w�u |P (w)| . (13)

It follows that the sequence

λ′
ν = λν

λ1

is bounded.
Finally, since

|A|SA
λ2

1

+ EA
λ2

1

= |A|V (z)

(
SA V (z)

(λ1 V (z))2
+ 1

|A|V (z)

EA
λ2

1

)
,

we have

|A|SA
λ2

1

+ EA
λ2

1

= |A|V (z)

(
SA V (z)

(λ1 V (z))2
+ O

(
1

log x

))
.

We showed in (11) that λ1 V (z) is bounded, and so our priority is in the analysis of SA V (z).

3. Analysis of the main term

In this section, we will treat the expression SA occurring in the main term of the Λ2Λ− lower
bound sieve. First, let us recall that with Selberg’s choice of weights ad in (9) we have that

SA >
∑
m<ξ

m|P (z)

μ2(m)

f ′(m)
ζ 2

m −
∑
m<ξ

m|P (z)

μ2(m)

f ′(m)

∑
p<z

1

f (p)
(ζm − ζpm)2,
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upon omitting the condition that (m, p) = 1 in (7). We wish to smooth this expression using the
asymptotic formulas for

G(r, z) =
∑
m<r

m|P (z)

μ2(m)

f ′(m)
∼ jκ (

log r
log z )

V (z)
, (14)

and

H(s) =
∑
p<s

log p

f (p)
∼ κ log s, (15)

where jκ (u) is the continuous solution of the differential-delay equation

u j′(u) = κ j(u) − κ j(u − 1), (16)

for u > 1, with

j(u) =
{

e−γ κ

Γ (κ+1)
uκ , if 0 < u � 1,

0, if u � 0.
(17)

We remark that if κ is held fixed, then jκ (u) increases to 1. Now, using Riemann–Stieltjes integration
and replacing the integrators with their corresponding smooth approximations in (14) and (15), we
expect that

SA � 1

V (z)

ξ∫
1

ζ 2
r djκ

(
log r

log z

)
− κ

V (z)

ξ∫
1

z∫
1

(ζr − ζsr)
2 d log s

log s
djκ

(
log r

log z

)
. (18)

This is indeed the case since, more specifically, if one regards κ and u := log ξ
log z � 1 as fixed, then one

has

G(r, z) =
∑
m<r

m|P (z)

μ2(m)

f ′(m)
= jκ (

log r
log z )

V (z)

(
1 + O

(
1

log z

))
, (19)

and

H(s) =
∑
p<s

log p

f (p)
= κ log s + O (1), (20)

making the error in (18) of order at most (V (z) log z)−1. The formula in (20) is merely our assumed
density hypothesis in (4). On the other hand, the bound in (19) is a consequence of

Lemma 2. For any τ = log r
log z > 0, we have

1

G(r, z)
= V (z)

(
1

jκ (τ )
+ O

(
τ 2κ+1

log z

))
.



1968 C.S. Franze / Journal of Number Theory 131 (2011) 1962–1982
Lemma 2 is discussed in some detail in Halberstam and Richert [7, see Section 4 on p. 197]. Now,
let us define

u = log ξ

log z
� 1,

and

ζr = P∗
(

log ξ/r

log z

)
, (21)

where

P∗
(

log ξ/r

log z

)
:=

{
P (

log ξ/r
log z ) if r < ξ ,

0 if r � ξ
(22)

is a polynomial in the range r < ξ . Using these definitions simplify the integrals occurring in the
analysis of SA , and making the variable change v = log r

log z , and t = log s
log z , in (18), we have

SA � 1

V (z)

(
I1 − κI ∗

2

)
,

where

I1 =
u∫

0

P∗(u − v)2 j′κ (v)dv,

and

I ∗
2 =

u∫
0

1∫
0

(
P∗(u − v) − P∗(u − v − t)

)2 dt

t
j′κ (v)dv.

Furthermore, after making the change of variable w = u − v , and using (22), these integrals further
simplify to

I1 =
u∫

0

P (w)2 j′κ (u − w)dw,

and

I ∗
2 =

u∫
0

1∫
0

(
P (w) − P∗(w − t)

)2 dt

t
j′κ (u − w)dw.

The latter integral must be further dissected to account for the vanishing of the function P∗ in the
range w � t � 1. As a result, the region in the latter integral naturally splits into three distinct pieces.
After splitting the range of integration to account for this, we find that

SA � 1
(I1 − κI2 − κI3 − κI4), (23)
V (z)
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where

I1 =
u∫

0

P (w)2 j′κ (u − w)dw, (24)

I2 =
u∫

1

1∫
0

(
P (w) − P (w − t)

)2 dt

t
j′κ (u − w)dw, (25)

I3 =
1∫

0

w∫
0

(
P (w) − P (w − t)

)2 dt

t
j′κ (u − w)dw, (26)

I4 =
1∫

0

1∫
w

P (w)2 dt

t
j′κ (u − w)dw. (27)

Contrary to initial appearances, the innermost integral in (25) and (26) does not have a singularity at
t = 0 because the constant term does not appear in the difference P (w) − P (w − t). The next step is
to employ a device of Grupp and Richert to evaluate these integrals. Before moving on, let us remark
that if u := κ − 1/3 − d, and κ is taken sufficiently large, Selberg [8, see pp. 174–176] has shown that
if one sets P (w) = w + a, one has

SA � 1

V (z)

(
−a2 + 1

2
a − (2 + 9d)

18

)√
κ

π
.

Choosing a so that d is as large as possible with −a2 + 1
2 a − 2+9d

18 > 0, we see that the optimal
choice is a = 1/4, which implies that a positive lower bound is achieved when d < −7/72. A slightly
more complicated argument that involves a more sophisticated set of weights will give d � −7/72,
and this is enough to show that the sifting limit βκ � 2u + 1 = 2κ + 19

36 , upon taking d = −7/72.
The weights that achieve this involve divisors of n consisting of two and three prime factors. As the
author’s investigations of the use of higher degree polynomials in this problem has not met with
much success, we will follow Selberg and restrict our attention to linear polynomials as well.

4. The Kn(u,λ) functions

In order to evaluate the integrals arising in our sieve, we will need to decompose j′κ . In his dis-
sertation, Wheeler [9, see Proposition 3.1.1 on p. 18] noted that jκ , as well as its derivatives, could
be decomposed into a sum of simpler functions Kn(u, λ), each defined for λ > −1 and n � 0. More
specifically, we have

jκ (u) = e−κγ

Γ (κ + 1)

∑
0�n<u

(−κ)n Kn(u, κ). (28)

The sequence of functions Kn(u, λ) is defined by the equations

K0(u, λ) = uλ, u > 0, (29)
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and

Kn(u, λ) = uλ

u∫
n

t−λ−1 Kn−1(t − 1, λ)dt, u > n � 1. (30)

We also specify that these functions vanish if u � n, and thus

Kn(u, λ) = 0, u � n. (31)

To justify that the decomposition in (28) is valid, one can verify that the expression on the right-hand
side of (28) satisfies the delay-differential equation in (16). This follows from the observation that for
n � 1,

uK ′
n(u, κ) = Kn−1(u − 1, κ) + κ Kn(u, κ).

Upon separating the first term from the decomposition in (28), we have

u
e−κγ

Γ (κ + 1)

∑
0�n<u

(−κ)n K ′
n(u, κ)

= u

(
e−κγ

Γ (κ + 1)
K ′

0(u, κ) + e−κγ

Γ (κ + 1)

∑
1�n<u

(−κ)n K ′
n(u, κ)

)

= κ
e−κγ

Γ (κ + 1)
K0(u, κ) + e−κγ

Γ (κ + 1)

∑
1�n<u

(−κ)nuK ′
n(u, κ)

= κ
e−κγ

Γ (κ + 1)
K0(u, κ) + e−κγ

Γ (κ + 1)

∑
1�n<u

(−κ)n(Kn−1(u − 1, κ) + κ Kn(u, κ)
)
,

which is

= κ
e−κγ

Γ (κ + 1)

∑
0�n<u

(−κ)n Kn(u, κ) − κ
e−κγ

Γ (κ + 1)

∑
1�n<u

(−κ)n−1 Kn−1(u − 1, κ)

= κ
e−κγ

Γ (κ + 1)

∑
0�n<u

(−κ)n Kn(u, κ) − κ
e−κγ

Γ (κ + 1)

∑
0�n<u−1

(−κ)n Kn(u − 1, κ).

Therefore, the expression occurring on the right-hand side of (28) satisfies the same differential-
delay equation as the sieve function jκ (u). We will only be concerned with integral dimensions κ
throughout this discussion, and thus will focus on integral λ > −1. In fact, the most important case
occurs when λ = 0 and the following lemma will provide us with a useful tool to understand the
cases when λ �= 0.

Lemma 3. If λ � 1 and n � 0, then

d

du
Kn(u, λ) = λKn(u, λ − 1).
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Proof. We assume that u � n, for the result is obvious otherwise. Our proof is by induction on n; the
case n = 0 is obvious. From (30), we see that

d

du
Kn+1(u, λ) = Kn(u − 1, λ)

u
+ λuλ−1

u∫
n+1

Kn(t − 1, λ)

tλ+1
dt. (32)

On the other hand, we can use (30) together with the inductive hypothesis and integration by parts
to get

λKn+1(u, λ − 1) = uλ−1

u∫
n+1

dKn(t − 1, λ)

tλ
= Kn(u − 1, λ)

u
+ λuλ−1

u∫
n+1

Kn(t − 1, λ)

tλ+1
dt.

The desired result follows by comparing this with (32). �
As an application of this lemma, it is easy to deduce that

j′κ (u) = e−κγ

Γ (κ)

∑
0�n<u

(−κ)n Kn(u, κ − 1), (33)

and indeed expressions for higher derivatives of jκ can be obtained with more applications of
Lemma 3, if desired.

5. The case λ = 0

Grupp and Richert [6] made a close study of Kn(u,0), obtaining useful power series representa-
tions for these functions. Their notation differs from Wheeler’s, but their results can be translated
easily since

Kn(u,0) = (u + 1)In+1(u + 1).

In this section and the following one, we shall write Kn(u) in place of Kn(u,0). We can obtain an
analytic continuation of the function Kn(u) if we define Kn(z) by the equations

K0(z) = 1, 	z > −1,

and

Kn(z) =
z∫

n

Kn−1(z − 1)
dt

t
, 	z > n − 1.

It is easy to see that Kn(z) is an analytic function for 	z > n − 1 and coincides with Kn(u) for real
values of u � n. Thus, the power series

Kn(u) =
∞∑
j=0

b j(n, c)
(
u − (n + c)

) j
(34)

is valid for |u − (n + c)| < 1 + c and u � n, and any c � 0. Moreover, the constant coefficients satisfy

b0(n, c) = Kn(n + c). (35)
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Now, we have the following recursive formula for the rest of the coefficients b j(n, c), where j �= 0.

Lemma 4. If j � 1, n � 1, and c � 0, then

b j(n, c) = (−1) j−1

j(n + c) j

j−1∑
l=0

(−1)lbl(n − 1, c)(n + c)l.

Proof. From (30) and (34), we obtain K ′
n(u) = Kn−1(u − 1)/u and

∞∑
j=0

jb j(n, c)
(
u − (n + c)

) j−1 = 1

u

∞∑
l=0

bl(n − 1, c)
(
u − (n + c)

)l
.

If |u − (n + c)| < 1 + c and n � 1, then |u − (n + c)| < n + c and

1

u
=

∞∑
k=0

(u − (n + c))k(−1)k

(n + c)k+1
.

Inserting this last equation into the previous one, we find that

∞∑
j=0

jb j(n, c)
(
u − (n + c)

) j−1 =
∞∑

k=0

∞∑
l=0

(−1)k

(n + c)k+1
bl(n − 1, c)

(
u − (n + c)

)k+l
.

The desired result follows by equating coefficients of (u − (n + c)) j−1 on both sides. �
An alternative form of the recursive formula for the sequence b j(n, c) will also be useful for in-

duction arguments to follow.

Lemma 5. If j � 1, n � 1, and c � 0, then

b j(n, c) = 1

j(n + c)

{
b j−1(n − 1, c) − ( j − 1)b j−1(n, c)

}
.

Proof. First, observe that from (34), since b j(n, c) are precisely the coefficients in the power series
expansion of Kn(u) centered about u = n + c, we have

b j(n, c) = K ( j)
n (u)

j!
∣∣∣∣
u=n+c

. (36)

Next, from (30), we see that

K ( j−1)
n−1 (u − 1) = (

uK ′
n(u)

)( j−1) =
j−1∑
l=0

(
j − 1

l

)
u(l)K ( j−l)

n (u) = uK ( j)
n (u) + ( j − 1)K ( j−1)

n (u).

Upon dividing both sides of this equation by ( j − 1)! and evaluating at u = n + c, the formula follows
from (36). �
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Grupp and Richert [6] gave the useful bound

∣∣b j(n, c)
∣∣ � 1

j(1 + c) j
, (37)

valid for 0 � c � 5 and j � 2. We will need a bound in a larger range of c for our purposes. Also, we
will be content to accept a slightly worse bound in exchange for a simpler proof. Thus, we prove

Lemma 6. For n � 0, j � 2, and 0 � c � 19,

∣∣b j(n, c)
∣∣ � 4

(1 + c) j
. (38)

Proof. The proof will proceed by induction on both j and n. First, calculations show that

b j(0, c) =
{

1 if j = 0,

0 if j � 1

due to the simple form of K0(u). Using this calculation together with the recursive nature of the
coefficients, we also calculate that

b j(1, c) =
{

log(c + 1) if j = 0,
(−1) j−1

j(c+1) j if j � 1,

and

b j(2, c) =

⎧⎪⎪⎨⎪⎪⎩
K2(2 + c) if j = 0,
log(c+1)

c+2 if j = 1,

(−1) j−1

j(c+2) j {log(c + 1) − ∑ j−1
l=1

1
l (

c+2
c+1 )l} if j � 2.

The bound claimed in the lemma is therefore clear for n = 0 and n = 1. For the case when n = 2, we
will need to show that ∣∣∣∣∣log(c + 1) −

j−1∑
l=1

1

l

(
c + 2

c + 1

)l
∣∣∣∣∣ � j

(
c + 2

c + 1

) j

.

For one side of the inequality, we have that for 0 � c � 19,

log(c + 1) −
j−1∑
l=1

1

l

(
c + 2

c + 1

)l

� log(c + 1) − c + 2

c + 1
< 2 � j

(
c + 2

c + 1

) j

.

For the other side of the inequality, we must show that

j−1∑
l=1

1

l

(
c + 2

c + 1

)l

− log(c + 1) � j

(
c + 2

c + 1

) j

,

but here, Grupp and Richert [6, first formula below (4.6)] obtain the superior bound
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j−1∑
l=1

1

l

(
c + 2

c + 1

)l

− log(c + 1) �
(

c + 2

c + 1

) j

.

Let us therefore assume that n � 3 from now on. Before we can induct on both j and n, we need to
prove that the bound in (38) holds for j = 2. Here, Grupp and Richert [6, formula (2.9)] supply us
with the useful inequality

0 � Kn(u) � logn(u − n + 1)

n! . (39)

This bound clearly holds for n = 0. By induction, when n � 1, we have

Kn(u) � 1

(n − 1)!
u∫

n

logn−1(t − n + 1)
dt

t

� 1

(n − 1)!
u∫

n

logn−1(t − n + 1)d log(t − n + 1) = logn(u − n + 1)

n! ,

since t − n + 1 � t for n � 1. Thus, since log(c + 1) < 3 for 0 � c � 19, it follows from Lemma 5, (36),
and (39) that

∣∣b2(n, c)
∣∣ = 1

2(n + c)

∣∣∣∣ Kn−2(n − 2 + c)

(n − 1 + c)
− Kn−1(n − 1 + c)

(n + c)

∣∣∣∣
� 1

2(n + c)
max

{
Kn−2(n − 2 + c)

(n − 1 + c)
,

Kn−1(n − 1 + c)

(n + c)

}
� 1

2(n + c)
max

{
logn−2(c + 1)

(n − 2)!(n − 1 + c)
,

logn−1(c + 1)

(n − 1)!(n + c)

}
� 1

2(1 + c)2
max

{
logn−2(c + 1)

(n − 2)! ,
logn−1(c + 1)

(n − 1)!
}

� 1

2(1 + c)2
max

{
3n−2

(n − 2)! ,
3n−1

(n − 1)!
}

� 4

(1 + c)2
.

To complete the induction, we observe that if j � 3 and n � 3,

∣∣b j(n, c)
∣∣ =

∣∣∣∣ 1

j(n + c)

{
b j−1(n − 1, c) − ( j − 1)b j−1(n, c)

}∣∣∣∣
� 1

j(n + c)

(
4

(1 + c) j−1
+ ( j − 1)

4

(1 + c) j−1

)
� 4

(1 + c) j
. �

If one requires a bound for b j(n, c) in a larger range of c values, say 2 � c � C , one could probably
replace the constant 4 in the lemma above with log(C + 1). A bound for c � 19 is more than enough
for our purposes. Grupp and Richert [6] remarked that the bound in (37) could be extended to hold
for 0 � c � 9, but with considerably more work.
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Fig. 1. Chain of circles.

6. The chain of circles

In the last section, many facts concerning the power series representations of Kn(u) were assem-
bled. This information will be especially useful when combined with an idea of Grupp and Richert,
known as the chain of circles, or Kreiskettenverfahren. The method is essentially analytic continuation.
To begin, one defines the sequence

cν =
(

3

2

)ν

− 1,

and forms the corresponding sequence of power series

Kn(u;ν) =
∞∑
j=0

b j(n, cν)
(
u − (n + cν)

) j
.

This sequence of power series has the feature that it can be generated recursively. The power series
for Kn(u;ν) is obtained from Kn(u;ν − 1) since, using (35),

b0(n, cν) = Kn(n + cν;ν − 1), (40)

and the rest of the coefficients can be computed using Lemma 4 or Lemma 5. Thus, we have a chain
of power series representations for Kn(z) that can be continued throughout the half plane 	z > n − 1,
as seen in Fig. 1.

Although the power series Kn(u;ν) is valid inside a larger interval, we will restrict the represen-
tation to the interval

Iν = {u: n + cν < u � n + cν+1}
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to speed the convergence of the series. The sequence cν , as Grupp and Richert point out, strikes a
balance between the number of power series needed to cover a fixed u value, and the convergence
rate of each of those power series. Finally, we have obtained a useful decomposition of Kn(u), given
by

Kn(u) =
∞∑

ν=0

χν(u)Kn(u;ν), (41)

where χν(u) is the characteristic function of the interval Iν . Now, for numerical purposes, we will
truncate each of these power series to, say, N . Actually, for our purposes we will eventually take
N = 80. In the first circle, Kn(u;0) will suffer only from the truncation. However, in the next circle,
Kn(u;1) will not only be truncated, but the coefficients will be approximates of the actual coefficients
due to the recursive nature of b0(n, c1) = Kn(n + c1;0). Controlling the error that propagates will
therefore require some work. To make our discussion more precise, let us define

K̃n(u;ν) =
N∑

j=0

b̃ j(n, cν)
(
u − (n + cν)

) j
. (42)

The coefficients b̃ j(n, cν) will be generated in exactly the same fashion as b j(n, cν) using (40) and

Lemma 4. When ν = 0 we have b̃ j(n, c0) = b j(n, c0), for j � N . However, the b̃ j(n, cν) will be approx-
imates of the actual coefficients b j(n, cν) for ν � 1 due to (40). More specifically, we define

b̃ j(0, c0) =
{

1 if j = 0,

0 if j > 0,

and

b̃ j(n, cν) =

⎧⎪⎨⎪⎩
K̃n(n + cν) if j = 0,
(−1) j−1

j(n+cν) j

∑ j−1
l=0 b̃l(n − 1, cν)(n + cν)l if 0 < j � N,

0 if j > N.

The following lemma of Grupp and Richert tells us that the error between the coefficients b j(n, cν)

and b̃ j(n, cν), for 1 � j � N , can be obtained from the corresponding error when j = 0.

Lemma 7. If, for a fixed c � 0, we have

∣∣b0(n, c) − b̃0(n, c)
∣∣ � δ,

then, for 0 � j � N,

∣∣b j(n, c) − b̃ j(n, c)
∣∣ � δ

(2 + c
2 ) j

.

Proof. This is proved by induction on n. It is vacuously true for n = 0 and n = 1 since in those cases
we will take b̃ j(n, c) = b j(n, c). Now, by induction,
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∣∣b j(n, c) − b̃ j(n, c)
∣∣ � 1

j(n + c) j

j−1∑
l=0

∣∣bl(n − 1, c) − b̃l(n − 1, c)
∣∣(n + c)l

� 1

j(n + c) j

j−1∑
l=0

δ

(2 + c
2 )l

(n + c)l

= δ

(2 + c
2 ) j

(
1

j

j−1∑
l=0

(
2 + c

2

n + c

) j−l
)

� δ

(2 + c
2 ) j

,

since the terms in this last sum are all bounded above by one. �
Following Grupp and Richert, we prove

Lemma 8. If 0 � j � N, ν � 1, and cν � 19, then

∣∣b j(n, cν) − b̃ j(n, cν)
∣∣ � 1

(2 + cν
2 ) j

Mν−1

2N
, (43)

where

Mν = 4
ν∏

l=0

(
7 + cl

3

)
= 4

ν∏
l=0

(
2 + 1

3

(
3

2

)l)
. (44)

Proof. We are going to use Lemma 7 to establish that for ν � 1,

∣∣b0(n, cν) − b̃0(n, cν)
∣∣ � Mν−1

2N
. (45)

The proof will proceed by induction on ν . For ν = 0, we will take b̃ j(n, c0) = b j(n, c0). Therefore,
when ν = 1, we use Lemma 6 and (40) to observe that

∣∣b0(n, c1) − b̃0(n, c1)
∣∣ �

∑
j>N

∣∣b j(n, c0)
∣∣(c1 − c0)

j � 4

2N
� 4

2N

(
7 + c0

3

)
.

Hence, by induction, the difference

∣∣b0(n, cν) − b̃0(n, cν)
∣∣ = ∣∣Kn(n + cν;ν − 1) − K̃n(n + cν;ν − 1)

∣∣
is at most

∑
j�N

∣∣b j(n, cν−1) − b̃ j(n, cν−1)
∣∣(cν − cν−1)

j +
∑
j>N

∣∣b j(n, cν−1)
∣∣(cν − cν−1)

j .

Using the inductive hypothesis together with Lemma 6, this series is bounded by
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(
1 +

∞∑
j=0

(
cν − cν−1

2 + cν−1
2

) j
)

4

2N

ν−2∏
l=0

(
7 + cl

3

)
= 4

2N

ν−1∏
l=0

(
7 + cl

3

)
.

The induction is complete, and from Lemma 7,

∣∣b j(n, cν) − b̃ j(n, cν)
∣∣ � 1

(2 + cν
2 ) j

4

2N

ν−1∏
l=0

(
2 + 1

3

(
3

2

)l)
. �

Now that we have good control of the coefficients b̃ j(n, cν), we prove the following bound con-
cerning the error between Kn(u;ν) and K̃n(u;ν).

Lemma 9. If n � 0, ν � 0, cν � 19, and N � 2, then

∣∣Kn(u;ν) − K̃n(u;ν)
∣∣ � Mν

2N
, (46)

where Mν is as in (44).

Proof. The proof will proceed by induction on ν . When ν = 0, we will take b̃ j(n, c0) = b j(n, c0), so

Kn(u;0) − K̃n(u;0) =
∑
j>N

b j(n, c0)
(
u − (n + c0)

) j
.

Thus, using (38),

∣∣Kn(u;0) − K̃n(u;0)
∣∣ �

∑
j>N

∣∣b j(n, c0)
∣∣(c1 − c0)

j � 4

2N
� M0

2N
.

For ν � 1, we use (38) and Lemma 8 since |Kn(u;ν) − K̃n(u;ν)| is at most

∑
j�N

∣∣b j(n, cν) − b̃ j(n, cν)
∣∣(cν+1 − cν) j +

∑
j>N

∣∣b j(n, cν)
∣∣(cν+1 − cν) j,

which is bounded by

Mν−1

2N

∑
j�N

(
cν+1 − cν

2 + cν
2

) j

+ 4

2N
�

(
1 +

∞∑
j=0

(
cν+1 − cν

2 + cν
2

) j
)

Mν−1

2N
= Mν

2N
. �

7. Generalizing to integral λ �= 0

When considering integral λ �= 0, one is faced with the problem of understanding the coefficients
of the power series representation

Kn(u, λ) =
∞∑
j=0

b j(n, c, λ)
(
u − (n + c)

) j
, (47)
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again valid inside |u − (n + c)| < 1 + c, by the same reasoning as in (34). The critical observation here
is that repeated applications of Lemma 3 can be used to write the b j(n, c, λ) in terms of b j(n, c,0) =
b j(n, c). Thus, to generate these coefficients, one can use the fact that

b0(n, c, λ) = Kn(n + c, λ), (48)

and, for j �= 0,

b j(n, c, λ) = λ

j
b j−1(n, c, λ − 1). (49)

The analytic continuation technique of Grupp and Richert will be carried out similar to the case when
λ = 0. As before, these power series will be chained together to generate expansions throughout the
interval u � n. Thus, one defines

Kn(u, λ;ν) =
∞∑
j=0

b j(n, cν, λ)
(
u − (n + cν)

) j
,

each one valid inside the interval Iν = {u: n + cν < u � n + cν+1}. This sequence of power series can
be generated recursively. The power series for Kn(u, λ;ν) is obtained from Kn(u, λ;ν − 1) since

b0(n, cν, λ) = Kn(n + cν, λ;ν − 1). (50)

This is precisely how the power series expansions are chained together. The problem, of course, is
that we will have to settle for an approximation to Kn(n + cν, λ;ν − 1), as this value will be ob-
tained by a truncated power series expansion. The series are related to the Kn(u, λ) functions via the
decomposition,

Kn(u, λ) =
∞∑

ν=0

χν(u)Kn(u, λ;ν), (51)

where χν(u) is the characteristic function of the interval Iν . Of course, we make the definition
Kn(u,0;ν) = Kn(u;ν). We produce power series that represent Kn(u, λ) in various intervals. We will
truncate these series for numerical purposes, and hence define

K̃n(u, λ;ν) =
N∑

j=0

b̃ j(n, cν, λ)
(
u − (n + cν)

) j
. (52)

The coefficients b̃ j(n, cν, λ) are defined by

b̃ j(0, c0, λ) =
⎧⎨⎩

0 if 0 � j < λ,

1 if j = λ,

0 if j > λ,

and

b̃ j(n, cν, λ) =
⎧⎨⎩

K̃n(n + cν, λ − 1) if j = 0,
λ
j b̃ j−1(n, cν, λ − 1) if 0 < j � N ,
0 if j > N.
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When ν = 0 we have that b̃ j(n, c0, λ) = b j(n, c0, λ), for j � N . As before, the b̃ j(n, cν, λ) will be
approximates of b j(n, cν, λ) for ν � 1 due to (50). In any case, we proceed as in (51) and set

K̃n(u, λ) =
∞∑

ν=0

χν(u)K̃n(u, λ;ν).

The purpose of this section is to bound the error between Kn(u, λ) and K̃n(u, λ). Thus, we prove

Lemma 10. If n � 0, ν � 0, 0 � λ < N, cν � 19, and N � 2, then

∣∣Kn(u, λ;ν) − K̃n(u, λ;ν)
∣∣ � λ!Mν,λ

2N−λ
, (53)

where Mν,0 = Mν , and

Mν,λ =
ν∑

k=0

(ck+1 − ck)Mk,λ−1 = 1

2

ν∑
k=0

(
3

2

)k

Mk,λ−1. (54)

Proof. The proof will proceed by induction on both ν and λ. The case λ = 0 has already been shown
in Lemma 9. When ν = 0, we will take b̃ j(n, c0, λ) = b j(n, c0, λ), so if 0 � λ < N , we can make re-
peated use of (49) to see that

Kn(u, λ;0) − K̃n(u, λ;0) =
∑
j>N

b j(n, c0, λ)
(
u − (n + c0)

) j

=
∑
j>N

λ

j
· λ − 1

j − 1
· · · 1

j − λ + 1
b j−λ(n, c0,0)

(
u − (n + c0)

) j
.

Thus, using (38),

∣∣Kn(u, λ;0) − K̃n(u, λ;0)
∣∣ � λ!(c1 − c0)

λ
∑
j>N

∣∣b j−λ(n, c0,0)
∣∣(c1 − c0)

j−λ

� λ!(c1 − c0)
λ 4

2N−λ
� λ!(c1 − c0)

λM0,0

2N−λ
= λ!M0,λ

2N−λ
.

We have shown that (53) holds for λ = 0. To prove (53), observe that Kn(u, λ;ν) − K̃n(u, λ;ν) can be
rewritten using Lemma 3, and (52) as

Kn(n + cν, λ;ν − 1) − K̃n(n + cν, λ;ν − 1) + λ

u∫
n+cν

Kn(t, λ − 1;ν) − ˜̃K n(t, λ − 1;ν)dt,

where ˜̃K is K̃ with N replaced by N − 1. The first two terms above correspond to the j = 0 term of
the power series expansion. Finally, the bound in (53) follows since
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∣∣Kn(u, λ;ν) − K̃n(u, λ;ν)
∣∣ � λ!Mν−1,λ

2N−λ
+ λ

u∫
n+cν

(λ − 1)!Mν,λ−1

2N−λ
dt

� λ!
2N−λ

(
Mν−1,λ + (cν+1 − cν)Mν,λ−1

) = λ!Mν,λ

2N−λ
. �

Although the presence of the λ! term in (53) looks menacing, we plan on taking λ < 10. In ad-
dition, we will take N to be much larger than λ, say N = 80, so the error will still be well under
control. In the next section, we will apply this theorem to approximate j′κ .

8. Approximating j′κ (u) in the main computation

Recall the integrals

I1 =
u∫

0

P (w)2 j′κ (u − w)dw, (55)

I2 =
u∫

1

1∫
0

(
P (w) − P (w − t)

)2 dt

t
j′κ (u − w)dw, (56)

I3 =
1∫

0

w∫
0

(
P (w) − P (w − t)

)2 dt

t
j′κ (u − w)dw, (57)

I4 =
1∫

0

1∫
w

P (w)2 dt

t
j′κ (u − w)dw. (58)

If I1 −κI2 −κI3 −κI4 > 0, then a positive lower bound for S(A, P , z) is obtained. To compute these
integrals, define

Ĩ1 =
u∫

0

P (w)2 j̃′κ (u − w)dw, (59)

Ĩ2 =
u∫

1

1∫
0

(
P (w) − P (w − t)

)2 dt

t
j̃′κ (u − w)dw, (60)

Ĩ3 =
1∫

0

w∫
0

(
P (w) − P (w − t)

)2 dt

t
j̃′κ (u − w)dw, (61)

Ĩ4 =
1∫

0

1∫
w

P (w)2 dt

t
j̃′κ (u − w)dw, (62)
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Table 2
Sifting limit calculations.

κ βκ u a Ĩ Error

2 4.516 1.7581 0.267671 2.9 × 10−5 6.3 × 10−23

3 6.520 2.7601 0.262761 5.4 × 10−6 8.6 × 10−22

4 8.522 3.7611 0.260302 2.3 × 10−5 1.2 × 10−20

5 10.523 4.7617 0.258785 4.5 × 10−5 2.3 × 10−19

6 12.524 5.7621 0.257739 6.7 × 10−5 4.9 × 10−18

7 14.524 6.7623 0.256929 2.2 × 10−5 1.2 × 10−16

8 16.524 7.76247 0.256318 9.3 × 10−7 3.9 × 10−15

9 18.525 8.7627 0.255870 6.5 × 10−5 1.5 × 10−13

10 20.525 9.7628 0.255468 4.8 × 10−5 6.7 × 10−12

where

j̃′κ (u) = e−κγ

Γ (κ)

∑
0�n<u

(−κ)n K̃n(u, κ − 1).

Set I = I1 −κI2 −κI3 −κI4, and Ĩ = Ĩ1 −κ Ĩ2 −κ Ĩ3 −κ Ĩ4. Naturally, the integral Ĩ approximates I .
The computations below are performed with N = 80 in the definition of K̃n(u, κ − 1). The error
between Ĩ and I is bounded using Lemma 10 in the last column (see Table 2).

These computations verify the values appearing in Table 1 for βκ given by the Λ2Λ− sieve. These
calculations conclude the proof of Theorem 1.
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