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Let �s := (s1, s2, . . . , sm) with s1 < · · · < sm being
positive integers. Let A(�s ) be the space of all 1-variable
polynomials f(x) =

∑m
�=1 a�xs� parameterized by coefficients

�a = (a1, . . . , am) with am �= 0. We study the p-adic
valuation of the roots of the L-function of exponential
sum of f for modulo p reduction of any generic point
f ∈ A(�s )(Q). Let NP(f) be the normalized p-adic Newton
polygon of the L function of exponential sums of f . Let
GNP(A(�s ),Fp) be the generic Newton polygon for A(�s )
over Fp, and let HP(A(�s )) := NPp(

∏d−1
i=1 (1 − p

i
d T )) be

the absolute lower bound of NP(A(�s )). One knows that
NP(f) ≺ GNP(A(�s );Fp) ≺ HP(f) for all prime p and
for all f ∈ A(�s )(Q), and these equalities hold only when
p ≡ 1 mod d. In the case �s = (s, d) with s < d
coprime we provide a computational method to determine
GNP(A(s, d),Fp) explicitly by constructing its generating
polynomial Hr ∈ Q[Xr,1,Xr,2, . . . , Xr,d−1] for each residue
class p ≡ r mod d. For p ≡ r mod d (with 2 ≤ r ≤ d − 1
coprime to d) large enough Hr =

∑d−1
n=1 hr,n,kr,n

X
kr,n
r,n with∏d−1

n=1 hr,n,kr,n
�= 0 if and only if GNP(A(s, d),Fp) has its

breaking points after the origin at

((
n,

n(n + 1)
2d

+
(1 − s

d
)kr,n

p− 1

))
n=1,2,...,d−1

.

If a �= 0 then for any f = xd + axs ∈ A(s, d)(Q) and for
any prime p ≡ r mod d large enough we have that NP(f) =
GNP(A(s, d),Fp) and
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lim
p→∞

NP(f) = HP
(
A(s, d)

)
.

Our method applies to compute the generic Newton polygon
of Artin–Schreier family yp − y = xd + axs parameterized by
a for p large enough.

© 2014 Elsevier Inc. All rights reserved.

1. Introduction

Let �s := (s1, s2, . . . , sm) with s1 < · · · < sm being positive integers. Let A(�s ) be
the space of all 1-variable polynomials f(x) =

∑m
�=1 a�x

s� parameterized by coefficients
�a = (a1, . . . , am) with am �= 0. Without loss of generality we set am = 1. Fix a primitive
p-th root of unity ζp. Let f =

∑m
�=1 a�x

s� ∈ A(�s )(Q) be a closed point, that is, �a ∈ Qm.
Let ℘ be a prime ideal in the number field Q(a1, . . . , am) lying over p, suppose its residue
field is Fq for some p-power q. For any k ∈ Z≥1 the k-th exponential sum of f := f mod ℘

in Fq[x] is defined to be

Sk(f) =
∑

x∈F
qk

ζ
TrFq/Fp (f(x))
p

and the L function of the exponential sum of f/Fq is defined to be

L(f/Fq;T ) = exp
∞∑
k=1

Sk(f)T k/k.

It is known that L(f/Fq;T ) =
∑d−1

i=0 ciT
i lies in Z[ζp][T ] with c0 = 1. The normalized

p-adic Newton polygon of L(f/Fq;T ) is denoted by NP(f) := NPq(L(f/Fq;T )), that is,
the lower convex hull of the points (i, ordqci) for i = 0, 1, . . . , d− 1 in the real plane R2,
where ordqc = ordpc/ logp q. Consider all (lower convex) Newton polygons with the same
domain as piece-wise linear functions, we define a partial order NP1 ≺ NP2 if NP1 lies
over NP2. For each prime p, there exists a lower bound for all NP(f) by the Grothendieck–
Katz specialization theorem (see [Katz]), that is, there exists f0 ∈ A(�s )(Fp) such that
NP(f) ≺ NP(f0) for all f in A(�s )(Fp). The generic Newton polygon is defined by
GNP(A(�s );Fp) := NP(f0).

In this paper we shall always represent a Newton polygon by its breaking points
coordinates in R2 after origin. Let

HP
(
A(�s )

)
:= NPp

(
d−1∏(

1 − p
i
dT

))
.

i=1
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In the literature HP(A(�s )) is often called the Hodge polygon of A(�s ) (due to its intimate
relation to the Hodge polygon in related toric geometry), and its breaking points after
origin are (n, n(n+1)

2d ) for n = 1, . . . , d− 1. It is known that

NP(f) ≺ GNP
(
A(�s );Fp

)
≺ HP

(
A(�s )

)
(1)

and their endpoints coincide (see [AS89]). In fact this inequality holds for more general
families of Laurent polynomials in multivariables (see for instance [AS89]). For p ≡
1 mod d we have all three polygons coincide, but it is not the case for other residue
classes of the prime p. In fact, GNP generally depends not only on the residue class of
p but also p itself, and from experimental data for lower degree cases one observes that
GNP has a formula for each residue families for p large enough, and we prove this in this
paper and give explicit formulas.

For �s = (1, 2, . . . , d), Wan has conjectured that a generic polynomial of degree d in
A(�s )(Q) has its Newton polygon at each mod p reduction approaching to the abso-
lute lower bound HP(A(�s )) as p approaches infinity (see [Wan04]). This conjecture was
proved in [Zhu03] and [Zhu04] where it is also proved that Wan’s conjecture applies
to a 1-parameter family A(1, d). See also [Yan03]. In this paper we generalize a main
theorem of [Zhu03] from A(1, d) to the more general family A(s, d). Our major contri-
bution of the current paper is to provide an explicit method allowing one to compute
GNP(A(s, d),Fp) for every prime p large enough. We prove in this paper the generic
Newton polygon at each prime p may be computed globally over Q instead, and for p

large enough it has a formula depending only on the residue of p mod d. Our method is
under further development for families of more parameters and for T -adic exponential
sums families [LW09].

For any c in Q we use MaxPrime(c) to denote the maximal prime factor of NQ(c)/Q(c)
in Q (in both numerator and denominator). Let MaxPrime(c1, c2, . . . , cN ) be the maxi-
mum of MaxPrime(ci)’s for i = 1, . . . , N .

For any 2 ≤ r ≤ d − 1 coprime to d, we construct a generating polynomial Hr ∈
Q[Xr,1, . . . , Xr,d−1] for GNP(A(s, d),Fp) in Section 2, see (8). Key result of this paper
lies in the following theorem:

Theorem 1.1. Let s < d be coprime positive integers.
Suppose Hr =

∑d−1
n=1 hr,n,kr,n

X
kr,n
r,n . Let

Ns,d,r := max
(
s(d− 1), d + maxn(kr,n), 2(d− s)maxn(kr,n),MaxPrimen(hr,n,kr,n

)
)

where 1 ≤ n ≤ d− 1. For every prime p ≡ r mod d and p > Ns,d,r, the generic Newton
polygon GNP(A(s, d),Fp) has its breaking points after the origin at

((
n,

n(n + 1)
2d +

(1 − s
d )kr,n

p− 1

))
.

n=1,...,d−1
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Conversely, suppose GNP(A(s, d),Fp) has its breaking points after the origin at
((n, n(n+1)

2d + (1− s
d )kr,n

p−1 ))n=1,...,d−1 for all prime p > Ns,d,r then we have Hr =∑d−1
n=1 hr,n,kr,n

X
kr,n
r,n with

∏d−1
n=1 hr,n,kr,n

�= 0.
Let f = xd + axs ∈ A(s, d)(Q) and we write f for its reduction modulo a

prime in Q(a) over p. Suppose a �= 0. Then for all prime p ≡ r mod d and
p > max(Ns,d,r,MaxPrime(a)) we have

NP(f) = GNP
(
A(s, d);Fp

)
and limp→∞ NP(f) = HP(A(s, d)).

If s < d are not coprime, then the statements relating to HP(A(s, d)) in Theorem 1.1
are false. However, there exists GNP(A(s, d),Fp) in that case and the situation was
carried out in [BFZ08].

As a byproduct we show that the generic Newton polygon GNP(A(s, d),Fp) for p ≡
r mod d and p is large enough has a formula. We shall also see that each of these generic
Newton polygons can be achieved by some f in Fp[x].

For our family A(s, d) we construct a semi-linear Fredholm A-matrix M ′ (where A

is our parameter) which represents Dwork’s Frobenius matrix over Fp. The L function
of a closed special point f ∈ A(s, d)(Fq) with q = pc is determined by the Fredholm
A-matrix M ′

c := M ′ · (M ′)−τ · · · · · (M ′)−τc−1 where τ is the Frobenius map. However,
this infinite matrix is notoriously messy to compute if one ever can, and furthermore c

can be arbitrarily large and this changes the corresponding L-function fundamentally.
Meanwhile, the Fredholm determinant of M ′

c also depends on the prime p intricately.
Our method here is: we first work out complete solution set to the Frobenius problem
in 2-dimensional case (it is not yet known one can explicitly compute all such complete
solution set for higher than 2 dimensional cases, see [Ram05]). Then for p large enough
we approximate our Fredholm A-matrix by a finite one. This finite Fredholm A-matrix
can be explicitly written down, and most remarkably its p-adic order has a formula for
each residue of p mod d. We prove in this paper that the generic A-families over Fp for
p large enough are all the images of a global generic object over Q.

Our theorem has application to Artin–Schreier families. The most intensively studied
question has been the first slope for Artin–Schreier curves or families. First generic slopes
have been studied in the literature (see for instance [Bla11]). For any f = xd + axs ∈
A(s, d)(Q) let Xf : yp − y = f(x) mod ℘ be the corresponding mod p reduction over
some finite field Fq. It is known that the Zeta function Zeta(Xf/Fq;T ) of Xf/Fq in
variable T lies in Q[T ] and its numerator (as the core factor) is a polynomial of degree
(d− 1)(p− 1). In fact it is known that

Zeta(Xf/Fq;T ) =
NQ(ζp)/Q(L(f/Fq;T ))
(1 − T )(1 − qT )
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where the norm being defined as the product of all Galois conjugates of the polyno-
mial L(f/Fq;T ) ∈ Q[ζp][T ] where the Galois group Gal(Q(ζp)/Q) acts trivially on
the variable T . Let the Newton polygon NP(Xf/Fq) of Xf/Fq be the q-adic Newton
polygon of the numerator of Zeta(Xf/Fq;T ). Thus NP(f/Fq) is equal to NP(Xf/Fq)
shrunk by a factor of p− 1 horizontally and vertically, which we denote by NP(f/Fq) =
NP(Xf/Fq)/(p− 1). Then the following geometric application is an immediate corollary
of Theorem 1.1.

Corollary 1.2. Let 2 ≤ r ≤ d − 1. Let Hr ∈ Q[Xr,1, . . . , Xr,d−1] be the generat-
ing polynomial constructed in Theorem 1.1. Suppose Hr =

∑d−1
n=1 hr,n,kr,n

X
kr,n
r,n with∏d−1

n=1 hr,n,kr,n
�= 0. If a �= 0 then for any f = xd + axs in A(s, d)(Q) and for any

prime p large enough we have NP(Xf/Fq)
p−1 = GNP(A(s, d),Fp) whose breaking points

after origin are ((
n,

n(n + 1)
2d +

(1 − s
d)kr,n

p− 1

))
n=1,...,d−1

and

lim
p→∞

NP(Xf/Fq)
p− 1 = HP

(
A(s, d)

)
.

This paper is organized as follows. We first have some preliminary preparation in Sec-
tion 2 and define generating polynomials Hr for every 2 ≤ r ≤ d− 1. These polynomials
in Q[Xr,1, . . . , Xr,d−1] depend only on s, d and r essentially. In fact, the most technical
procedure in this paper is the construction of these global (p-free!) generating polynomi-
als that are linked to p-adic Fredholm determinant of the Frobenius for all primes p large
enough. Section 3 provides the bridge between these global polynomials Hr over Q and
the p-adic local analysis, especially under the condition that p is large enough. Section 4
develops Dwork theory for our 1-parameter a-family A(s, d)(Fp) for p large enough. We
prove our main result Theorem 1.1 in Section 4.

2. Frobenius problem and generating polynomials for GNP

2.1. Preliminaries

In this section we develop combinatorial and number theoretic preparations for our
main theorem. These two lemmas are elementary yet essential in the arguments of this
paper.

Lemma 2.1. Let r, d be two coprime positive integers with r < d. Let h(z) be a fixed
nonzero polynomial in Q[z]. Then h(− r

d) �= 0 if and only if for all large enough prime
p ≡ r mod d we have h(�p�) ∈ Z∗

p.
d
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Proof. For all prime p large enough we have h(z) ∈ Zp[z] obviously. For such p notice
that p � d, so we have �p

d� ≡ − r
d mod p and hence h(�p

d�) ∈ Z∗
p if and only if h(− r

d) ∈ Z∗
p.

If θ := h(− r
d ) ∈ Q∗ then it is clear that h(− r

d ) ∈ Z∗
p for all p > MaxPrime(θ). That

is h(�p
d�) ∈ Z∗

p for all such p. The converse is clear. �
When h(z) lies in Z[z] we have the following lemma that yields an effective bound for p.

For any h ∈ Q[z] let ho := h/ cont(h) where cont(h) is the content of the polynomial h.

Lemma 2.2. Let r, d be two positive integers with r < d. Let h(z) ∈ Z[z].

(1) If h(− r
d ) �= 0 then dz0 + r � h(z0) for all integers z0 ≥ ddeg(h)−1|h(− r

d)|.
(2) Suppose prime p � cont(h) and p > d. If h(− r

d) �= 0 then h(�p
d�) ∈ Z∗

p for all p >

MaxPrime(ho(− r
d )); conversely, if h(�p

d�) ∈ Z∗
p for any prime p, then h(− r

d ) �= 0.

Proof. (1) Without loss of generality we assume h(z) has its leading coefficient > 0.
Taking long division algorithm in Q[z] we have h(z) = (dz + r)g(z) + R for unique
R = h(− r

d) ∈ Q and unique g(z) ∈ Q[z] with leading coefficient > 0. Suppose for
z0 ∈ Z>0 we have h(z0) = (dz0 + r)C for some nonzero integer C depending on z0 of
course. Then we have

h

(
− r

d

)
= (dz0 + r)

(
C − g(z0)

)
.

Let h(z) =
∑m

i=0 hiz
i for hi ∈ Z and write g(z) =

∑m−1
i=0 giz

i, then we have gm−1 = hm/d

and gi−1 = (hi − rgi)/d for all 1 ≤ i ≤ m− 1. Hence we have dmgi ∈ Z for all i. Rewrite
the above equation below

dmh

(
− r

d

)
= (dz0 + r)

(
dmC − dmg(z0)

)
.

Since the left-hand-side is a fixed integer, and the factor dmC−dmg(z0) is also an integer,
we have that dz0 + r ≤ dm|h(− r

d )|. This says that if dz0 + r > dm|h(− r
d )| or equivalently

z0 ≥ dm−1|h(− r
d )|, then we have dz0 + r � h(z0).

(2) Write c = cont(h). Assume that prime p = dz0+r is coprime to c with z0 := �p/d�.
Then C = cCo for some Co ∈ Z as in Part (1) of the proof. Write g = cgo for go ∈ Q[x],
we have ho(z) = (dz + r)go(z) + ho(− r

d ) ∈ Z[z] implies that dmgo(z) ∈ Z[z]. We have

dmho

(
− r

d

)
= p

(
dmCo − dmgo(z0)

)
.

Since the left-hand-side is a fixed integer, and the factor dmCo − dmgo(z0) is also
an integer, we have that p ≤ MaxPrime(ho(− r

d)). This says that if prime p >

MaxPrime(ho(− r
d )) then we have p � ho(�p

d�), i.e. p � h(�p
d�). The converse is clear

since �p� ≡ − r mod p for p > d. �
d d
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Below we shall study solutions to the Frobenius problem with given two coprime
integers. We shall fix two coprime positive integers d, s with d > s. Given a positive
integer v every nonnegative integral pair (m,n) with dn + sm = v is called a solution
to the Frobenius problem of (s, d) in this paper. For any nonnegative integers v with
v > ds − d − s, let βv(d, s) := min(m + n) where the minimum is taking over all
nonnegative integers m, n such that dn + sm = v. Such minimum βv(d, s) exists and is
achieved uniquely at m = (s−1v mod d) and n = v

d − sm
d . The following lemma should

be known in the literature but we provide its statement and proof here for the paper to
be self-contained.

Lemma 2.3. Let p be a prime number. Let v = pi − j with 1 ≤ i, j ≤ d − 1 and let
v > ds− d− s + 1 (or p > s(d− 1)). Let r = (p mod d).

(1) Then the minimum is achieved uniquely βpi−j(s, d) = mij + nij at

mij =
(
s−1(ri− j) mod d

)
,

nij = pi− j

d
− smij

d
=

⌊
p

d

⌋
i + ri− j − smij

d
.

(2) We have βpi−j(s, d) = pi−j
d + (1 − s

d )mij ≥ 
pi−j
d � ≥ �pi

d �.
(3) We have 0 ≤ mij ≤ d− 1 and �pi

d � − s + 1 ≤ nij ≤ �pi
d �.

(4) A general solution to this Frobenius problem is

n�
ij := nij − s�, m�

ij := mij + d�

for some 0 ≤ � ≤ �pi−j
ds �. (The minimum β is achieved if and only if � = 0.) The

sum of these solutions is

m�
ij + n�

ij = βpi−j(s, d) + (d− s)�.

Proof. We prove our statements for general integer v > 0 first as the specialization to
v = pi − j does not alter the argument. It follows from that d > s that this minimum
of mv + nv is uniquely achieved when mv is minimal. Let mv := (s−1v mod d) be the
least nonnegative residue mod d. It is clear that mv is the minimal nonnegative solution
possible to the equation dnv + smv = v. Let nv := (v− smv)/d. Since v > ds−d− s+1,
we have v > (d− 1)(s− 1) ≥ mv(s− 1). Thus v − smv > −mv ≥ −(d− 1). Since nv is
an integer with nv > −(d − 1)/d and hence nv ≥ 0. Therefore, mv, nv are nonnegative
integers satisfying the equation dnv + smv = v. The rest of the statements follow from
the definition. �

Observe from Lemma 2.3 that matrix (mij) is bounded in each entry by d − 1, and
it varies and exhausts the residue class on each row and each column. Its value depends
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on r = (p mod d). On the other hand, each nij lies in the small neighborhood of pi
d , and

hence it increases as p increases, but each n�
ij < p for all 1 ≤ i, j ≤ d− 1.

2.2. Generating polynomials for GNP

Recall s < d are two coprime positive integers. The goal of this subsection is to define
the generating polynomial Hr in Q[Xr,1, . . . , Xr,d−1] for every residue 2 ≤ r ≤ d − 1
exponents of whose nonzero terms give us GNP(A(�s ),Fp). This subsection is a dry run.
The readers who seek motivation should read Section 4 first.

The case for r = 1 is known hence we will omit it entirely, in fact one can also write
H1 = 1 for completeness. The idea is that the generic A-determinant in the focus of our
study depends only on the residue r = (p mod d), not on p itself. There is a generating
polynomial for the generic A-family whose (nonzero) terms encode the information of
GNP(A(s, d),Fp).

From now on we fix r, s with 2 ≤ r ≤ d − 1 is coprime to d and 1 ≤ n ≤ d − 1. For
each 1 ≤ i ≤ d− 1 we define a linear function in variable z

ψr,i(z) := iz +
⌊
ri

d

⌋
. (2)

For any positive integer t we denote the t-th falling factorial power of Y by [Y ]t :=
Y (Y − 1) · · · (Y − t + 1), where Y lies in any ring containing Z. Below our Y is either
a rational number or a rational function in Q[z]. For 1 ≤ i, j ≤ d − 1 recall mij =
(s−1(ri− j) mod d) from Lemma 2.3 and let

tij :=
⌊
ri

d

⌋
− ri− j − smij

d
+ s�ij . (3)

Let

k•r,n := min
σ∈Sn

n∑
i=1

mi,σ(i). (4)

For any k ≥ k•r,n let S(k) be the set of all (σ, (�i,σ(i))i) in Sn × Zn
≥0 such that

n∑
i=1

mi,σ(i) + d

n∑
i=1

�i,σ(i) = k.

Suppose S(k) is not empty, then for each (σ, (�i,σ(i))i) in S(k) we define

Θn :=
n∏ (d− 1 + (k − k•r,n))!

(mi,σ(i) + d�i,σ(i))!
∈ Q.
i=1
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In fact we shall see below in Lemma 2.5 below that Θn ∈ Z. Then we define a polynomial
in variable z:

h̃r,n,k(z) :=
∑

(σ,(�i,σ(i))i)∈S(k)

sgn(σ)Θn

n∏
i=1

[
ψr,i(z)

]
ti,σ(i)

. (5)

If S(k) is empty, define h̃r,n,k(z) := 0.
We remark that in practice it is not necessary to compute k•r,n as one can replace Θn

by

Θ′
n :=

n∏
i=1

(d− 1 + k)!
(mi,σ(i) + d�i,σ(i))!

,

and define h̃′
r,n,k(z) as that in (5) accordingly as follows:

h̃′
r,n,k(z) :=

∑
(σ,(�i,σ(i))i)∈S(k)

sgn(σ)Θ′
n

n∏
i=1

[
ψr,i(z)

]
ti,σ(i)

. (6)

The following proposition shows that this replacement only changes the function up to
a constant factor in Q. Its proof follows immediately from the very definition in (5) and
hence we omit.

Proposition 2.4. Let notation be as above. Then

h̃′
r,n,k(z) =

(
(d− 1 + k)!

(d− 1 + k − k•r,n)!

)n

h̃r,n,k(z).

Define

h̃o
r,n,k(z) := h̃r,n,k(z)

cont(h̃r,n,k(z))
=

h̃′
r,n,k(z)

cont(h̃′
r,n,k(z))

. (7)

Obviously h̃o
r,n,k(z) ∈ Z[z].

Lemma 2.5. Let notation be as above. Fix 2 ≤ r ≤ d− 1 coprime to d and 1 ≤ n ≤ d− 1.

(1) If (σ, (�i,σ(i))i) lies in S(k), let b := k − k•r,n ≥ 0, then �i,σ(i) ≤ �b/d�.
(2) Then 0 ≤ tij ≤ s(b + 1) is an integer for all 1 ≤ i, j ≤ d− 1.
(3) We have h̃r,n,k(z) ∈ Z[z]. Furthermore, h̃o

r,n,k(z) depends only on d, s, r, b and
deg(h̃o

r,n,k(z)) ≤ s(n + b/d).
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Proof. (1) Since k =
∑n

i=1 mi,σ(i) + d
∑n

i=1 �i,σ(i) we have d
∑n

i=1 �i,σ(i) ≤ b. Hence
�i,σ(i) ≤ �b/d�.

(2) Combining the result in Part (1) it remains to show that t•ij := � ri
d � −

ri−j−smij

d

satisfies that 0 ≤ t•ij ≤ s. Since mij = (s−1(ri − j) mod d) and gcd(s, d) = 1 we have
smij ≡ ri− j mod d. Hence smij−ri+j

d ∈ Z and so t•ij ∈ Z. By Lemma 2.3 we have that

t•ij ≤
j + smij

d
≤ (d− 1) + s(d− 1)

d
≤ (s + 1)(d− 1)

d

and hence t•ij ≤ s since t•ij ∈ Z. Notice that

⌊
ri

d

⌋
d ≥

⌊
ri− j

d

⌋
d = ri− j − (ri− j mod d) ≥ ri− j − smij .

This proves that � ri
d � ≥

ri−j−smij

d . That is, t•ij ≥ 0.
(3) Let b := k − k•r,n. Write δi,σ(i) := (d− 1 + b) − (mi,σ(i) + d�i,σ(i)), then

δi,σ(i) = (d− 1 −mi,σ(i)) + (b− d�i,σ(i)) ≥ 0

by Lemma 2.3 and Part (1) above. Hence Θn is just the product of δi,σ(i)-th falling
factorial power of (d− 1 + b)

Θn =
n∏

i=1

(d− 1 + b)!
(mi,σ(i) + d�i,σ(i))!

=
n∏

i=1
[d− 1 + b]δi,σ(i)

=
n∏

i=1
(d + b− 1)(d + b− 2) · · · (d + b− 1 − δi,σ(i)).

It is clear that this is an integer depending only on d, s, r and b.
On the other hand, the ti,σ(i)-th falling factoring power of ψr,i(z) is

[
ψr,i(z)

]
ti,σ(i)

= ψr,i(z)
(
ψr,i(z) − 1

)
· · ·

(
ψr,i(z) − ti,σ(i) + 1

)
=

(
iz +

⌊
ri

d

⌋)(
iz +

⌊
ri

d

⌋
− 1

)
· · ·

(
iz +

⌊
ri

d

⌋
− ti,σ(i) + 1

)
.

It lies in Z[z] of degree ti,σ(i) ≤ s(b + 1) (by Part (2)), and coefficients are determined
by d, s, r, b. Thus by definition, h̃o

r,n,k(z) ∈ Z[z] is of degree ≤ maxσ

∑n
i=1 ti,σ(i) ≤

maxσ

∑
i s(�i,σ(i) + 1) = s(n + b/d) by definition. �
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Fix 2 ≤ r ≤ d − 1 and 1 ≤ n ≤ d − 1. Let k range over integers ≥ k•r,n and compute
hr,n,k := h̃o

r,n,k(− r
d ). Let kr,n ≥ k•r,n be the least integer (if exists) such that hr,n,kr,n

�= 0.
Let Xr,n be a variable, let

Hr :=
d−1∑
n=1

hr,n,kr,n
Xkr,n

r,n . (8)

Notice that Hr ∈ Q[Xr,1, . . . , Xr,d−1].

Remark 2.6. Notice that in this case the definition clearly indicates that the positive
integer kr,n is independent of p. Indeed, by Lemma 2.5 the polynomial h̃o

r,n,k(z) is inde-
pendent of p, hence those k with h̃o

r,n,k(− r
d) = 0 is independent of p.

We are able to explicitly calculate Hr for all d ≤ 5, in fact the following conjecture is
verified for all d ≤ 5.

Conjecture 2.7. Let Hr be as defined in (8) above. For every r with 2 ≤ r ≤ d − 1 and
gcd(r, d) = 1, we have Hr =

∑d−1
n=1 hr,n,kr,n

X
kr,n
r,n with

∏d−1
n=1 hr,n,kr,n

�= 0.

Lemma 2.8. Fix 1 ≤ n ≤ d− 1 and 2 ≤ r ≤ d− 1 coprime to d. Let b = k − k•r,n ≥ 0.

(1) Let m�ij
ij , n

�ij
ij be defined as in Lemma 2.3(4). Define

κr,n,k :=
(
(d− 1 + b)!

)n n∏
i=1

⌊
pi

d

⌋
!.

Then we have κr,n,k ∈ Z; and κr,n,k ∈ (Z ∩ Z∗
p) for prime p ≥ d + b.

(2) Define

μr,n,k :=
∑

(σ,�i,σ(i))∈S(k)

sgn(σ)
n∏

i=1

1
m

�i,σ(i)
i,σ(i) !n�i,σ(i)

i,σ(i) !
.

We have μr,n,k ∈ Q∩Zp for all prime p ≡ r mod d and p ≥ d+ b. Furthermore, we
have

h̃r,n,k

(⌊
p

d

⌋)
= κr,n,k · μr,n,k.

Proof. (1) It is clear that κr,n,k ∈ Z. Since n ≤ d− 1 we have �pi/d� ≤ p− 1 and hence
�pi

d � ∈ Z∗
p for all p. On the other hand, d − 1 + b < p by our hypothesis and hence

(d− 1 + b)! ∈ Z∗
p too. Hence κr,n,k ∈ Z∗

p for p ≥ b + d.
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(2) We first observe that ψr,i(�p
d�) = i�p

d� + � ri
d � = �pi

d � (by writing p = �p
d�d + r).

Secondly we notice that for all i, j

tij = ψr,i

(⌊
p

d

⌋)
− n

�ij
ij =

⌊
pi

d

⌋
− n

�ij
ij .

Thus we have [
ψr,i

(⌊
p

d

⌋)]
ti,σ(i)

= ψr,i(�p/d�)!
n
�i,σ(i)
i,σ(i) !

= �pi/d�!
n
�i,σ(i)
i,σ(i) !

.

Therefore

h̃r,n,k

(⌊
p

d

⌋)
= κr,n,k

∑
(σ,�i,σ(i))∈S(k)

sgn(σ)
n∏

i=1

1
m

�i,σ(i)
i,σ(i) !n�i,σ(i)

iσ(i) !

which proves our statement.
Since n�

ij < p by Lemma 2.3 and hence n�
ij ! is in Z∗

p. By Lemma 2.5 we have �i,σ(i) ≤
� b
d� and hence m�

ij = mij + d� ≤ d− 1 + d� b
d� < p for p ≥ d+ b and it follows m�

ij ! ∈ Z∗
p.

Thus μr,n,k ∈ Zp for p ≥ d + b. �
Proposition 2.9. Fix r, n as above.

(1) Then hr,n,k �= 0 if and only if h̃o
r,n,k(− r

d ) �= 0.
(2) If h̃o

r,n,k(�p
d�) ∈ Z∗

p for all prime p ≡ r mod d and p > max(d,MaxPrime(hr,n,k))
then h̃o

r,n,k(− r
d) �= 0. Conversely if h̃o

r,n,k(− r
d ) �= 0 for p ≡ r mod d and p > d then

h̃o
r,n,k(�p

d�) ∈ Z∗
p.

(3) For any prime p ≡ r mod d and p > d + k we have h̃o
r,n,k(�p

d�) ∈ Z∗
p if and only if

μr,n,k ∈ Z∗
p.

(4) If hr,n,k �= 0 then k ≥ 0 is the least such that μr,n,k ∈ Z∗
p for all prime p ≡ r mod d

and p > d + k. Conversely, if k ≥ 0 is the least such that μr,n,k ∈ Z∗
p for all prime

p ≡ r mod d and p > max(d + k,MaxPrime(hr,n,k)) then we have hr,n,k �= 0.

Proof. Part (1) follows from the definition of hr,n,k. Part (2) follows from Lemma 2.2.
Part (3) follows from Lemma 2.8: since for p > d + k we have κr,n,k ∈ Z∗

p and by
Lemma 2.8 μr,n,k = h̃r,n,k(�p

d�)/κr,n,k, we have that h̃r,n,k(�p
d�) ∈ Z∗

p if and only if
μr,n,k ∈ Z∗

p. It is clear that Part (4) follows from (1)–(3). �
3. Tame A-determinant

This section completely determines the p-adic order of certain finite tame A-determi-
nant, whose expansion is a polynomial in variable A (remark: this variable A parameter-
izes the coefficient a in the family of polynomials xd + axs). These tame A-determinants
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will be used to approximate our Fredholm A-determinant in Section 4. They are the
bridge connecting the generating polynomials to the actually p-adic Fredholm determi-
nant in Dwork theory.

Let Ep(−) be the p-adic Artin–Hasse exponential function (see [Kob84, IV.2] or see
[Sch84, Section 48]). We pick a root γ of logp Ep(x) =

∑∞
i=1

xpi

pi in Qp of ordpγ = 1/(p−1)
such that ζp = Ep(γ) is the same primitive p-th root of unity as in the beginning and
throughout of this paper. For any integer pi − j with 1 ≤ i, j ≤ d − 1 we define a
polynomial in Q[γ][A] for every �• ∈ Z≥0

Fpi−j,�•(A) :=
�•∑
�=0

Am�
ijγm�

ij+n�
ij

m�
ij !n�

ij !
(9)

where m�
ij , n

�
ij are defined as in Lemma 2.3(4). Define the n-th tame A-determinant

Pn,�•(A) := det
((
Fpi−j,�•(A)

)
1≤i,j≤n

)
. (10)

It lies in Q[γ][A] and its key property is provided below in the lemma. Notice that
Zp[γ] = Zp[ζp] is the ring of integers in Qp(γ) = Qp(ζp).

Lemma 3.1. Let 1 ≤ n ≤ d− 1 and b ∈ Z≥0.

(1) Then Pn,	b/d
(A) can be written as a polynomial in Q[Aγ1− s
d ] whose terms are

monomials in Aγ1− s
d . Furthermore, we have

Pn,	b/d
(A) = γ
(p−1)n(n+1)

2d
∑

k•
r,n≤k≤k•

r,n+b

μr,n,k

(
Aγ1− s

d

)k
+ γ> (p−1)n(n+1)

2d +(1− s
d )(k•

r,n+b)R

for some R ∈ Zp[γ][A].
(2) If hr,n,kr,n

�= 0 then for all p ≡ r mod d and p > max(d+ kr,n,MaxPrime(hr,n,kr,n
))

ordp

(
Pn,	b/d
(A)

)
= n(n + 1)

2d +
(1 − s

d)kr,n
p− 1 .

Conversely, if ordp(Pn,	b/d
(A)) = n(n+1)
2d + (1− s

d )kr,n

p−1 for p > d+kr,n then hr,n,kr,n
�=

0.
(3) Let a ∈ Q∗ and let a be its residue reduction over p. Let â be the Teichmüller

lifting of a. If Hr =
∑d−1

n=1 hr,n,kr,n
X

kr,n
r,n then for all prime p ≡ r mod d and p >

max(d + maxn(kr,n),MaxPrimen(hr,n,kr,n
),MaxPrime(a)), we have for all n

ordp

(
Pn,	b/d
(â)

)
= n(n + 1) +

(1 − s
d )kr,n

.
2d p− 1
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Conversely, if ordp(Pn,	b/d
(â)) = n(n+1)
2d + (1− s

d )kr,n

p−1 for all n and all prime p >

max(d + maxn(kr,n),MaxPrime(a)) then Hr =
∑d−1

n=1 hr,n,kX
kr,n
r,n .

Proof. (1) By the formal expansion of determinant and the above identity, we have

Pn,	b/d
(A) =
∑
σ∈Sn

sgn(σ)
n∏

i=1
Fpi−σ(i),	b/d


=
∑
σ∈Sn

sgn(σ)
n∏

i=1

	b/d
∑
�=0

Am�
i,σ(i)γm�

i,σ(i)+n�
i,σ(i)

m�
i,σ(i)!n�

i,σ(i)!

=
∑
σ∈Sn

sgn(σ)
∑

0≤�i,σ(i)≤	b/d


A
∑n

i=1 m
�i,σ(i)
i,σ(i)∏n

i=1 m
�i,σ(i)
i,σ(i) !n�i,σ(i)

i,σ(i) !
γ
∑n

i=1 m
�i,σ(i)
i,σ(i) +n

�i,σ(i)
i,σ(i) .

Notice that by Lemma 2.3 for any �i,σ(i)

d

n∑
i=1

n
�i,σ(i)
i,σ(i) + s

n∑
i=1

m
�i,σ(i)
i,σ(i) = (p− 1)n(n + 1)/2.

Write k =
∑n

i=1 m
�i,σ(i)
i,σ(i) . Then

n∑
i=1

m
�i,σ(i)
i,σ(i) + n

�i,σ(i)
i,σ(i) = (p− 1)n(n + 1)

2d +
(

1 − s

d

)
k.

Then there are wk ∈ Z∗
p such that

Pn,	b/d
(A) = γ
(p−1)n(n+1)

2d
∑

k•
r,n≤k≤k•

r,n+b

μr,n,kA
kγ(1− s

d )k

+ γ
(p−1)n(n+1)

2d
∑

k≥k•
r,n+b

∑
σ∈Sk

n

sgn(σ)wkA
kγ(1− s

d )k

= γ
(p−1)n(n+1)

2d
∑

k•
r,n≤k≤k•

r,n+b

μr,n,k

(
Aγ(1− s

d ))k
+ γ> (p−1)n(n+1)

2d +(1− s
d )kr,nR

for some R ∈ Zp[γ][A].
(2) Fix n. By Proposition 2.9 our hypothesis implies kr,n is the least k such that

μr,n,kr,n
∈ Q ∩ Z∗

p for p ≡ r mod d and p > max(d + kr,n,MaxPrime(hr,n,kr,n
)). For all

k•r,n ≤ k < kr,n we have μr,n,kr,n
∈ Q ∩ pZp. Hence ordpμr,n,kr,n

≥ 1. Thus the p-adic
valuations are precisely as displayed by our Part (1).
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(3) Fix n. Since a �= 0 we have for p > MaxPrime(a) then â ∈ Z∗
p. Consider the

formula in Part (1)

Pn,	b/d
(â) = γ
(p−1)n(n+1)

2d
∑

k•
r,n≤k≤k•

r,n+b

μr,n,kâ
kγ(1− s

d )k

+ (higher γ-terms).

Then applying an analogous argument of Part (2) we conclude that kr,n is the least
positive integer such that hr,n,kr,n

�= 0 if and only if kr,n is the least k such that μr,n,kâ
k ∈

Z∗
p; and hence it is equivalent to

ordpPn,	b/d
(â) = n(n + 1)
2d +

(1 − s
d )kr,n

p− 1 .

This proves our statements. �
4. Asymptotic Dwork theory for A-families

In this section we approximate Fredholm A-determinant by those tame determinants
defined in Section 3. To keep the paper short we refer the reader to [AS89,Wan93,Wan04]
for more thorough treatment of classical Dwork theorem. Let f(x) = xd + axs be a
polynomial with a ∈ Q and d > s ≥ 1 are coprime integers. Namely, f(x) ∈ A(s, d)(Q).
Let a be the reduction mod ℘ of a for a prime ideal ℘ in the number field Q(a) lying
over p. Let â be the p-adic Teichmüller lifting of a in Zp. We recall the Dwork trace
formula for the L function of exponential sum of f = f(x) mod ℘, assuming ℘ has residue
field Fq for some p-power q. Let ζp be the primitive p-th root of unity fixed from the
beginning and throughout this paper. Let γ ∈ Qp be the root of logp Ep(x) =

∑∞
i=0

xpi

pi

with ordp(γ) = 1/(p − 1) such that Ep(γ) = ζp (just as in the beginning of Section 3
above). Write Ep(γX) =

∑∞
t=0 λtX

t for some λt ∈ (Q∩Zp)[γ]. Then we have λt = γt/t!
for all 0 ≤ t ≤ p− 1, and ordpλt ≥ t/(p− 1) for all t ≥ 0. For any integer v ≥ 0 let

F ′
v(A) :=

∑
nv,mv

λnv
λmv

Amv (11)

where the sum ranges over mv, nv ∈ Z≥0 such that nvd+mvs = v. For the only situation
we are studying in this paper v = pi− j with 1 ≤ i, j ≤ d− 1 we use the notation from
Lemma 2.3 that is, mpi−j = m�

ij and npi−j = n�
ij for some �.

From now on we assume p > s(d − 1) (so as to apply Lemma 2.3). Recall from (9),
for b ∈ Z≥0

Fpi−j,	b/d
(A) =
	b/d
∑ Am�

ijγm�
ij+n�

ij

m� !n� !
.

�=0 ij ij
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Then we have

F ′
pi−j(A) =

∑
�≥0

ui,j,�A
m�

ijγm�
ij+n�

ij

= Fpi−j,	b/d
(A) +
∑

�>	b/d

ui,j,�A

m�
ijγm�

ij+n�
ij

for some ui,j,� ∈ Zp[γ] which is equal to 1
m�

ij !n�
ij !

when � ≤ �b/d�. Let Pn,	b/d
(A) =
det(Fpi−j,	b/d
(A))1≤i,j≤n for all 1 ≤ n ≤ d−1. We show below that Pn,	b/d
(A) approx-
imates P ′

n(A) := det(F ′
pi−j)1≤i,j≤n up to b terms p-adically.

Lemma 4.1. Let Hr =
∑d−1

n=1 hr,n,kr,n
X

kr,n
r,n be defined in (8).

(1) We write Nr := max(s(d− 1), d+ maxn(kr,n),MaxPrimen(hr,n,kr,n
)), then for all n

and for all prime p ≡ r mod d with p > Nr we have

ordp

(
P ′
n(A)

)
= ordp

(
Pn,	b/d
(A)

)
= n(n + 1)

2d +
(1 − s

d)kr,n
p− 1 .

Conversely, if ordp(P ′
n(A)) = ordp(Pn,	b/d
(A)) = n(n+1)

2d + (1− s
d )kr,n

p−1 for all n and
all prime p > max(s(d−1), d+maxn(kr,n)) then we have Hr =

∑d−1
n=1 hr,n,kr,n

X
kr,n
r,n .

(2) Let a ∈ Q∗ and let a be its residue reduction over p. Let â be the Teichmüller
lifting of a. If Hr =

∑d−1
n=1 hr,n,kr,n

X
kr,n
r,n then for all prime p ≡ r mod d and p >

max(Nr,MaxPrime(a)) for all 1 ≤ n ≤ d− 1 we have

ordp

(
P ′
n(â)

)
= n(n + 1)

2d +
(1 − s

d )kr,n
p− 1 .

Conversely, if for all 1 ≤ n ≤ d−1 and all prime p ≡ r mod d and p > max(s(d−1),
d + maxn(kr,n),MaxPrime(a)) we have ordp(P ′

n(â)) = n(n+1)
2d + (1− s

d )kr,n

p−1 then the
generating function is of the form Hr =

∑d−1
n=1 hr,n,kr,n

X
kr,n
r,n .

Proof. (1) Let 1 ≤ i, j ≤ d − 1. Let p > s(d − 1). Then we have for some ui,σ(i),� ∈ Zp

that

P ′
n(A) =

∑
σ∈Sn

sgn(σ)
n∏

i=1

∞∑
�=0

ui,σ(i),�A
m�

i,σ(i)γm�
i,σ(i)+n�

i,σ(i) .

Using the same computational argument as that of Lemma 3.1 we get

P ′
n(A) = γ

(p−1)n(n+1)
2d

∑
k•
r,n≤k≤k•

r,n+b

( ∑
(σ,�i,σ(i))∈S(k)

sgn(σ)Ak∏n
i=1 m

�i,σ(i)
i,σ(i) !n�i,σ(i)

i,σ(i) !

)
γ(1− s

d )k

+ γ
(p−1)n(n+1)

2d
∑

k>k• +b

∑
(σ,� )∈S(k)

sgn(σ)wkA
kγ(1− s

d )k
r,n i,σ(i)
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for some wk ∈ Zp[γ]. By Lemma 2.8 we can write

P ′
n(A) = γ

(p−1)n(n+1)
2d

∑
0≤k−k•

r,n≤b

μr,n,kA
kγ(1− s

d )k

+ γ> (p−1)n(n+1)
2d +(1− s

d )(k•
r,n+b)R

for some R ∈ Zp[γ][A]. Since kr,n is the minimal k with h̃r,n,k(− r
d ) �= 0 and

0 ≤ k − k•r,n < b. By Proposition 2.9 for p ≡ r mod d with p > max(d +
maxn(kr,n),MaxPrimen(hr,n,kr,n

)) we have μr,n,k ∈ Z∗
p and hence

ordp

(
P ′
n(A)

)
= n(n + 1)

2d +
(1 − s

d)kr,n
p− 1 .

Comparing with Lemma 3.1

ordp

(
Pn,	b/d
(A)

)
= n(n + 1)

2d +
(1 − s

d )kr,n
p− 1 .

The converse direction follows by applying Proposition 2.9 again with analogous ar-
gument as that of Lemma 3.1.

(2) The proof here is analog to that of Lemma 3.1 by using Proposition 2.9 and
applying the extra condition that p > s(d− 1) on top of both directions. �

Then we prove Theorem 1.1 below by applying the p-adic Dwork theory and transform
theorem we developed in [Zhu12].

Theorem 4.2 (Theorem 1.1). Let s < d be two coprime positive integers. Let 2 ≤ r ≤ d−1.
Suppose Hr =

∑d−1
n=1 hr,n,kr,n

X
kr,n
r,n be as defined in (8) with

∏d−1
n=1 hr,n,kr,n

�= 0. Let
Ns,d,r be defined as in Theorem 1.1. Then for p ≡ r mod d and p > Ns,d,r we have
GNP(A(s, d),Fp) with breaking points after origin at

((
n,

n(n + 1)
2d +

(1 − s
d )kr,n

p− 1

))
n=1,...,d−1

. (12)

Conversely, suppose for all prime p ≡ r mod d and p > max(s(d−1), d+maxn(kr,n),
2(d−s) maxn(kr,n)), GNP(A(s, d),Fp) has its breaking points as above in (12), then Hr

has to be of the form Hr =
∑d−1

n=1 hr,n,kr,n
X

kr,n
r,n .

Given f = xd + axs ∈ A(s, d)(Q) with f = xd + axs ∈ A(s, d)(Fq). If a ∈ Q∗, then
for all prime p ≡ r mod d and p > max(Ns,d,r,MaxPrime(a)) we have

NP(f) = GNP
(
A(s, d),Fp

)
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and

lim
p≡r mod d

NP(f) = HP
(
A(s, d)

)
.

Proof. Let a �= 0. We define a twisted matrix M ′′ := (F ′′
pi−j) := (F ′

pi−jγ
j−i
d ), notice

this is the matrix representing the Dwork operator with respect to a weighted monomial
basis. For q = pc for write

(
M ′′/Fq

)
(A) := M ′′ ·M ′′τ−1

·M ′′τ−2
· · · · ·M ′′τ−(c−1)

where τ is the Frobenius map on Qq(ζp) that fixes Qp(ζp) that lifts the Frobenius map
x 
→ xp over its residue field extension, and τ(A) = Ap. Then Dwork theory states that

L(f/Fq, T ) = det(1 − T (M ′′/Fq)(â))
det(1 − qT (M ′′/Fq)(â))

(13)

and it is of the form 1 + C1T + · · · + Cd−1T
d−1 in Z[ζp][T ].

Since ordp(F ′
pi−j(â)) ≥

� pi−j
d 


p−1 by its definition, we have

ordp

(
F ′′
pi−j(â)

)
≥ i

d
.

Write P ′′
n := det((M ′′)[n]), i.e., the first n by n submatrix of M ′′. Obviously P ′′

n (â) =
P ′
n(â) since M ′′ is the result of a simple change of basis for M ′. Apply Lemma 4.1, we

have that for p ≡ r mod d and p > max(Nr,MaxPrime(a)) and for all 1 ≤ n ≤ d− 1

ordp

(
P ′
n(â)

)
= ordp

(
Pn,	b/d
(â)

)
= n(n + 1)

2d +
(1 − s

d )kr,n
p− 1 .

In summary, we have

ordpP
′′
n (â) = ordpP

′
n(â) = n(n + 1)

2d +
(1 − s

d)kr,n
p− 1 . (14)

Thus for p > 2(d− s)kr,n + 1 we have

n∑
i=1

i

d
= n(n + 1)

2d ≤ ordpP
′′
n (â) < n(n + 1) + 1

2d .

This verifies that the hypothesis of the transform theorem in Section 5 of [Zhu12] is
satisfied, hence we are enabled to conclude that

NP(f) = NPp

(
d−1∑

P ′′
n (â)Tn

)

n=0
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and by (14) its breaking points after the origin are given by

(
n, ordpP

′′
n (â)

)
=

(
n,

n(n + 1)
2d +

(1 − s
d )kr,n

p− 1

)
for n = 1, . . . , d− 1.

Conversely, suppose we know for such prime p ≡ r mod d the breaking points of
GNP(A(s, d),Fp) are as given. Then we may apply the transform theorem of [Zhu12] and
conclude that it is equal to NPp(

∑d−1
n=0 P

′′
n (â)Tn), or in other words for all 1 ≤ n ≤ d−1

we have

ordpP
′′
n (â) = n(n + 1)

2d +
(1 − s

d )kr,n
p− 1 .

Then we apply Lemma 4.1 and find that Hr is of the given form.
The last statement follows by taking limit since by our hypothesis kr,n is independent

of p. �
Corollary 4.3. Let notation be as in Theorem 4.2. Assume Conjecture 2.7 holds (i.e., sup-
pose Hr =

∑d−1
n=1 hr,n,kr,n

X
kr,n
r,n with

∏d−1
n=1 hr,n,kr,n

�= 0). Let f = xd + axs ∈ A(s, d)(Q)
with d > s ≥ 1 coprime. Then for all prime p > maxr(Ns,d,r,MaxPrime(a)) we have
that

NP(f) = GNP
(
A(s, d);Fp

)
(15)

and limp→∞ NP(f) = HP(A(s, d)) if and only if a �= 0.

Proof. Suppose a �= 0 then the statement follows from Theorem 4.2. If a = 0 then
f = xd and NP(f) is explicitly worked out by Stickelberger theorem (see [Wan04]). For
p ≡ 1 mod d we have NP(f) = HP(A(s, d)) but for 2 ≤ r ≤ d − 1 we know NP(f) lies
strictly above GNP(A(s, d),Fp). Hence limp→∞ NP(f) does not exist. �

For any s < d coprime integers and for any q = pc (c ∈ Z≥1), define

GNP
(
A(s, d),Fq

)
:= inf

f∈A(s,d)(Fq)
NP(f)

if exists. Grothendieck–Katz specialization theorem implies that GNP(A(s, d),Fp) exists.
Our proof of the main theorem implies the following statement immediately.

Corollary 4.4. Let notation be as in Theorem 1.1. Assume Conjecture 2.7 holds. For p

large enough, GNP(A(s, d),Fq) exists for any p-power q and we have

GNP
(
A(s, d),Fq

)
= GNP

(
A(s, d),Fp

)
.
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Remark 4.5. The computation of Hr starts with smallest k ≥ k•r,n and increases until
we find the next term with hr,n,k �= 0. When s = 1 we have Hr =

∑d−1
n=1 hr,n,k•

r,n
X

k•
r,n

r,n

(it is shown in [Zhu03]) with
∏d−1

n=1 k
•
r,n �= 0. But for s ≥ 2 it is not always true that

Hr =
∑d−1

n=1 hr,n,k•
r,n

X
k•
r,n

r,n . In fact in the case (s, d) = (2, 5) and r = 3 one can show
directly that H3 has its least degree monomial of strictly higher degree then k•r,n for at
least one n with 1 ≤ n ≤ d− 2.
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