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A conjecture proposed by Jeśmanowicz on Pythagorean
triples states that for any fixed primitive Pythagorean triple
(a, b, c) such that a2 + b2 = c2, the Diophantine equation
ax + by = cz has only the trivial solution in positive integers
x, y and z. In this paper we establish the conjecture for the
case where b is even and either a or c is congruent to ±1
modulo the product of all prime factors of b.
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1. Introduction

A triple of positive integers (a, b, c) is called a Pythagorean triple if a2 + b2 = c2, and
primitive if a, b and c are co-prime. The following is one of the major unsolved problems
about Pythagorean triples.
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Conjecture 1. For any fixed primitive Pythagorean triple (a, b, c) such that a2 + b2 = c2,
the Diophantine equation

ax + by = cz (1)

has only the trivial solution in positive integers x, y and z.

In 1956, Sierpiński [S] considered (1) for (a, b, c) = (3, 4, 5), and he showed that
it has no positive integer solutions other than (x, y, z) = (2, 2, 2). In the same year,
Jeśmanoiwcz [J] obtained similar results for some other Pythagorean triples, and he
proposed the above problem. Up to the present, Conjecture 1 has been proved to be
true under various conditions, but it is still open (see for example [M2] and its refer-
ences).

It is well-known that for any primitive Pythagorean triple (a, b, c) such that a2 +
b2 = c2, we can write

a = m2 − n2, b = 2mn, c = m2 + n2,

where m and n are co-prime positive integers of different parities with m > n. We
will always consider the above expressions. It is important to examine the potential
conditions on m and n, such as n = 1 and m = n + 1. Indeed, these play important
roles in many studies in the literature. In these cases, Conjecture 1 is known to be true
by the works of Lu [Lu] for n = 1 and Dem’janenko [D] for m = n + 1. Recently,
the first author [M2] generalized their results by proving the conjecture to be true if
a ≡ ±1 (mod b) or c ≡ 1 (mod b). In this paper, we extend this result to more general
cases.

For any positive integer N , we denote the exact exponent of 2 in N by ord2(N), and
the product of all prime factors of N by rad(N). In what follows, we put

A ∈ {a, c}, ε ∈ {1,−1}.

The main result of this paper is the following.

Theorem 1. If A ≡ ε (mod b/2ord2(b)), then Conjecture 1 is true.

This is a generalization of the results in [M2]. It is a consequence of a result (Theo-
rem 2 below) concerning more general cases. We shall be concerned with the following
case:

A ≡ ε (mod b0), (2)

where b0 is a positive divisor of b which is divisible by rad(b). The second result is the
following.
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Theorem 2. Assume that Conjecture 1 is true under assumption (2). Moreover, if ε = −1,
n � 4 is a power of 2 and m ≡ ±1 + n2/2 (mod n2), then assume that

b0 >
4m

p(m) ,

where p(m) is the least prime factor of m. Then Conjecture 1 is true under assump-
tion (2) with the modulo replaced by b0/2.

Theorem 1 follows from the results in [M2] and Theorem 2 with b0 = b/2r for r ∈
{0, 1, 2, . . . , ord2(b) − 1}.

The organization of this paper is the following. In the next section, we prove a propo-
sition which plays a crucial role in the proof of our results. In Section 3, we prepare some
lemmas which are useful to examine the parities of solutions. In Section 4, we prove
Theorem 2 for the case ε = 1. In Section 5, we give a sufficient condition to ensure y > 1.
In Section 6, we prove Theorem 2 for the case ε = −1. In the final section, we give some
examples of Theorem 1 and make some remarks.

The paper is mainly devoted to the proof of Theorem 2. Although the proof proceeds
along a similar line as [M2], we need to treat several parts by more careful or sophisticated
observations, in particular, we are not able to use the theory of Pellian equations. The
first step is to show that for any solution, both x and z are even. This is reduced to
the problem of analyzing the case where ε = −1 and n is a power of 2. Under the
assumption that b0 is suitably large, which is ensured from our assumption on b0, we
can deal with this case by an application of the theory of linear forms in logarithms of
algebraic numbers. As a result, together with the fact that b0 is divisible by rad(b), we
obtain some non-trivial (desired) equations. The second step is to show that y is even.
This can be reduced to the previous cases. We can deal with this by applying Baker’s
method to the non-trivial equations. Finally, using an idea from the work of Deng and
Cohen [DC] to the non-trivial equations, we obtain the desired conclusion, where the
method is another treatment of the results in [FM] and [M2].

2. An important proposition

The proof of Theorem 2 is mainly divided into two parts. The first part is to prove
that x, y and z are even, and also that some non-trivial equations hold (see (3), (4)
below). The second part is to solve such non-trivial equations. The first part will be
done in Sections 4 and 6 for the cases (A, ε) = (a, 1), (c, 1), (a,−1), (c,−1), respectively.

In this section, we complete the second part, where we do not need assumption (2).
Indeed, we prove the following proposition.

Proposition 1. Let m and n be co-prime positive integers of different parities with m > n.
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(i) Assume that m is even. Then the system of equations
⎧⎨
⎩

(
m2 + n2)Z +

(
m2 − n2)X = 22Y−1m2Y ,(

m2 + n2)Z −
(
m2 − n2)X = 2n2Y

(3)

has only the trivial solution X = Y = Z = 1 in positive integers X,Y and Z.
(ii) Assume that n is even. Then the system of equations

⎧⎨
⎩

(
m2 + n2)Z +

(
m2 − n2)X = 2m2Y ,(

m2 + n2)Z −
(
m2 − n2)X = 22Y−1n2Y

(4)

has only the trivial solution X = Y = Z = 1 in positive integers X,Y and Z.

Proof. It is easy to observe that if (3) or (4) has a solution, then taking the equations
modulo m2 − n2 yields the congruence

22Y−2 ≡ 1
(
mod m2 − n2). (5)

(i) Let (X,Y, Z) be a positive integer solution of (3). From (3) we see

(
m2 − n2)X =

(
2Y−1mY + nY

)(
2Y−1mY − nY

)
.

Since gcd(2m,n) = 1, the factors on the right-hand side are co-prime. Hence, we can
write

2Y−1mY + nY = sX , 2Y−1mY − nY = tX

for some positive odd integers s and t with s > t and st = m2 − n2. Since m > n and
s � t + 2, we find

sX + tX = 2Y mY > 2Y−1 · 2nY = 2Y−1(sX − tX
)
,

so

(
2Y−1 + 1

)
tX >

(
2Y−1 − 1

)
sX

�
(
2Y−1 − 1

)
(t + 2)X

�
(
2Y−1 − 1

)(
tX + 2XtX−1).

It follows t > (2Y−1 − 1)X, and in particular,

t � 2Y−1.
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From this we see that the left-hand side of (5) is at most t2 < st = m2 − n2, so (5) is an
equality, hence Y = 1, and X = Z = 1 by the first equation in (3).

(ii) First, we assume n ≡ 2 (mod 4). Note that m2 ± n2 ≡ 5 (mod 8). Let (X,Y, Z)
be a positive integer solution of (4). Then taking the equations in (4) modulo 8, we find

5X ≡ 1 − 22Y−2n2Y , 5Z ≡ 1 + 22Y−2n2Y (mod 8).

Suppose Y � 2. Then 5X ≡ 5Z ≡ 1 (mod 8) so that both X and Z are even. This gives
rise to a non-trivial solution of the Diophantine equation S4 + T 2 = U4, indeed, we find
from (4) that

(
m2 − n2)4(X/2) + (2mn)2Y =

(
m2 + n2)4(Z/2)

.

This is a contradiction. Therefore, Y = 1, and X = Z = 1 by the first equation in (4).
Second, we assume n ≡ 0 (mod 4). Let (X,Y, Z) be a positive integer solution of (4).

From (4) we see that
(
m2 − n2)X =

(
mY + 2Y−1nY

)(
mY − 2Y−1nY

)
.

Since gcd(m, 2n) = 1, the factors on the right-hand side are co-prime. Hence, we can
write

mY + 2Y−1nY = sX , mY − 2Y−1nY = tX

for some co-prime positive odd integers s and t with s > t and st = m2 − n2. Since
sX − tX = (2n)Y and s− t ≡ 0 (mod 4) (by st = m2 − n2 ≡ 1 (mod 4)), it follows from
[R, p. 11; P1.2] that

ord2(s− t) + ord2(X) =
(
1 + ord2(n)

)
Y.

From the equations in (4) we see that

2mX < 2
(
m2 − n2)X <

(
m2 + n2)Z +

(
m2 − n2)X = 2m2Y ,

and so X < 2Y . These together with n ≡ 0 (mod 4) imply

ord2(s− t) =
(
1 + ord2(n)

)
Y − ord2(X) � 3Y − logX

log 2 � 2Y,

so

s− t ≡ 0
(
mod 22Y ).

From this we see that the left-hand side of (5) is less than 22Y � s− t < st = m2 − n2,
and so (5) is an equality. Hence Y = 1 and X = Z = 1. �
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3. Parities of solutions

In the study of Conjecture 1, it is very important to examine the parities of solutions
of the equation

(
m2 − n2)x + (2mn)y =

(
m2 + n2)z (6)

in positive integers x, y and z, where m and n are fixed co-prime positive integers of
different parities with m > n. By [Lu], we may assume n > 1. We use the following
notation from [M,M2]. We define integers α � 1, β � 2, e ∈ {1,−1}, and positive odd
integers i, j as follows:

{
m = 2αi, n = 2βj + e if m is even,
m = 2βj + e, n = 2αi if m is odd.

(7)

With the notation in (7), we have the following lemmas.

Lemma 1. Assume α > 1, α �= β and 2α �= β + 1. Let (x, y, z) be a solution of (6). Then
we have x ≡ z (mod 2).

Lemma 2. Assume 2α �= β + 1. Let (x, y, z) be a solution of (6). Suppose y > 1. Then
we have x ≡ z (mod 2).

Lemma 3. Let (x, y, z) be a solution of (6). Assume that both x and z are even. Write
X = x/2 and Z = z/2. Then both X and Z are odd.

Lemmas 1, 2 and 3 are Lemma 2.4(i), Lemma 2.4(ii) and Theorem 1.5(i) from [M],
respectively.

Lemma 4. We have

c− 1 ≡ 0
(
mod 2min{2α,β+1})

and {
a + 1 ≡ 0

(
mod 2min{2α,β+1}) if m is even,

a− 1 ≡ 0
(
mod 2min{2α,β+1}) if m is odd.

Proof. This easily follows from substituting (7) into (6). �
4. The case ε = 1

In this section, we prove Theorem 2 for the case ε = 1. We consider the cases A = a

and A = c separately.
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4.1. The case (A, ε) = (a, 1)

Assume that Conjecture 1 is true under assumption (2) with A = a and ε = 1. Note
that b0 is even. Now, we assume a ≡ 1 (mod b0/2). Write a = 1+(b0/2)t with a positive
integer t. Since Conjecture 1 is now ensured to be true if a ≡ 1 (mod b0), we may assume
that t is odd. The fact that t is odd will be used in several places in the arguments below.

Since b0/2 is a divisor of b/2 = mn, we can write

b0/2 = m0n0,

where m0 and n0 are positive divisors of m and n, respectively. Note that these are
uniquely determined. Then

m2 − n2 = 1 + m0n0t. (8)

Since t is odd, Eq. (8) implies that m0 or n0 is even, and so

rad(m0) = rad(m), rad(n0) = rad(n). (9)

From (8) we find

m2 ≡ 1 (mod n0), (10)

n2 ≡ −1 (mod m0). (11)

First, we prove an important lemma.

Lemma 5. Assume that m is odd. Then, with the notation in (7), we have α � β + 1.

Proof. Since t is odd, it follows from Lemma 4 and (8) that

min{2α, β + 1} � ord2(a− 1) = ord2(m0n0t) � ord2(mn) = α.

This gives the desired conclusion. �
Let (x, y, z) be a solution of (6).

Lemma 6. z is even.

Proof. Taking (6) modulo m0, we have (−n2)x ≡ (n2)z (mod m0). Then (−1)z ≡
1 (mod m0) by (11). Hence, z is even if m0 � 3. If m0 � 2, then (9) implies m0 = 2, so
m is a power of 2, where Conjecture 1 is true by [M, Theorem 1.2]. �
Lemma 7. x is even.
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Proof. If m is even, then the conclusion follows from taking (6) modulo 4. Hence we may
assume that m is odd. In view of Lemmas 1, 5 and 6, we conclude that x is even. �

In view of Lemmas 3, 6 and 7, we can write x = 2X and z = 2Z with positive odd
integers X and Z. Define positive even integers D and E as follows:

(2mn)y = DE,

where

D =
(
m2 + n2)Z +

(
m2 − n2)X , E =

(
m2 + n2)Z −

(
m2 − n2)X .

It is easy to see y > 1 and gcd(D,E) = 2.

Lemma 8. We have equality of the ordered pairs

(D,E) =
{(

2y−1my, 2ny
)

if m is even,(
2my, 2y−1ny

)
if m is odd.

Proof. Since m �≡ n (mod 2), it follows that
{
D ≡ 0, E ≡ 2 (mod 4) if m is even,

D ≡ 2, E ≡ 0 (mod 4) if m is odd.

Further, from (10) and (11) we see

D ≡ ±2 (mod n0), E ≡ ±2 (mod m0).

These congruences together imply that D/2 is prime to n0 (hence, to n by (9)), and that
E/2 is prime to m0 (hence, to m by (9)). It follows from the equation (D/2)(E/2) =
2y−2myny that my divides D/2, and ny divides E/2. The factor 2y−2 divides D/2 or
E/2 according to whether m is even or not. This proves the lemma. �
Lemma 9. y is even.

Proof. First we assume that m is even. Then Lemma 8 tells us (1 + m0n0t)X = (D −
E)/2 = 2y−2my−ny. Taking this modulo m0, we have ny ≡ −1 (mod m0). Then squaring
this we get (−1)y ≡ 1 (mod m0) by (11). From this we may conclude that y is even in
the same manner as Lemma 6.

Second we assume that m is odd. Then Lemma 8 tells us (1+m0n0t)X = (D−E)/2 =
my − 2y−2ny. Taking this modulo n0, we have my ≡ 1 (mod n0). Suppose that y is odd.
Then m ≡ 1 (mod n0) by (10). This together with (8) and the fact that both t and m

are odd yields a contradiction as follows:
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ord2(n0) � ord2(m− 1)

< ord2
(
m2 − 1

)
= ord2

(
n2 + m0n0t

)
= ord2(n0) + ord2

(
n2/n0 + m0t

)
= ord2(n0).

Therefore, y is even. �
By Lemma 9, we can write y = 2Y with a positive integer Y . Then Lemma 8 yields (3),

and Proposition 1 gives X = Y = Z = 1, as desired.

4.2. The case (A, ε) = (c, 1)

Assume that Conjecture 1 is true under assumption (2) with A = c and ε = 1.
Similarly to the preceding case, we may write

m2 + n2 = 1 + m0n0t, (12)

where t is a positive odd integer, and m0, n0 are positive divisors of m and n, respectively,
such that condition (9) holds. From (12) we find

m2 ≡ 1 (mod n0), (13)

n2 ≡ 1 (mod m0). (14)

Lemma 10. With the notation in (7), we have α � β + 1.

Proof. Similarly to Lemma 5, we have the conclusion by using the fact that t is odd and
Lemma 4. �

Let (x, y, z) be a solution of (6).

Lemma 11. Both x and z are even.

Proof. Similarly to Lemma 6, we can prove that x is even by taking (6) modulo m0
together with (14). Hence, Lemmas 1 and 10 yield that z is even. �

By Lemmas 3 and 11, we can write x = 2X and z = 2Z with positive odd integers X
and Z. As in the preceding section, we consider positive even integers D and E, and
from (13) and (14), we have the same congruences on D and E. As a result, Lemma 8
holds in this case as the same proof goes through. Hence, by Proposition 1, it suffices to
show that y is even.

First, assume that m is even. Then Lemma 8 tells us (1 + m0n0t)Z = 2y−2my +
ny. Taking this modulo m0, we have ny ≡ 1 (mod m0). Suppose that y is odd. Then
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n ≡ 1 (mod m0) by (14). This together with (12) and the fact that both t and n are odd
yields a contradiction as follows:

ord2(m0) � ord2(n− 1)

< ord2
(
n2 − 1

)
= ord2

(
−m2 + m0n0t

)
= ord2(m0) + ord2

(
−m2/m0 + n0t

)
= ord2(m0).

Second, assume that m is odd. Then Lemma 8 tells us (1 +m0n0t)Z = my + 2y−2ny.
Taking this modulo n0, we have my ≡ 1 (mod n0). Suppose that y is odd. Then m ≡
1 (mod n0) by (13). This yields a contradiction as in the preceding case. Therefore, we
conclude that y is even. This completes the proof of Theorem 2 for the case ε = 1.

5. The case y = 1

Before proving Theorem 2 in the case ε = −1, we study Eq. (6) in the case y = 1,
where Eq. (6) has the form of the Pillai equation. A usual application of the theory of
linear forms in (two) logarithms of algebraic numbers gives us a sufficient condition to
ensure y > 1. Indeed, we prove the following.

Lemma 12. Let (x, y, z) be a solution of (6). Suppose y = 1. Then the following holds.

(i) We have

1 � x− z < 2521 log
(
r2 + 1
r2 − 1

)
,

where r = m/n. In particular, r < 72.
(ii) For i � 0, let qi be the denominator of the i-th convergent in the simple continued

fraction expansion of log a
log c , and let αi be the i-th partial quotient of log a

log c . Then there
exists a non-negative integer s with 4 � qs < 2521 log c such that

αs+1 + 2 >
aqs log c

bqs
.

Proof. (i) Since y = 1, we have

(
m2 − n2)x + 2mn =

(
m2 + n2)z. (15)

It is not hard to show x � 4 and x > z > 1. Also, x and z are co-prime. Indeed, if d is a
common divisor of them, then (15) implies that b is divisible by (cz−ax)/(cz/d−ax/d) =
(cz/d)d−1 + ax/d(cz/d)d−2 + · · · + (ax/d)d−1, which is greater than c (> b) if d > 1.
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Put

Λ1 := z log c− x log a (> 0).

Observe Λ1 < ba−x. In order to obtain a lower bound for Λ1, we use a result from [La].
To state it, we prepare some notation.

For an algebraic number α of degree d over the field of rational numbers Q, we define
as usual the absolute logarithmic height of α by

h(α) = 1
d

(
log c0 +

d∑
i=1

log max
{
1,
∣∣α(i)∣∣}),

where c0 > 0 is the leading coefficient of the minimal polynomial of α over the ring of
rational integers, and α(1), α(2), . . . , α(d) are the conjugates of α in the field of complex
numbers.

Let α1 and α2 be two non-zero algebraic numbers with |α1| � 1 and |α2| � 1, and let
logα1 and logα2 be any determination of their logarithms. Consider the linear form in
two logarithms

Λ = β2 logα2 − β1 logα1,

where β1 and β2 are positive integers. Put

D =
[
Q(α1, α2) : Q

]
/
[
R(α1, α2) : R

]
,

where we denote R by the field of real numbers. Define

b′ = β1

D logA2
+ β2

D logA1
,

where A1 > 1 and A2 > 1 be real numbers such that

logAi � max
{
h(αi), | logαi|/D, 1/D

}
(i = 1, 2).

We rely the following result due to Laurent [La].

Proposition 2. (Corollary 2; m = 10, [La]) With the above notation, suppose that
α1, α2, logα1, logα2 are all real positive numbers. If α1 and α2 are multiplicatively inde-
pendent, then we have

log |Λ| � −25.2 ·D4(logA1)(logA2)
(
max

{
log b′ + 0.38, 10

})2
.
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We set (α1, α2) = (a, c) and (b1, b2) = (x, z). Then D = 1, and we may take (A1, A2) =
(a, c). Hence, Proposition 2 gives us

logΛ1 > −25.2(log a)(log c)
(
max

{
log b′ + 0.38, 10

})2
,

where b′ = x/ log c + z/ log a. It follows that

x

log c <
log b

(log a)(log c) + 25.2
(
max

{
log b′ + 0.38, 10

})2
.

Since b < c and cz = ax + b < ax + a2 � 2ax, we see b′ < 3s, where s = x/ log c, and so

s < 1 + 25.2
(
max

{
log(3s) + 0.38, 10

})2
.

This implies s < 2521. Then, since

x− z < x− log a
log c x = s log(c/a),

we find

(1 �) x− z < 2521 log
(
r2 + 1
r2 − 1

)
,

where r = m/n. Also, the above yields r < 72.
(ii) The fact that Λ1 < ba−x together with x < 2521 log c gives∣∣∣∣ log a

log c − z

x

∣∣∣∣ < b

xax log c <
2521(b/ax)

x2 .

Since we may assume m � n + 3 by [D], we have r = m/n � 1 + 3/n, giving

b

a
= 2mn

m2 − n2 = 2r
r2 − 1 � 2(1 + 3/n)

(1 + 3/n)2 − 1 = 2n(n + 3)
6n + 9 ,

a = m2 − n2 � (n + 3)2 − n2 � 6n + 9.

Hence, b/ax � b/a4 � 2n(n + 3)/(6n + 9)4 � 8/154 < 1/5042, which implies∣∣∣∣ log a
log c − z

x

∣∣∣∣ < 1
2x2 .

Therefore, z
x is a convergent in the simple continued fraction expansion of log a

log c . Hence
we can write z

x = ps

qs
, which is the s-th such convergent. Since gcd(x, z) = 1, we see

x = qs and z = ps. Note 4 � qs = x < 2521 log c. By a well-known fact due to Legendre
on the continued fraction expansion, we find∣∣∣∣ log a − ps

∣∣∣∣ > 1
2 ,
log c qs (αs+1 + 2)qs
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where αs+1 is the (s + 1)-th partial quotient to log a
log c . It follows

αs+1 + 2 >
xax log c

bq2
s

= aqs log c
bqs

.

This proves the lemma. �
6. The case ε = −1

In this section, we prove Theorem 2 for the case ε = −1. We consider the cases A = a

and A = c separately.

6.1. The case (A, ε) = (a,−1)

We may write

m2 − n2 = −1 + m0n0t,

where t,m0, n0 are defined similarly to Section 4. Then

m2 ≡ −1 (mod n0), n2 ≡ 1 (mod m0).

Let (x, y, z) be a solution of (6). Note that the inequality on b0 in the statement of
Theorem 2:

b0 >
4m

p(m) , (16)

where p(m) is the least prime factor of m, will be used only to show that z is even.
In a similar manner to Lemma 6, we can prove that x is even by taking (6) modulo m0

together with n2 ≡ 1 (mod m0).
Next, we show that z is even. If m is even, then Lemma 4 and the fact that t is odd

imply

min{2α, β + 1} � ord2(a + 1) = ord2(m0n0t) � ord2(mn) = α,

and so z is even by Lemma 1. Hence, we may assume that m is odd. Taking (6) modulo n0,
we have (m2)x ≡ (m2)z (mod n0), which together with m2 ≡ −1 (mod n0) implies
(1=) (−1)x ≡ (−1)z (mod n0). Hence, z is even if n0 � 3.

Suppose n0 � 2. Then n0 = 2 and n is a power of 2, so, with the notation in (7), we
have n = 2α. By Lemma 1, we may assume β � α. Then m = 2βj + e ≡ e (mod n).
Write m = e + hn with a positive integer h. If h = 1, then, since m > n, we have e = 1,
that is, m = n + 1, where Conjecture 1 is true by [D]. Hence, we may assume h � 2.
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We claim that y > 1. Suppose y = 1. We will observe that this yields a contradiction.
Observe

m2 ± n2 ≡ m2 ≡ 1 + 2ehn
(
mod n2), 2mn ≡ 2en

(
mod n2).

Taking (6) modulo n2, we find

2hx + 2 ≡ 2hz (mod n).

Then, Lemma 12(i) together with the fact r = m/n = h + e/n � h− 1/2 implies

n− 2 � 2h(x− z) < 5042h log
(

(h− 1/2)2 + 1
(h− 1/2)2 − 1

)
.

Since h � 2, the above implies n � 4818. Therefore, n � 4096 = 212. Also, m =
rn < 294 912 by Lemma 12(i). We can observe that for each of the pairs (m,n) under
consideration, the inequality in the statement of Lemma 12(ii) does not hold for any s

satisfying 4 � qs < 2521 log c. Hence, the claim is proved.
Since y > 1, we may assume 2α = β + 1 by Lemma 2. Note that α � 2 as β > 1. In

this case, using (16), we have

4m0 = b0 >
4m

p(m) ,

so m0 > m/p(m), which implies m0 = m. Then, since m2 ≡ 1 (mod 2n) and n2 ≡
1 (mod m), we see that

c− 1 =
(
m2 − 1

)
+ n2 = 2mt + 2

(
n2 − 1

)
is divisible by both m and 2n, hence by b = 2mn, where Conjecture 1 is true by [M2].
Therefore, we conclude that z is even.

In a similar manner to Section 4, we can write x = 2X and z = 2Z with positive odd
integers X and Z, and we have the same result as Lemma 8. By Proposition 1, it suffices
to show that y is even.

First, assume that m is even. Then by Lemma 8 and ε = −1 we have (−1+m0n0t)X =
2y−2my −ny. Taking this modulo m0, we have ny ≡ 1 (mod m0). Suppose that y is odd.
Then, since n2 ≡ 1 (mod m0), we have n ≡ 1 (mod m0). But, this yields a contradiction
as in Section 4.2.

Second, assume that m is odd. Then (−1 + m0n0t)X = my − 2y−2ny. Taking this
modulo n0, we have my ≡ −1 (mod n0), which together with m2 ≡ −1 (mod n0) implies
(−1)y ≡ 1 (mod n0). Hence, y is even if n0 � 3. So suppose n0 � 2. Then n0 = 2 and n

is a power of 2.
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Suppose 2α � β + 1. Let us observe the equation cZ = my + 2y−2ny. It is clear that
y � 2Z. Since

cZ ≡ 1
(
mod 2β+1), 2y−2ny ≡ 0

(
mod 22α),

we see (2βj + e)y = my ≡ 1 (mod 2β+1), and so

2βjyey−1 + ey ≡ 1
(
mod 2β+1).

Reducing this modulo 4, we have ey − 1 ≡ 0 (mod 4), so ey − 1 = 0, which together
with the above congruence implies jy ≡ 0 (mod 2) and y is even. Hence, we may assume
2α � β, and also m > n2 (cf. [M2, Example 5.1]). Since

cZm−y = 1 + 1
4

(
2n
m

)y

< 1 +
(
2m−1/2)y,

we have

(0 <) Λ2 := Z log c− y logm <
(
2m−1/2)y.

We apply Proposition 2 to Λ2 with (α1, α2) = (m, c) and (b1, b2) = (y, Z). Since we may
take (A1, A2) = (m, c), it follows that

y

log c <
50.4

1 − log 4
log m

(
max

{
log b′ + 0.38, 10

})2
,

where b′ = y/ log c + Z/ logm. Since cZ < 2my and m > n2 � 4, the above inequality
implies y < 36 352 log c. Suppose y > 2Z. Then we observe that

1 � y − 2Z < y − logm
log

√
c
y = y

log c log
(
c/m2) < 36 352n2

m2 ,

so m2 < 36 352n2. Hence, m < 36 352 (as n2 < m), also we have n <
√
m < 191. Since n

is a power of 2, we have n � 128, which yields a better bound: m <
√

36 352n < 24 405.
For any pair (m,n) with these bounds, note that n2 ≡ 1 (mod rad(m)) does not hold.
This is a contradiction. Hence, y � 2Z, so y = 2Z. We conclude that y is even.

6.2. The case (A, ε) = (c,−1)

We may write

m2 + n2 = −1 + m0n0t,

where t,m0, n0 are defined similarly to the preceding case.
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Let (x, y, z) be a solution of (6). Note that inequality (16) will be used only to show
that x is even.

We can prove that z is even by taking (6) modulo m0 together with n2 ≡ −1 (mod m0).
Next, we show that x is even. We may assume that m is odd. Taking (6) modulo n0,

we have (m2)x ≡ (m2)z (mod n0), which together with m2 ≡ −1 (mod n0) implies
(−1)x ≡ (−1)z (= 1) (mod n0). Hence, x is even if n0 � 3. Suppose n0 � 2. Then n0 = 2
and n is a power of 2. From this, we may assume 2α = β+1 as in Section 6.1. So, by our
assumption (16), we have m0 = m. Since m2 ≡ 1 (mod 2n) and n2 ≡ −1 (mod m), we
see that a− 1 = (m2 − 1) − n2 = 2mt− 2(n2 + 1) is divisible by both m and 2n, hence
by b = 2mn, where Conjecture 1 is true by [M2]. Therefore, we conclude that x is even.

In a similar manner to Section 4, we can write x = 2X and z = 2Z with positive odd
integers X and Z, and we have the same result as Lemma 8. We can prove that y is
even in a similar manner to the preceding section. Therefore, Proposition 1 completes
the proof of Theorem 2 for the case ε = −1.

7. Examples

In this section, we give some examples of Theorem 1. Note that all examples in the
case A ≡ ε (mod b) have already been observed in [M2]. Here, we look at the case of
A ≡ ε (mod b/2) and A �≡ ε (mod b).

Example 1. Let t be a positive odd integer. All the pairs (m,n) satisfying a = ε+ (b/2)t
are given as

m = U� + tV�

2 , n = V�,

where � > 1 is a positive integer such that � is even if ε = 1, and � is odd if ε = −1, and
where {U�}, {V�} are the sequences in t defined by

U1 = t, U2 = t2 + 2, U�+2 = tU�+1 + U�,

V1 = 1, V2 = t, V�+2 = tV�+1 + V�.

For example, we have

ε = 1, � = 2; m = t2 + 1, n = t,

ε = 1, � = 4; m = t4 + 3t2 + 1, n = t
(
t2 + 2

)
,

ε = −1, � = 3; m = t
(
t2 + 2

)
, n = t2 + 1,

ε = −1, � = 5; m = t5 + 2t3 + 2t2 + 2t + 1, n = t4 + 3t2 + 1.



200 T. Miyazaki et al. / Journal of Number Theory 141 (2014) 184–201
Proof. Write m2 − n2 = ε + mnt, where t is a positive odd integer. Then (U, V ) =
(2m− nt, n) is a positive solution of the Pellian equation

U2 −
(
t2 + 4

)
V 2 = 4ε.

By the theory of Pellian equations, we see that all positive integer solutions (U, V ) are
obtained from the relation that (U + V

√
t2 + 4 )/2 is equal to a positive (even, if ε = 1,

odd if ε = −1) power of the fundamental unit in Q(
√
t2 + 4 ), which is t+

√
t2+4
2 . From

this one can easily obtain the desired conclusion. �
Example 2. Let t be a positive odd integer with t � 3. All the pairs (m,n) satisfying
c = 1 + (b/2)t are given as

m = U� + tV�

2 , n = V�,

where � > 1 is a positive integer, and {U�}, {V�} are the sequences in t defined by

U1 = t, U2 = t2 − 2, U�+2 = tU�+1 − U�,

V1 = 1, V2 = t, V�+2 = tV�+1 − V�.

For example, we have

� = 2; m = t2 − 1, n = t,

� = 3; m = t3 − 2t, n = t2 − 1,

� = 4; m = t4 − 3t2 + 1, n = t3 − 2t.

Proof. Write m2 + n2 = 1 + mnt, where t is a positive odd integer with t � 3. Then
(U, V ) = (2m− nt, n) is a positive solution of the Pellian equation

U2 −
(
t2 − 4

)
V 2 = 4.

By the theory of Pellian equations, we see that all positive integer solutions (U, V ) are
obtained from the relation that (U + V

√
t2 − 4 )/2 is equal to a positive power of the

fundamental unit in Q(
√
t2 − 4 ), which is t+

√
t2−4
2 . From this one can easily obtain the

desired conclusion. �
Remark 1. We fail to give all (m,n) for which A is congruent to ε modulo b/2r with
r � 2. Any pair (m,n) for which A is congruent to ε modulo b/d, where d �= 1, 2 is any
divisor of b, induces a positive solution (U, V ) = (dm− nt, n) of the Pellian equation

U2 −
(
t2 ± d2)V 2 = εd2.
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It seems that the above Pellian equation is very hard to handle even if d is a power
of 2. We also remark that the above equation has no solutions if (A, ε) = (c,−1) with
d ∈ {1, 2}.
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