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Suppose Q is a definite quadratic form on a vector space
V over some totally real field K �= Q. Then the maximal
integral ZK -lattices in (V,Q) are locally isometric everywhere
and hence form a single genus. We enumerate all orthogonal
spaces (V,Q) of dimension at least 3, where the corresponding
genus of maximal integral lattices consists of a single isometry
class. It turns out, there are 471 such genera. Moreover,
the dimension of V and the degree of K are bounded by 6
and 5 respectively. This classification also yields all maximal
quaternion orders of type number one.
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1. Introduction

Let K be a totally real number field and ZK its maximal order. Two definite quadratic
forms over ZK are said to be in the same genus if they are locally isometric everywhere.
Each genus is the disjoint union of finitely many isometry classes. The genera which
consist of a single isometry class are precisely those lattices for which the local-global
principle holds. These genera have been under study for many years. In a large series of
papers [37–43], Watson classified all such genera in the case K = Q in three and more
than five variables. He also produced partial results in the four and five dimensional cases.
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Assuming the Generalized Riemann Hypothesis, Voight classified the one-class genera
in two variables [34, Theorem 8.6]. Recently, Lorch and the author [14] reinvestigated
Watson’s classification with the help of a computer using the mass formula of Smith,
Minkowski and Siegel. We filled in the missing dimensions 4 and 5 and corrected some
errors in Watson’s tables.

In the case K �= Q, the local factors in the mass formula of Smith, Minkowski
and Siegel [32] are not known in all cases. However, good bounds on these local fac-
tors are due to Pfeuffer [22]. Using these bounds, he showed that one-class genera can
only occur in at most 32 variables. Moreover Pfeuffer gave explicit upper bounds on
the degrees and discriminants of all possible base fields that can afford one-class gen-
era.

If we restrict ourselves to maximal integral lattices, the local factors are known in
all cases by the work of Shimura [31]. These results have been recently proved again
by Gan, Hanke and Yu in [6] using Bruhat–Tits theory. Their proof is based on results
of Gross [7] which builds upon the fundamental work of Prasad [25]. Using this mass
formula, Hanke classified the one-class genera of maximal integral lattices over K = Q
(see [8]). The current paper extends this classification to all totally real number fields K.
In a future publication, David Lorch and the author will classify all one-class genera over
totally real number fields in at least three variables by combining the methods of Watson
and Pfeuffer. However, the complete classification will be much more tedious since the
local mass factors are not known in all cases. More information of the classification of
genera with small class numbers is given by R. Scharlau in Section 2.5 of [27].

The article is organized as follows. Section 2 recalls some basic definitions of quadratic
forms over number fields. Section 3 gives the mass formula of Shimura and some conse-
quences for one-class genera. The possible base fields K that can give rise to one-class
genera of maximal integral lattices are enumerated in Section 4. Section 5 gives al-
gorithms to perform the enumeration of these genera. In Section 6 we recall some
connections between quadratic forms and quaternion algebras. Finally, the last section
summarizes the results.

2. Preliminaries

Throughout the paper, let K be an algebraic number field of degree n � 2 and
let V be an m-dimensional K-space. Further let Q : V → K be a quadratic form.
The orthogonal group of the quadratic space (V,Q) will be denoted by O(V,Q) and
SO(V,Q) = {ϕ ∈ O(V,Q) | det(ϕ) = 1} denotes the special orthogonal group.

The quadratic form Q is isometric to a diagonal form Q′ := 〈a1, . . . , am〉 where Q′(x) =∑m
i=1 aix

2
i . We will always assume that Q is definite, i.e. K is totally real and each ai is

totally positive.
The discriminant of Q is disc(Q) = (−1)m(m−1)/2 ·

∏
ai. It is unique up to multi-

plication by (K∗)2. Further, for each prime ideal p of ZK let cp(Q) =
∏

i<j(
ai,aj

p
) be

the Hasse invariant of Q at p. Here (a,b ) ∈ {±1} denotes the usual Hilbert symbol of

p
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Table 1
Definition of tp(Q).

m Additional condition ωp(Q) tp(Q)

odd vp(d) even −1 I
odd vp(d) odd +1 II+
odd vp(d) odd −1 II−
even d ∈ (K∗

p)2 −1 I
even d /∈ (K∗

p)2 and p does not ramify in EQ/K −1 II
even d /∈ (K∗

p)2 and p ramifies in EQ/K +1 III+
even d /∈ (K∗

p)2 and p ramifies in EQ/K −1 III−

(a, b) ∈ K2 at p. It takes the value 1 if and only if ax2 + by2 = z2 admits a non-trivial
solution over the completion Kp of K at p.

It is well known that the isometry class of the definite quadratic space (V,Q) is
uniquely determined by m, disc(Q) and the finite set of prime ideals p for which
cp(Q) = −1 (see for example [19, Remark 66:5]). The same is true if one replaces the
Hasse invariants by the Witt invariants ωp(Q) as defined in [28]:

ωp(Q) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

cp(Q) if m ≡ 1, 2 mod 8,
cp(Q) · (−1,−1

p
) if m ≡ 5, 6 mod 8,

cp(Q) · (−1,disc(Q)
p

) if m ≡ 0, 3 mod 8,

cp(Q) · (−1,− disc(Q)
p

) if m ≡ 4, 7 mod 8.

(1)

If disc(Q) /∈ (K∗)2, let EQ denote the field K(
√

disc(Q) ). Given any extension of
number fields E/K, we denote by dE/K and NE/K its relative discriminant and norm
respectively. Further, dK = dK/Q denotes the absolute discriminant of K.

Given the dimension m, the discriminant d := disc(Q) (viewed as an element of K∗
p)

and the Witt invariant ωp(Q), we define the local type tp(Q) ∈ {0, I, II, II±, III±} of Q
at p similar to Hanke in [8]. Let vp denote the usual valuation of Kp. Then the symbol
tp(Q) is nonzero if and only if one of cases from Table 1 holds.

Definition 2.1. A lattice L ⊂ V is a finitely generated ZK-submodule of V that contains
a basis of V . It is said to be maximal integral if Q(L) ⊆ ZK and Q(L′) � ZK for each
lattice L′ � L.

Two lattices L,L′ in V are said to be isometric if there exists some isometry g ∈
O(V,Q) such that g(L) = L′. The set of all isometries from L to itself is called the
automorphism group Aut(L) of L.

Given a prime ideal p of ZK we write Vp and Lp for the completions V ⊗K Kp and
L ⊗ZK

ZKp
respectively. The lattices L,L′ are said to be in the same genus if for each

prime ideal p of ZK there exists some gp ∈ O(Vp, Q) such that gp(Lp) = L′
p.
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Clearly, each genus Λ decomposes into several isometry classes represented by
L1, L2, . . . , Lh say. The number of classes h is always finite and is called the class number
of Λ (see for example [19, Theorem 103:4]). Further we define

mass(Λ) =
h∑

i=1

1
# Aut(Li)

to be the mass of Λ.

3. The mass formula

Let (V,Q) be a definite quadratic space over some totally real number field K of
degree n. Further let m denote the dimension of V and set r = �m/2�.

Definition 3.1. Let p be a prime ideal of ZK and q = NK/Q(p) = #(ZK/p) its norm.
Then the local mass factor λp(Q) is defined as follows.

m tp(Q) λp(Q)

– 0 1

2r + 1 I qm−1−1
2(q+1)

2r + 1 II±
qr+ωp(G)

2

m tp(Q) λp(Q)

2r I (qr−1−1)(qr−1)
2(q+1)

2r II (qr−1+1)(qr+1)
2(q+1)

2r III± 1/2

Proposition 3.2. The set Λ of all maximal integral lattices in (V,Q) form a single genus.

Proof. See for example [19, Theorem 91:2]. �
The following result is an explicit version of the mass formula of Smith, Minkowski and

Siegel [32] where the local factors λp are given by the work of Shimura [31, Theorem 5.8]
and also Gan, Hanke and Yu [6, Proposition 2.13].

Theorem 3.3. Let Λ be the genus of all maximal integral lattices in (V,Q). If m � 3, then

2 · mass(Λ) = τ(G) · γn
G · ddim G/2

K · L(G) ·
∏
p

λp(Q)

where

τ(G) = 2 is the Tamagawa number of G := SO(V,Q),

L(G) =

⎧⎪⎪⎨
⎪⎪⎩

∏r
i=1 ζK(2i) if m is odd,

ζK(r) ·
∏r−1

i=1 ζK(2i) if m is even and disc(Q) ∈ (K∗)2,
ζEQ

(r)
ζK(r) ·NK/Q(dEQ/K)r−1/2 ·

∏r−1
i=1 ζK(2i) otherwise,

denotes the L-series attached to G,
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dim(G) = r
(
2r − (−1)m

)
is the dimension of G,

γG =

⎧⎨
⎩

∏r
i=1(2i−1)!

(2π)r(r+1) if m is odd,
(r−1)!·

∏r−1
i=1 (2i−1)!

(2π)r2 if m is even.

Note that the formula given in [6] looks much neater than the one above since it uses
values of L-series at negative integers. However there are two reasons to state the formula
as above. First of all, the L-series involved might have zeros at some negative integers
in which case one has to use the first non-vanishing coefficient of some Taylor series
expansion. Secondly, we will need to find good lower bounds for the mass and therefore
for the product L(G) ·

∏
p
λp(Q). This is much easier when L(G) only depends on values

of L-series at positive integers. In fact, the classification of all genera of maximal integral
lattices with class number one is based on the following observation.

Proposition 3.4. Suppose the notation of Theorem 3.3.

1. If Λ has class number one then (2 · mass(Λ))−1 ∈ Z.
2. If λp(Q) < 1 then λp(Q) = 1/2 and

• m is even, disc(Q) /∈ (K∗)2 and p ramifies in EQ or
• m � 4 and NK/Q(p) = 2.

3. If λp(Q) /∈ Z then 2λp(Q) ∈ Z and
• m is even, disc(Q) /∈ (K∗)2 and p ramifies in EQ or
• 2 ∈ p.

4. Let k be the number of prime ideals in ZK of norm 2. Then

L(G) ·
∏
p

λp(Q) >

⎧⎪⎨
⎪⎩

(2/3)k if m = 3,
(8/15)k if m = 4,
1 if m � 5.

5. If m is odd and Λ has class number one then

(
γn
G · ddim G/2

K · L(G)
)−1 · 2�−1 ∈ Z

where 	 denotes the number of prime ideals of ZK that contain 2.

Proof. Suppose Λ consists of the isometry class of a single lattice L. Then (2 ·
mass(Λ))−1 = # Aut(L)/2 is integral since −idL is always an isometry of L. The next
two assertions follow from the definition of the local factors λp(Q) and the last statement
is a reformulation of the third.

The fourth claim is clearly true if either m � 5 is odd or m > 4 is even and disc(Q)
is a square since then L(G) > 1 and

∏
p
λp(Q) � 1. If either m = 3 or m = 4 and
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disc(Q) ∈ (K∗)2 then

L(G) ·
∏
p

λp(Q) � ζK(2) · (1/2)k >
(
1 − 2−2)−k · (1/2)k = (2/3)k.

So we may now assume that m � 4 is even and disc(Q) /∈ (K∗)2. Further let t denote
the number of prime ideals that are ramified in EQ/K. If m = 4 then

L(G) ·
∏
p

λp(Q) � ζE(2) ·
(
NK/Q(dEQ/K)3/2 · 2−t

)
· 2−k

>
(
1 − 2−4)−k · 2−k = (8/15)k.

Similarly, if m � 6 then

L(G) ·
∏
p

λp(Q) � ζK(2)
ζK(m/2) · ζE(m/2) ·

NK/Q(dEQ/K)(m−1)/2

2t > 1. �

Note that if m is odd and fixed, the last statement of the previous proposition is a
very strong restriction on the field K.

4. Restricting the possible base fields

The enumeration of all base fields K that can possibly give rise to one-class genera of
all maximal integral lattices is based on the following Odlyzko type bounds.

Theorem 4.1. Let K be a totally real number field of degree n � 2. Let B(n) and B′(n)
be defined by

n 2 3 4 5 6 7 8 9 10 � 11
B(n) 2.236 3.659 5.189 6.809 8.182 11.051 11.385 12.869 12.985 14.083
B′(n) 2.828 5.289 6.727 9.599 11.098 12.460 13.779 15.000 15.093 16.204

Then d
1/n
K � B(n). Moreover, if ZK contains an ideal of norm 2, then d

1/n
K � B′(n).

The bounds B(n) and B′(n) are sharp for n � 9 and n � 8 respectively.

Proof. The bounds for n � 9 follow from Voight’s tables [35]. The other values for B(n)
have been computed by Martinet in [15]. The values for B′(n) for n � 10 are given by
Brueggeman and Doud in [3]. �

Let Λ be the genus of all maximal integral lattices in a definite quadratic space (V,Q)
of dimension m over some totally real number field K of degree n.

Proposition 4.2. Suppose Λ has class number one and K �= Q. If m = 2r + 1 � 3 is odd,
then m ∈ {3, 5}. Moreover :
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1. If m = 3 then K = Q(
√
d ) with

d ∈ {2, 3, 5, 6, 7, 13, 15, 17, 21, 29, 33, 41, 65, 69, 77, 137}

or K = Q(θ�) is the maximal totally real subfield of the 	-th cyclotomic field Q(ζ�)
with 	 ∈ {7, 9, 15, 20, 21, 24} or K ∼= Q[x]/(f(x)) where f(x) is one of

x3 − x2 − 3x + 1 x4 − x3 − 3x2 + x + 1 x4 − 5x2 − x + 1 x5 − 5x3 − x2 + 3x + 1
x3 − x2 − 4x − 1 x4 − x3 − 5x2 + 2x + 4 x4 − 5x2 + 1 x5 − 2x4 − 3x3 + 5x2 + x − 1

x3 − 4x − 1 x4 − 2x3 − 3x2 + 2x + 1 x4 − x3 − 9x2 + 4x + 16 x5 − 5x3 + 4x − 1
x3 − x2 − 4x + 3 x4 − x3 − 4x2 + x + 2 x4 − x3 − 5x2 + 5x + 1 x5 − x4 − 5x3 + 3x2 + 5x − 2
x3 − x2 − 4x + 2 x4 + 2x3 − 7x2 − 8x + 1 x4 − 5x2 + 2 x5 − 6x3 + 8x − 1
x3 − x2 − 4x + 1 x4 − x3 − 4x2 + 2x + 1 x4 − 6x2 − 3x + 3 x5 − 6x3 − x2 + 8x + 3
x3 − x2 − 6x + 7 x4 − x3 − 5x2 − x + 1 x4 − 2x3 − 5x2 + x + 2 x5 − 2x4 − 4x3 + 7x2 + 3x − 4
x3 − x2 − 5x + 4 x4 − 9x2 + 4 x4 − 7x2 − 6x + 1 x5 − 2x4 − 4x3 + 4x2 + 3x − 1

x3 − 7x − 5 x4 − 6x2 − 4x + 2 x4 − x3 − 5x2 + 2x + 1 x6 − x5 − 5x4 + 4x3 + 5x2 − 2x − 1
x3 − x2 − 7x + 8 x4 − 2x3 − 3x2 + 4x + 1 x4 − x3 − 6x2 − x + 1 x6 − 2x5 − 4x4 + 6x3 + 4x2 − 3x − 1

x3 − 6x − 1 x4 − x3 − 6x2 + x + 1 x4 − 7x2 + 2 x6 − 3x5 − 2x4 + 9x3 − x2 − 4x + 1
x4 − 4x2 − x + 1 x4 − 2x3 − 6x2 + 7x + 11 x4 − x3 − 6x2 + 7x + 1 x6 − 3x5 − 3x4 + 10x3 + 3x2 − 6x + 1

2. If m = 5 then K = Q(
√

5 ).

Proof. If m = 3 let k be the number of prime ideals of ZK with norm 2. Otherwise set
k = 0. By Proposition 3.4 and the assumption that Λ has class number one, it follows
that

1 � 2 · mass(Λ) > 2 · γn
G · dr(2r+1)/2

K · (2/3)k

and therefore the root discriminant d
1/n
K is bounded above by

d
1/n
K <

(
γG · 21/n · (2/3)k/n

)−2/(r(2r+1))
. (2)

Let us first assume that k � 1. Then m = 3 and d
1/n
K < (4π2 · 3/2)2/3 < 15.20. By

Theorem 4.1, this implies that n � 10. Thus Eq. (2) shows that in fact d
1/n
K < (4π2 ·

(1/2)1/10 · 3/2)2/3 < 14.51 and thus n � 8.
Suppose now k = 0. Then by Eq. (2), we have

d
1/n
K < γ

−2/(r(2r+1))
G . (3)

Since K �= Q we have d
1/n
K �

√
5. The right hand side of Eq. (3) is strictly decreasing

and the only cases where it is at most
√

5 are

r 1 2 3 4 5 6
d
1/n
K > 11.60 6.35 4.37 3.33 2.70 2.26

In particular, n � 8 by Theorem 4.1.
Since Voight’s tables [35] list all totally real number fields of degree n � 8 with root

discriminant � 15, we can now simply enumerate all pairs (r,K) such that inequality
(2) holds. As it turns out, there are only 218 such pairs. Among those, only the 71 pairs
given above satisfy the fourth condition of Proposition 3.4. �
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If m is even, the factor L(G) does not solely depend on K but also on EQ and therefore
on the discriminant of Q. Thus we cannot get as sharp bounds on the base field K as
in Proposition 4.2. But we still can enumerate a finite set of fields K that needs to be
checked explicitly.

Proposition 4.3. Suppose Λ has class number one and K �= Q. If m = 2r � 4 is even,
then m � 14. Further:

1. If m = 4 then d3
K � 1

2 · (2π)4n · (15/8)k where k denotes the number of prime ideals
of ZK with norm 2. There are 249 such fields and the largest one has degree 7.

2. If m = 6 then K = Q(
√
d ) with {d ∈ 2, 3, 5, 6, 7, 13, 17, 21, 29, 33, 37} or K = Q(θ�)

with 	 ∈ {7, 9, 15} or K ∼= Q[x]/(f(x)) where f(x) is one of x3 − x2 − 3x + 1,
x3 − x2 − 4x− 1, x3 − 4x− 1, x4 − x3 − 3x2 + x + 1 or x4 − 6x2 + 4.

3. If m = 8 then K = Q(
√
d ) with d ∈ {2, 3, 5, 13, 17} or K = Q(θ�) with 	 ∈ {7, 9}.

4. If m = 10 then K = Q(
√

2 ) or K = Q(
√

5 ).
5. If m ∈ {12, 14} then K = Q(

√
5 ).

Proof. If m = 4 let k be the number of prime ideals of ZK with norm 2, otherwise set
k = 0. As in the proof of Theorem 4.2 we have

d
1/n
K <

(
γG · 21/n · (8/15)k/n

)−2/(r(2r−1))
. (4)

Suppose first that k �= 0. Then m = 4 and the above inequality implies that d
1/n
K <

(30π4)1/3 < 14.30. Thus Theorem 4.1 shows that n � 8. Suppose now that k = 0. Then
by Eq. (4), we have

d
1/n
K < γ

−2/(r(2r−1))
G .

The right hand side of this equation is strictly decreasing. It is greater than
√

5 if and
only if r � 7. Further, if m = 4 it takes the value (2π)4/3 < 11.60. Therefore n � 8.
Since [35] lists all totally real number fields of degree � 8 and root discriminant � 15,
we can now simply enumerate all pairs (r,K) such that inequality (4) holds. The result
follows. �
5. Enumerating the one-class genera

5.1. Odd dimensions

Suppose m = 2r + 1 � 3 is odd. Then the enumeration of all one-class genera of
maximal integral forms is straightforward. For each of the possible pairs (m,K) from
Proposition 4.2, we apply the following algorithm.
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Algorithm 5.1.
Input: Let K be a totally real number field of degree n and let m � 3 be odd.
Output: A set L of representatives for the one-class genera of maximal integral lattices
in definite orthogonal K-spaces of dimension m.

1. Evaluate s(m,K) := 2 · γ(G)n · L(G) and set L = ∅.
2. Compute all possible combinations S of local symbols such that

(
s(m,K) ·

∏
p

λp(Q)
)−1

∈ Z.

3. For each such combination S compute the set DS of all possible values for disc(Q)
(up to squares).

4. For each such combination S and each d ∈ DS do
(a) Turn the set S into the Hasse invariants using Table 1 and Eq. (1).
(b) Check if there exists an m-dimensional quadratic K-space with discriminant d

and the requested local Hasse invariants.
(c) If such a space exists, construct a maximal integral lattice L in it.
(d) Let Λ be the genus of L. If # Aut(L) = 1/mass(Λ), include L into L.

5. Return L.

We give some comments and hints how to do the above steps.

1. If tp(Q) �= 0 then λp(Q) � (NK/Q(p)r − 1)/2 > 1 except if r = 1 and NK/Q(p) ∈
{2, 3}. So we only have to consider finitely many prime ideals p for which tp(Q) �= 0.

2. The set DS can be computed as follows. By Dirichlet’s unit theorem, the quotient
{u ∈ Z∗

K | u totally positive}/(Z∗
K)2 is finite. Let u1, . . . , us be a transversal and let

J =
∏

tp(Q)=II± p. Further, let a1, . . . , ah represent the ideal classes of ZK . We start
with DS = ∅. For each 1 � i � h we then check if Ja2

i = αiZK for some αi ∈ ZK such
that (−1)r ·αi is totally positive. If such an αi exists, we include {αi ·uj | 1 � j � s}
into DS .

3. In step 4(a) one has to evaluate several Hilbert symbols. A computationally efficient
way to evaluate these symbols has been given in [36].

4. Step 4(b) is done as follows. By [19, 72:1] there exists a definite orthogonal K-space
with discriminant d and given Hasse invariants if and only if the Hasse invariants
are −1 at an even number of prime ideals.

5. Constructing a global space with the given invariants can be done by trial and error.
Let T be a set of prime ideals of ZK that includes the ideals for which tp(Q) �= 0.
Then one tests quadratic forms

〈
a1, . . . , am−1, (−1)r · a1 · · · am−1 · d

〉
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where the ai are totally positive generators of products of ideals in T . If the set T
is large enough, this will quickly produce a form Q that has the correct local Hasse
invariants. The computation of a maximal integral lattice with respect to Q is then
straightforward. Finally, the computation of the automorphism group of this lattice
is done using the algorithm of Plesken and Souvignier [23].

If in step 4(d) equality did not hold, the genus Λ has been enumerated completely
with Kneser’s neighbor method. An explanation of this method is given by Schulze-Pillot
in [29] as well as Hemkemeier and Scharlau in [9]. This cautionary check assures that
we have evaluated the mass correctly and that we have constructed a maximal lattice in
the correct orthogonal space.

5.2. Even dimensions

Suppose m = 2r � 4 is even. In the odd dimensional cases, one can reconstruct the
possible values for disc(Q) by the local types tp(Q). If m is even however, we first have
to compute all possible values for disc(Q). For this we compute all possible quadratic
extensions EQ/K.

Lemma 5.2. Suppose m � 4 is even and the genus of all maximal integral lattices Λ of
(V,Q) has class number one. If m = 4, let k denote the number of ideals of ZK of norm
2 otherwise set k = 0. Further, for each prime ideal p of ZK set ep = 2 if 2 ∈ p and set
ep = 1 otherwise. If disc(Q) /∈ (K∗)2 then

∏
p|dEQ/K

NK/Q(p)ep(r−1/2)

2 � 2k−1 · γ(G)−n · ζK(r) · dr(1−2r)/2
K ·

r∏
i=1

ζK(2i)−1.

Proof. If p ramifies in EQ/K then pep divides dEQ/K (see for example [30, Proposi-
tion III.13]). Thus it follows from Proposition 3.4 that

1 � 2 · mass(Λ)

� 2 · γ(G)n · dr(2r−1)/2
K ·

r−1∏
i=1

ζK(2i) ·
ζEQ

(r)
ζK(r) · 2−k

∏
p|dEQ/K

NK/Q(p)ep(r−1/2)

2 .

The result follows since ζEQ
(r) � ζK(2r). �

The above lemma restricts the prime ideals of K that could possibly be ramified
in EQ/K to a finite set. By Class Field Theory, we can now construct all quadratic
extensions E/K such that dE/K satisfies the inequality in Lemma 5.2. There are only
finitely many such fields. Now if E = EQ then E = K(

√
α ) for some α ∈ K such that

(−1)rα is totally positive since α/ disc(Q) ∈ (K∗)2. By listing all such fields E, we have
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then effectively enumerated all possible discriminants disc(Q) ∈ K∗/(K∗)2 that can give
rise to one-class genera of maximal integral lattices.

The computation of all one-class genera is now similar to the odd dimensional case.

Algorithm 5.3.
Input: Let K be a totally real number field of degree n and let m � 4 be even.
Output: A set L of representatives for the one-class genera of maximal integral lattices
in definite orthogonal K-spaces of dimension m.

1. Set L = ∅.
2. Compute the set D of possible nonsquare discriminants disc(Q) with Lemma 5.2.

If m ∈ 4Z, include 1 to D.
3. For all d ∈ D do:

(a) Compute all possible combinations S of local symbols such that

(
2 · γ(G)n · L(G) ·

∏
p

λp(Q)
)−1

∈ Z.

Note that tp(Q) ∈ {III+, III−} if and only if d �= 1 and p | dK(
√
d)/K .

(b) For each such set S do:
i. Turn the set S into the Hasse invariants using Table 1 and Eq. (1).
ii. Check if there exists an m-dimensional quadratic K-space with discrimi-

nant d and the requested local Hasse invariants.
iii. If such a space exists, find a maximal integral lattice L in it.
iv. Let Λ be the genus of L. If # Aut(L) = 1/mass(Λ) then include L into L.

4. Return L.

6. Quaternion orders

We first recall some basic properties of quaternion orders. More details can be found
in the book of Vignéras [33] for example.

Let K be a number field. A quaternion algebra Q over K is a central simple K-algebra
of dimension four. Every quaternion algebra Q admits a unique involution ¯ : Q → Q
such that the reduced norm nrQ/K(x) := xx̄ and reduced trace trQ/K(x) := x + x̄

are contained in K for all x ∈ Q. The reduced norm is a quadratic form on Q with
corresponding bilinear form

Q×Q → K, (x, y) �→ nrQ/K(x + y) − nrQ/K(x) − nrQ/K(y) = trQ/K(xȳ).

We say that Q is ramified at some place v of K if and only if the completion Qv :=
Q ⊗K Kv of Q at v is a skew-field. The algebra Q is determined by its ramified places
up to isomorphism and Q is said to be (totally) definite, if it is ramified at all infinite
places of K. This is equivalent to say that (Q, nrQ/K) is totally positive definite.
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An order O ⊂ Q is a subring of Q that is also a ZK-lattice in Q. The order O is said
to be maximal if it is not contained in a larger one.

Finally, given a subset S ⊂ Q we denote by S0 = {s ∈ S | trQ/K(s) = 0} the set of
all elements in S that have trace 0.

Lemma 6.1. Let (V,Q) be a four-dimensional definite quadratic space over K such that
disc(Q) ∈ (K∗)2.

1. There exists a definite quaternion algebra Q over K such that (V,Q) is isometric to
(Q, nrQ/K). Further, Q is unique up to isomorphism.

2. Each maximal order M in Q is a maximal integral lattice in (Q, nrQ/K).
3. Two maximal orders in Q are conjugate in Q if and only if they are isometric lattices

in (Q, nrQ/K).
4. Let p1, . . . , ps be the prime ideals at which Q ramifies and let M be some maximal

order in Q. The genus Λ of all maximal integral lattices in (Q, nrQ/K) has class
number one if and only if every maximal order of Q is conjugate to M and

2n

|ζK(−1)| = #M1 ·
s∏

i=1

(
NK/Q(p) − 1

)

where M1 = {x ∈ M | nrQ/K(x) = 1} denotes the norm one group of M .

Proof. A proof for the first assertion is for example given in [24, Propositions 1 and 4].
The second statement is clear from the local descriptions of maximal orders. For a proof
of the third assertion, see for example [16, Corollary 4.4].

For the proof of the last statement, let H denote the number of isomorphism classes
of finitely generated nonzero M -bimodules in Q. Under the assumption that M is unique
up to conjugacy, Eichler’s mass formula (see for example [33, Corollaire V.2.3]) states
that

H

[M∗ : Z∗
K ] = 21−n ·

∣∣ζK(−1)
∣∣ · hK ·

s∏
i=1

(
NK/Q(p) − 1

)

where hK denotes the class number of ZK . The quotient H
[M∗:Z∗

K ] is related to the auto-
morphism group of the lattice M in (Q,nrQ/K) by [16, Corollary 4.5] as follows

H

[M∗ : Z∗
K ] = 2s+1 · hK · #M1

# Aut(M) .

The last two equations show that

1
# Aut(M) = 2−n ·

∣∣ζK(−1)
∣∣ · 1

#M1 ·
s∏ NK/Q(p) − 1

2 .

i=1
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Theorem 3.3 implies that Λ has class number one if and only if

2
# Aut(M) = 21−2n · ζK(−1)2 ·

s∏
i=1

(NK/Q(p) − 1)2

2

since the local type of the norm form tp(nrQ/K) ∈ {0, I} and it takes the value I if and
only if Q ramifies at p. Combining the two equations for # Aut(M) gives the result. �

There is a similar correspondence for ternary lattices.

Lemma 6.2. Let M , N be maximal orders in a definite quaternion algebra Q.

1. Every isometry ϕ : M0 → N0 (with respect to nrQ0/K) extends to an isometry
ψ : M → N (with respect to nrQ/K).

2. The orders of the automorphism groups satisfy # Aut(M) = #M1 · # Aut(M0).

Proof. Since the canonical involution is an isometry on M0 with determinant −1, we
may assume that det(ϕ) = 1. By extension of scalars, ϕ is an isometry on Q0. Then
ψ : Q → Q, λ + x �→ λ + ϕ(x) for all λ ∈ K and x ∈ Q0 is the only isometry of
determinant 1 that extends ϕ. It remains to show that ψ(M) = N . By [5, Appendix IV,
Proposition 3], ψ is simply conjugation by some element in Q∗. In particular, ψ(M) is
a maximal order that contains N0. If Q ramifies at p then Qp has a unique maximal
order which implies that ϕ(M)p = Np. If Q does not ramify at p then without loss of
generality Np = Z2×2

Kp
. Then ϕ(M)p contains e :=

( 0 1
0 0

)
and f :=

( 0 0
1 0

)
. Hence the order

ϕ(M)p must also contain the ZKp
-span of {e, f, ef, fe} which is Np. This proves the first

claim.
For a proof of the second, let Aut+(M) = Aut(M)∩ SO(Q, nrQ/K) and Aut+(M0) =

Aut(M0) ∩ SO(Q0, nrQ0/K). Since the canonical involution induces isometries of deter-
minant −1 on M and M0, it suffices to show that [Aut+(M) : Aut+(M0)] = #M1. From
the first part of the proof we know that Aut+(M0) can be identified with the subgroup
S = {ψ ∈ Aut+(M) | ψ(1) = 1} of Aut+(M). But S has index #M1 in Aut+(M) by
[16, Corollary 4.5]. �
Lemma 6.3. Let (V,Q) be a three-dimensional definite quadratic space over K such that
− disc(Q) ∈ (K∗)2.

1. There exists a definite quaternion algebra Q over K such that (V,Q) is isometric to
(Q0, nrQ0/K). Further, Q is unique up to isomorphism.

2. The trace zero submodule M0 of any maximal order M in Q is a maximal integral
lattice in (Q0, nrQ0/K).

3. Two maximal orders in Q are conjugate in Q if and only if their trace zero submodules
are isometric lattices in (Q0, nrQ0/K).
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Proof. For the first claim, see for example [12, (6.20) and (6.21)]. The second assertion
follows again from the local description of maximal orders. The third statement is an
immediate consequence of Lemmas 6.1 and 6.2. �
Theorem 6.4. Let Q be a definite quaternion algebra over K. Then the genus Λ of all
maximal integral lattices in (Q0, nrQ0/K) has class number one if and only if all maximal
orders in Q are conjugate.

Proof. If Λ has class number one then all maximal orders in Q must be conjugate by
the previous lemma. The converse follows again from comparing the mass formulas of
Eichler and Shimura while using the identity # Aut(M) = #M1 · # Aut(M0). �

Note that there are other maps between ternary quadratic forms and quaternion
orders such that a similar statement as Theorem 6.4 holds. There is the correspondence
of Brzeziński [4] which goes back to work of Peters [21], Brandt [2] and Latimer [13].
There is also the correspondence of Nipp [18] which generalizes a result of Pall [20].
These maps are in general not onto. Further, they do not map maximal integral forms
to maximal orders. Hence we do not pursue these connections further.

7. Results

The enumeration of all one-class genera has been implemented by the author in
Magma (see [1]). A summary of the results is given here.

Theorem 7.1. Let (V,Q) be a definite quadratic space of dimension m � 3 over some
totally real number field K �= Q. If the genus of all maximal integral lattices in (V,Q)
has class number one then m � 6. Moreover :

1. If m = 3 then there are 402 such genera over 29 different fields. In 96 cases, − disc(Q)
is a square.

2. If m = 4 then there are 67 such genera over 19 different fields. In 51 cases the
discriminant of Q is a square.

3. If m = 5 then K = Q(
√

5 ) and (V,Q) ∼= 〈1, 1, 1, 1, 1〉.
4. If m = 6 then K = Q(

√
5 ) and (V,Q) ∼= 〈1, 1, 1, 1, 1, (5 +

√
5 )/2〉.

The complete list of these genera can be obtained electronically from [10].

Almost all lattices in Theorem 7.1 are free. More precisely, the following is true.

Remark 7.2. The field K = Q(
√

15 ) is the only base field with non-trivial class group
that affords maximal integral lattices with class number one and rank at least 3. In fact,
up to isometry there are four such lattices and all of them have exactly rank 3. These
lattices can be constructed as follows.
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Let Q be the definite quaternion algebra over K ramified at the prime ideals p2 and
p3 of norm 2 and 3 respectively. Let M be a maximal order in Q. It is unique up to
isometry. Hence (M0, nrQ0/K) is a maximal integral lattice with class number one by
Lemma 6.4.

Let u =
√

15 + 4 be a fundamental unit of Z[
√

15 ]. Then (pa3M,ub/3a · nrQ0/K) is
maximal integral for all a, b ∈ {0, 1}. By comparing discriminants, we see that this gives
4 pairwise non-isomorphic lattices. Further, rescaling forms and lattices does not change
class numbers. Since M0 is free and p3 generates the class group of Z[

√
15 ] we see that

p3M
0 cannot be free by Steinitz’ theorem.

Thus the classification in Theorem 7.1 contains only two non-free lattices.

By [14] or [8], there exist 9 one-class genera of maximal integral ternary lattices in
rational orthogonal spaces (V,Q) such that − disc(Q) ∈ Q2. Together with Theorems 6.4
and 7.1 we have thus just proven the following.

Theorem 7.3. Let Q be a definite quaternion algebra over some number field K (possi-
bly Q) such that Q contains up to conjugacy only one maximal order M . Let c denote the
ideal class number of M , i.e. the number of finitely generated nonzero M -left modules
in Q. Then c ∈ {1, 2, 4, 8}. More precisely:

1. There are 49 algebras with c = 1 and 53 algebras with c = 2. They have been enu-
merated by Voight and the author in [11].

2. If c = 4 then either K = Q(
√

7 ) and Q ramifies at the two prime ideals over 2 and 7
or K = Q(

√
21 ) and Q ramifies at the two prime ideals over 3 and 7.

3. If c = 8 then K = Q(
√

15 ) and Q ramifies at the two prime ideals over 2 and 3.

We now give some more details for the one-class genera for base fields K �= Q. Let Λ be
a one-class genus of maximal integral lattices in (V,Q). Further let L be a representative
of Λ.

It is clear that for a Galois extension K/Q, the Galois group acts on the set of
definite quadratic spaces (V,Q) over K and thus on the set of genera of maximal integral
lattices. Further, the action preserves class numbers. Thus it suffices to give only one
representative for each orbit.

Dimension 4
Among the 102 quaternion algebras in Theorem 7.3, only 56 satisfy the condition of

Lemma 6.1 part 4. In 51 cases, the center of these algebras is a proper extension of Q
which agrees with Theorem 7.1. They are listed in the following table. For each algebra
Q we give its ramified prime ideals where pq denotes some prime ideal of ZK over the
rational prime q. Further we give the isomorphism type of Aut(M) for some maximal
order M in Q as well as the length of the Galois orbit.
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K Ram. primes #orbit Aut(M)

Q(
√

5 ) – 1 Aut(H4)
Q(

√
5 ) p2, p5 1 (±D10)2

Q(
√

5 ) p2, p11 2 D2
8

Q(
√

2 ) – 1 Aut(D4(
√

2 ))
Q(

√
2 ) p2, p7 2 D2

16

Q(
√

2 ) p2, p3 1 (±S3)2

Q(
√

2 ) p2, p5 1 C4
2

Q(
√

3 ) p2, p3 1 (D12.2)2

Q(
√

3 ) p2, p13 2 C4
2

Q(
√

13 ) – 1 Aut(D∼
4 )

Q(
√

13 ) p2, p3 2 D2
8

Q(
√

17 ) – 1 Aut((2A2)∼)
Q(

√
6 ) p2, p3 1 D2

8

Q(θ7) p2 1 Aut(D4)
Q(θ7) p7 1 (±D14) � C2

Q(θ7) p13 3 ±D2
14

Q(θ7) p29 3 ±D2
6

Q(θ7) p43 3 C4
2 .C2

Q(θ9) p3 1 D2
36

Q(θ9) p19 3 C4
2 .C2

Q(θ9) p37 3 C3
2

x3 − x2 − 3x + 1 p2 1 Aut(D4)
x3 − x2 − 3x + 1 p5 1 ±S2

3

x3 − x2 − 3x + 1 p13 1 C3
2

x3 − x2 − 4x − 1 p5 3 ±S2
3

x3 − x2 − 4x − 1 p13 1 C3
2

x3 − 4x − 1 p2 1 C3
2 .C2

x3 − x2 − 4x + 2 p2 1 ±S2
3

x3 − x2 − 4x + 1 p3 1 C4
2 .C2

x4 − x3 − 3x2 + x + 1 – 1 Aut(H4)
x4 − 4x2 − x + 1 – 1 Aut(D∼

4 )
Q(θ20) p2, p5 1 C4

2

Q(θ24) p2, p3 1 C4
2

x4 − x3 − 4x2 + x + 2 – 1 Aut((2A2)∼)
x5 − 5x3 − x2 + 3x + 1 p5 1 ±S2

3

Here Si, Ci and Di denote the symmetric, cyclic and dihedral groups of order i

respectively. Further A and D stand for the root lattices of the corresponding type. The
four one-class genera of unimodular lattices over totally real quadratic fields have been
found by Scharlau in [26]. In this paper, he gives explicit constructions for these lattices
and the corresponding automorphism groups Aut(H4) = (SL2(5) ◦ SL2(5)) : 2 in the
notation of [17], Aut(D4(

√
2 )) = Aut(D4).2, Aut(D∼

4 ) and Aut((2A2)∼).
The 16 quaternary one-class genera for which disc(Q) is not a square, are organized

in 11 Galois orbits. For each such orbit, the following table lists the base field K, the
determinant of L (which is a free ZK -module), the set of primes for which the Hasse
invariant cp(Q) is −1, the orbit length and finally the isomorphism type of Aut(L).
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K det(L) cp = −1 #orbit Aut(L)

Q(
√

5 ) p
2
2p5 p2, p5 1 (C2 � S3) × C2

Q(
√

5 ) p
2
2p3 p2, p3 1 D10 × C2

2
Q(

√
5 ) p3p5 – 1 (±A5) × {±1}

Q(
√

5 ) p3p5 p3, p5 1 (±D10) × (±S3)
Q(

√
5 ) p29 – 2 (±A5) × {±1}

Q(
√

5 ) p5p41 p5, p41 2 S3 × C2
2

Q(
√

2 ) p
2
2p3 p2, p3 1 D16 × C2

2
Q(

√
2 ) p

2
2p17 p2, p17 2 S3 × C2

2
Q(

√
3) p

2
2p5 p2, p5 1 C3

2
Q(θ7) p3p7 p2, p3 1 C2 � S3

Q(θ9) p3p71 p2, p71 3 ±S4

Table 2
Distribution of the 402 ternary one-class genera among the 29 different base fields.

K nK K nK K nK

x2 − 5 64 x3 − x2 − 2x + 1 38 x4 − 4x2 − x + 1 6
x2 − 2 48 x3 − 3x − 1 28 x4 − 5x2 + 5 4
x2 − 3 34 x3 − x2 − 3x + 1 12 x4 − 4x2 + 1 4
x2 − 13 31 x3 − x2 − 4x − 1 14 x4 − x3 − 4x2 + x + 2 2
x2 − 17 15 x3 − 4x − 1 6 x4 − 6x2 − 4x + 2 8
x2 − 21 16 x3 − x2 − 4x + 3 6 x4 − 2x3 − 3x2 + 4x + 1 4
x2 − 6 12 x3 − x2 − 4x + 2 4 x5 − 5x3 − x2 + 3x + 1 2
x2 − 7 12 x3 − x2 − 4x + 1 4 x5 − 2x4 − 3x3 + 5x2 + x − 1 2
x2 − 33 8 x4 − x3 − 3x2 + x + 1 6 x5 − 5x3 + 4x − 1 4
x2 − 15 4 x4 − x3 − 4x2 + 4x + 1 4

Dimensions 5 and 6
In dimensions 5 and 6 we have K = Q(

√
5 ). Let M be a maximal order in Q = (−1,−1

K ),
the quaternion algebra over K ramified only at the infinite places. By Theorem 7.1, the
two quadratic spaces of dimension 5 or 6 over K that admit one-class genera of maximal
integral lattices are (Q, nrQ/K) ⊥ 〈1〉 and (Q, nrQ/K) ⊥ (Q(ζ5), NQ(ζ5)/K).

The lattices L1 = M ⊥ 〈1〉 and L2 = M ⊥ Z[ζ5] are maximal integral in these spaces
respectively. The corresponding automorphism groups are

Aut(L1) = Aut(H4) × {±1} =
((

SL2(5) ◦ SL2(5)
)

: 2
)
× {±1} and

Aut(L2) = Aut(H4) × {±D10} =
((

SL2(5) ◦ SL2(5)
)

: 2
)
× {±D10}.

Dimension 3
Instead of listing all 402 one-class genera of maximal integral ternary lattices, we only

list the number nK of genera for each base field K in Table 2.

Acknowledgments

The author would like to thank Claus Fieker for his help with class field theory and
the Magma interface to it. The author is also indebted to John Voight for providing
Ref. [3] as well as his tables of totally real number fields. The author would also like to



392 M. Kirschmer / Journal of Number Theory 136 (2014) 375–393
thank Rudolf Scharlau and Rainer Schulze-Pillot for their valuable input. The work has
been supported by DFG grant KI 1594/1-1.

References

[1] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I. The user language, J. Symbolic
Comput. 24 (3–4) (1997) 235–265.

[2] H. Brandt, Zur Zahlentheorie der Quaternionen, Jahresber. Deutsch. Math.-Verein. 53 (1943) 23–57.
[3] S. Brueggeman, D. Doud, Local corrections of discriminant bounds and small degree extensions of

quadratic base fields, Int. J. Number Theory 4 (2008) 349–361, see also http://www.math.byu.edu/~
doud/DiscBound.html.

[4] J. Brzeziński, A characterization of Gorenstein orders in quaternion algebras, Math. Scand. 50 (1)
(1982) 19–24.

[5] J. Dieudonné, Linear Algebra and Geometry, Hermann, Paris, 1969.
[6] W.T. Gan, J. Hanke, J.-K. Yu, On an exact mass formula of Shimura, Duke Math. J. 107 (2001).
[7] B.H. Gross, On the motive of a reductive group, Invent. Math. 130 (1997) 287–313.
[8] J. Hanke, Enumerating maximal definite quadratic forms of bounded class number over Z in n � 3

variables, arXiv:1110.1876, 2011.
[9] B. Hemkemeier, R. Scharlau, Classification of integral lattices with large class number, Math. Comp.

67 (1998) 737–749.
[10] M. Kirschmer, The one-class genera of maximal integral forms, http://www.math.rwth-aachen.de/~

kirschme/forms/, 2012.
[11] M. Kirschmer, J. Voight, Algorithmic enumeration of ideal classes for quaternion orders, SIAM

J. Comput. (SICOMP) 39 (5) (2010) 1714–1747, see also http://www.cems.uvm.edu/~voight/
defeichler-tables/.

[12] M. Kneser, Quadratische Formen, Springer, 2002, revised and edited in collaboration with Rudolf
Scharlau.

[13] C.G. Latimer, The classes of integral sets in a quaternion algebra, Duke Math. J. 3 (1937) 237–247.
[14] D. Lorch, M. Kirschmer, Single-class genera of positive integral lattices, LMS J. Comput. Math. 16

(2013) 172–186, http://dx.doi.org/10.1112/S1461157013000107.
[15] J. Martinet, Tours de corps de classes et estimations de discriminants, Invent. Math. 44 (1978)

65–73.
[16] G. Nebe, Finite quaternionic matrix groups, Represent. Theory 2 (1998) 106–223.
[17] G. Nebe, W. Plesken, Finite Rational Matrix Groups, Mem. Amer. Math. Soc., vol. 116, AMS,

1995.
[18] G.L. Nipp, Quaternion orders associated with ternary lattices, Pacific J. Math. 53 (1974) 525–537.
[19] O.T. O’Meara, Introduction to Quadratic Forms, Springer, 1973.
[20] G. Pall, On generalized quaternions, Trans. Amer. Math. Soc. 59 (1946) 280–332.
[21] M. Peters, Ternäre und quaternäre quadratische Formen und Quaternionenalgebren, Acta Arith. 15

(1968/1969) 329–365.
[22] H. Pfeuffer, Einklassige Geschlechter totalpositiver quadratischer Formen in totalreellen algebrais-

chen Zahlkörpern, J. Number Theory 3 (1971) 371–411.
[23] W. Plesken, B. Souvignier, Computing isometries of lattices, J. Symbolic Comput. 24 (1997)

327–334.
[24] P. Ponomarev, Arithmetic of quaternary quadratic forms, Acta Arith. 29 (1976) 1–48.
[25] G. Prasad, Volumes of S-arithmetic quotients of semi-simple groups, Publ. Math. Inst. Hautes

Etudes Sci. 69 (1989) 91–117.
[26] R. Scharlau, Unimodular lattices over real quadratic fields, Math. Z. 216 (1994) 437–452.
[27] R. Scharlau, Martin Kneser’s work on quadratic forms and algebraic groups, in: Quadratic Forms—

Algebra, Arithmetic, and Geometry, in: Contemp. Math., vol. 493, Amer. Math. Soc., Providence,
RI, 2009, pp. 339–357.

[28] W. Scharlau, Quadratic and Hermitian Forms, Grundlehren Math. Wiss., vol. 270, Springer-Verlag,
1985.

[29] R. Schulze-Pillot, An algorithm for computing genera of ternary and quaternary quadratic forms,
in: Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation,
ISSAC’91, ACM, 1991, pp. 134–143.

[30] J.-P. Serre, Local Fields, Springer, 1995.

http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4D61676D61s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4D61676D61s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4272616E6474s1
http://www.math.byu.edu/~doud/DiscBound.html
http://www.math.byu.edu/~doud/DiscBound.html
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib42727As1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib42727As1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib44696575646F6E6E65s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib474859s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib47726F7373s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib48616E6B65s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib48616E6B65s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib53636861726C61754B4Ds1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib53636861726C61754B4Ds1
http://www.math.rwth-aachen.de/~kirschme/forms/
http://www.math.rwth-aachen.de/~kirschme/forms/
http://www.cems.uvm.edu/{~}voight/defeichler-tables/
http://www.cems.uvm.edu/{~}voight/defeichler-tables/
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4B6E65736572s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4B6E65736572s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4C6174696D6572s1
http://dx.doi.org/10.1112/S1461157013000107
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4D617274696E6574s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4D617274696E6574s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4E656265s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib6D6174726978s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib6D6174726978s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4E697070s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4F4D65617261s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib50616C6Cs1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib506574657273s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib506574657273s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib7066657566666572s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib7066657566666572s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib536F757669676E696572s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib536F757669676E696572s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib706F6E6F6D61726576s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib507261736164s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib507261736164s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib53636861726C6175s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4F6E4B6E65736572s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4F6E4B6E65736572s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4F6E4B6E65736572s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib5753636861726C6175s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib5753636861726C6175s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib5350s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib5350s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib5350s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib5365727265s1


M. Kirschmer / Journal of Number Theory 136 (2014) 375–393 393
[31] G. Shimura, An exact mass forumla for orthogonal groups, Duke Math. J. 97 (1) (1999) 1–66.
[32] C.L. Siegel, Über die analytische Theorie der quadratischen Formen III, Ann. of Math. 38 (1) (1937)

212–291.
[33] M.-F. Vignéras, Arithmétique des Algebrès de Quaternions, Lecture Notes in Math., vol. 800,

Springer, 1980.
[34] J. Voight, Quadratic forms that represent almost the same primes, Math. Comp. 76 (2007)

1589–1617.
[35] J. Voight, Enumeration of totally real number fields of bounded root discriminant, in: A. van der

Poorten, A. Stein (Eds.), Algorithmic Number Theory, ANTS VIII, Banff, 2008, in: Lecture Notes
in Comput. Sci., vol. 5011, Springer, 2008, pp. 268–281.

[36] J. Voight, Identifying the matrix ring: algorithms for quaternion algebras and quadratic forms, in:
K. Alladi, M. Bhargava, D. Savitt, P.H. Tiep (Eds.), Quadratic and Higher Degree Forms, in: Dev.
Math., Springer, 2013, in press.

[37] G.L. Watson, The class-number of a positive quadratic form, Proc. Lond. Math. Soc. (3) 13 (1963)
549–576.

[38] G.L. Watson, One-class genera of positive ternary quadratic forms, Mathematika 19 (1972) 96–104.
[39] G.L. Watson, One-class genera of positive quaternary quadratic forms, Acta Arith. 24 (1974)

461–475. Collection of articles dedicated to Carl Ludwig Siegel on the occasion of his seventy-fifth
birthday, V.

[40] G.L. Watson, One-class genera of positive quadratic forms in nine and ten variables, Mathematika
25 (1) (1978) 57–67.

[41] G.L. Watson, One-class genera of positive quadratic forms in eight variables, J. Lond. Math. Soc.
(2) 26 (2) (1982) 227–244.

[42] G.L. Watson, One-class genera of positive quadratic forms in seven variables, Proc. Lond. Math.
Soc. (3) 48 (1) (1984) 175–192.

[43] G.L. Watson, One-class genera of positive quadratic forms in six variables, unpublished.

http://refhub.elsevier.com/S0022-314X(13)00276-X/bib5368696D757261s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib53696567656Cs1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib53696567656Cs1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib5669676E65726173s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib5669676E65726173s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib566F6967687432s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib566F6967687432s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4A56s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4A56s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4A56s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4853s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4853s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib4853s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib576174616C6C67s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib576174616C6C67s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib57617433s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib57617434s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib57617434s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib57617434s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib57617439s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib57617439s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib57617438s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib57617438s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib57617437s1
http://refhub.elsevier.com/S0022-314X(13)00276-X/bib57617437s1

	One-class genera of maximal integral quadratic forms
	1 Introduction
	2 Preliminaries
	3 The mass formula
	4 Restricting the possible base ﬁelds
	5 Enumerating the one-class genera
	5.1 Odd dimensions
	5.2 Even dimensions

	6 Quaternion orders
	7 Results
	Acknowledgments
	References


