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0. Introduction

0.0. Let K be a field and l �= charK be a prime number. The well-known Milnor–
Bloch–Kato conjecture claims that the natural morphism of graded Z/l-algebras, called 
the Galois symbol, or the norm residue homomorphism,

KM(K)/l −→
⊕

n

Hn
(
GK , μ⊗n

l

)

is an isomorphism. Here KM(K) denotes the Milnor K-theory ring of K, GK =
Gal(K/K) is the absolute Galois group of K, and μl is the group of l-roots of unity in K. 
For algebraic number fields and their functional analogues, this conjecture was proven by 
J. Tate in [17]; see also [2]. For arbitrary fields, it was established by A. Merkurjev and 
A. Suslin [8] in the degree n = 2; the prolonged work on a complete proof was recently 
finished by M. Rost, V. Voevodsky, and collaborators [18].

0.1. Another approach to proving this conjecture was suggested in our paper [14]. 
There it was shown that the Milnor–Bloch–Kato conjecture would follow from its low-
degree part if one knew the quadratic algebra KM(K)/l to be Koszul. The argument 
in [14] was only directly applicable to fields K having no algebraic extensions of degree 
prime to l; it is well-known that it suffices to prove the Milnor–Bloch–Kato conjecture 
for such fields. The proper scope of the Koszulity conjecture was demonstrated in [10,13], 
where a motivic interpretation of it was found in the case when K contains a primitive
l-root of unity.

A positively graded associative algebra A = k ⊕A1 ⊕A2 ⊕ · · · over a field k is called 
Koszul [14, Subsection 2.2] if the groups Hij(A) = TorAij(k, k) vanish for all i �= j, where 
the first grading i is the homological grading and the second grading j is the internal
grading, which is induced from the grading of A. This definition, introduced originally for 
algebras with (locally) finite-dimensional components by S. Priddy [15] (see [3] or [9] for a 
detailed treatment), was extended to the infinite-dimensional case in [14]. In particular, 
the conditions on Hij(A) for i = 1 and 2 mean that the algebra A is quadratic, i.e., 
generated by A1 with relations of degree 2.

Koszulity Conjecture. For any field K containing a primitive root of unity of a prime 
degree l, the algebra KM(K)/l is Koszul.
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Another formulation of the Koszulity conjecture is the assertion that the Galois co-
homology algebra 

⊕
n H

n(GK , μ⊗n
l ) is Koszul, in the same assumptions on K and l. 

In view of the Merkurjev–Suslin theorem, this formulation clearly implies the Milnor–
Bloch–Kato conjecture. By the result of [14], the former formulation also implies the 
Milnor–Bloch–Kato, provided that one knows just a little bit more than the Merkurjev–
Suslin theorem.

0.2. Further and stronger versions of the Koszulity conjecture were proposed in the 
papers [11,12]. Assume that either l is odd and the field K contains a primitive l-root 
of unity, or l = 2 and the field K contains a square root of −1 (we always presume that 
charK �= 2 when speaking of the square root of −1). Then the Milnor algebra KM(K)/l
is the quotient algebra of the exterior algebra ΛZ/l(K∗/K∗l) by its ideal JK generated 
by the Steinberg symbols. It was shown in [11] that if the ideal JK is a Koszul module (in 
the appropriately shifted grading) over the algebra ΛZ/l(K∗/K∗l), then both Koszulity 
of the algebra KM(K)/l and a certain version of Bogomolov’s freeness conjecture for the 
field K follow.

A positively graded left module M = M1 ⊕ M2 ⊕ · · · over a Koszul algebra A is 
called Koszul [11, Subsection 3.3] if the groups Hij(A, M) = TorAij(k, M) vanish for all 
i �= j − 1 (see 1.4 for comments on the grading conventions). This definition, which first 
appeared in [3], was studied in detail in [9,11] (see also [1]). In particular, the conditions 
on Hi,j(A, M) for i = 0 and 1 mean that the A-module M is quadratic, i.e., generated 
by M1 with relations in degree 2. The hypothesis of Koszulity of the ideal JK can be 
equivalently restated as follows.

Module Koszulity Conjecture 1. For any field K and a prime number l such that K
contains a primitive l-root of unity if l is odd and K contains a square root of −1 if 
l = 2, the ΛZ/l(K∗/K∗l)-module KM

+ (K)/l = KM
1 (K)/l ⊕ KM

2 (K)/l ⊕ · · · is Koszul.

0.3. Assume that K contains a primitive l-root of unity, and let c ∈ K∗ be an element 
not belonging to K∗l. Let L = K[ l

√
c ]. Assume further that the Milnor–Bloch–Kato 

conjecture holds for the fields K and L and the algebra KM(K)/l is Koszul. Then it was 
shown in [12, proof of Corollary 15] together with [11, Theorem 6.1] that the algebra 
KM(L)/l is Koszul provided that the annihilator ideal Ann(c mod l) ⊂ KM(K)/l of the 
element (c mod l) ∈ KM

1 (K)/l is a Koszul module over KM(K)/l.
It was conjectured that the annihilator ideal in KM(K)/l of any nonzero element in 

KM
1 (K)/l is a Koszul module. The silly filtration conjecture for Artin–Tate motives with 

Z/l-coefficients related to the field extension L/K follows from this module Koszulity 
conjecture [13, Subsection 9.8]. It can be equivalently restated as follows.

Module Koszulity Conjecture 2. For any field K containing a root of unity of a prime 
degree l and any element c ∈ KM

1 (K)/l, the ideal (c) = cKM(K)/l is a Koszul module 
over the algebra KM(K)/l.
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Another equivalent formulation of the same conjecture is that the quotient algebra 
(KM(K)/l)/(cKM(K)/l) is a Koszul module (in the appropriately shifted grading) over 
KM(K)/l.

0.4. In this paper, we prove all these Koszulity conjectures for all local and global 
fields, i.e., the algebraic extensions of R, Qp, Fp((z)), Q, or Fp(z). The only exception 
is that our proof of Module Koszulity Conjecture 2 in the case of a global field depends 
on the assumption that {c, c} = 0 in KM

2 (K)/l. This assumption always holds when l is 
odd or K contains a square root of −1. Proving the assertions of these conjectures in 
the case when K does not contain a primitive l-root of unity is relatively easy, and we 
do so, even though there are few general reasons to believe in the Koszulity conjectures 
in such a case. For local fields, we also prove a certain extension of Module Koszulity 
Conjecture 1 to the case of fields not necessarily containing a square root of −1 when 
l = 2.

This paper is a far-reaching extension of the appendix to [14]. Our methods involve 
the construction of infinite quadratic commutative Gröbner bases (infinite commuta-
tive PBW-bases) in the algebras KM(K)/l. These constructions make heavy use of the 
descriptions of Galois cohomology provided by the local and global class field theory, 
some further results from the global class field theory, and Chebotarev’s density theo-
rem. These methods also allow to obtain a new proof of the fact that the graded algebra ⊕

n H
n(GK , μ⊗n

l ) is quadratic for a local or global field K.

0.5. The general formalism of filtrations and PBW-bases indexed by well-ordered 
sets is developed in Section 1. The relevant background facts from the algebraic number 
theory are recalled and discussed in Section 2. Koszul properties of the Milnor alge-
bra/Galois cohomology of a local field are established in Section 3. Koszulity of the 
ideal of Steinberg relations JK for a global field K containing a primitive l-root of 
unity if l is odd and a square root of −1 if l = 2 is proven in Section 4. Koszulity 
of the algebra KM(K)/l for any global field K containing a primitive l-root of unity 
is demonstrated in Section 5. Koszulity of the annihilator ideals in Milnor algebras of 
global fields is shown, under certain assumptions, in Section 6. All the mentioned Koszul 
properties are proven for a global field K not containing a primitive l-root of unity in 
Section 7.

1. Preliminaries on PBW-bases

1.1. Well-ordered sets and filtrations

Let k be a field, V be a k-vector space, and I = {α} be a well-ordered set. An increasing 
filtration F on V with values in I is a family of subspaces FαV ⊂ V , α ∈ I, such that 
FαV ⊂ FβV for α < β and V =

⋃
α∈I FαV . The associated quotient space grF V =⊕

α grFα V is the I-graded vector space with the components grFα V = FαV/ 
⋃

β<α FβV .
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Lemma. Let C• be a complex of I-filtered vector spaces (with the differentials preserving 
the filtrations). Then one has H0(C•) = 0 provided that H0(grF C•) = 0. Conversely, if 
H−1(grF C•) = 0 = H1(grF C•) and H0(C•) = 0, then H0(grF C•) = 0.

Proof. Straightforward induction on the well-ordering. �
1.2. Graded ordered semigroups

A graded ordered semigroup [9, Section 7 of Chapter 4] Γ is a collection of well-ordered 
sets Γn, n ∈ Z�0, endowed with associative multiplication maps Γn × Γm −→ Γn+m

strictly compatible with the orderings, i.e., α < β implies αγ < βγ and γα < γβ for all 
α, β ∈ Γn and γ ∈ Γm. In addition, we assume that the only element of Γ0 is the unit of 
the semigroup Γ .

Let U be a Γn-filtered vector space and V be a Γm-filtered vector space over k; we 
will denote both filtrations by F . Define a Γn+m-valued filtration on the tensor product 
U ⊗k V by the rule

Fγ(U ⊗k V ) =
∑

αβ�γ

FαU ⊗ FβV,

where α ∈ Γn, β ∈ Γm, and γ ∈ Γn+m. Similarly, if U =
⊕

α∈Γn
Uα and V =

⊕
β∈Γm

Vβ

are a Γn- and Γm-graded vector spaces, then the tensor product U⊗kV is a Γn+m-graded 
vector space with the components

(U ⊗k V )γ =
⊕

αβ=γ

Uα ⊗k Vβ .

Lemma. There is a natural isomorphism of Γn+m-graded vector spaces

grΓn+m(U ⊗k V ) 	 grΓn U ⊗k grΓm V.

Proof. To define a natural map grΓn U ⊗k grΓm V −→ grΓn+m(U ⊗k V ), choose for any 
classes ū ∈ grFα U and v̄ ∈ grFβ V their representatives u ∈ FαU and v ∈ FβV , and assign 
the class u⊗ v ∈ grFαβ(U⊗kV ) of the element u ⊗v ∈ Fαβ(U⊗kV ) to the tensor product 
ū⊗ v̄ ∈ grFα U ⊗k grFβ V . Checking that this is a well-defined isomorphism is easy. �
1.3. Filtered algebras and modules

Let A =
⊕∞

n=0 An be a graded associative k-algebra with A0 = k and Γ be a graded 
ordered semigroup. A Γ -valued filtration on A is a family of filtrations F with values 
in Γn on the grading components An of the algebra A such that the multiplication maps 
An ⊗k Am −→ An+m are compatible with the Γn+m-valued filtrations. By Lemma 1.2, 
the associated graded quotient vector space grF A =

⊕
n grF An has a natural structure 

of a graded k-algebra.
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Let M =
⊕∞

n=1 Mn be a graded left module over A. A Γ -valued filtration on M
compatible with the given Γ -valued filtration on A is a family of filtrations F with values 
in Γn on the grading components Mn of the module M such that the multiplication maps 
An ⊗k Mm −→ Mn+m are compatible with the Γn+m-valued filtrations. The associated 
graded quotient vector space grF M =

⊕
n grF Mn has a natural structure of a graded 

left module over grF A.
Recall the definitions of the homology of positively graded associative algebras 

and modules from [11, Subsections 2.2–3]: Hi,j(A) = TorAi,j(k, k) and Hi,j(A, M) =
TorAi,j(k, M). Here the second grading j comes from the grading of A and M ; the grad-
ing i is the homological grading and the grading j is called the internal grading.

When A and M are endowed with Γ -valued filtrations, the bar-complexes com-
puting H∗(A) and H∗(A, M) acquire the induced filtrations. The components of the 
bar-complexes of the internal grading n are filtered with values in Γn. By Lemma 1.2, 
the associated quotient complexes of these bar-complexes with respect to these filtrations 
are the bar-complexes computing H∗(grF A) and H∗(grF A, grF M). By Lemma 1.1, it 
follows that Hi,j(A) = 0 provided that Hi,j(grF A) = 0, and Hi,j(A, M) = 0 provided 
that Hi,j(grF A, grF M) = 0.

1.4. PBW-theorem

A positively graded associative algebra A =
⊕∞

n=0 An is called quadratic if it is iso-
morphic to the quotient algebra of a tensor (free associative) algebra 

⊕∞
n=0 V

⊗n by an 
ideal generated a vector subspace R ⊂ V ⊗k V . The quadratic part of a positively graded 
algebra A is the quadratic algebra qA with the space of generators V = A1 and the sub-
space of quadratic relations R = ker(A1⊗kA1 −→ A2). The natural morphism of graded 
algebras qA −→ A is an isomorphism in degree 1 and a monomorphism in degree 2; it 
is an isomorphism of graded algebras if and only if the graded algebra A is quadratic.

Similarly, a positively graded left module M =
⊕∞

n=1 Mn over a quadratic algebra 
A =

⊕∞
n=0 V

⊗n/(R) is called quadratic if it is isomorphic to the quotient module of 
a free left A-module A ⊗k U generated in degree 1 by a submodule generated by a 
vector subspace P ⊂ V ⊗k U . The quadratic part of a positively graded module M
over a positively graded algebra A is the quadratic module qAM with the space of 
generators U = M1 and the subspace of relations P = ker(A1 ⊗ M1 −→ M2) over the 
quadratic algebra qA. The natural morphism of graded qA-modules qAM −→ M is an 
isomorphism in degree 1 and a monomorphism in degree 2; a positively graded module M
over a quadratic algebra A is quadratic if and only if this morphism is an isomorphism 
in all the degrees [11, Subsection 3.1].

Here we use a convention for graded modules slightly different from that in [9,11]: 
quadratic modules M are generated by M1 with relations in degree 2. The definition of 
a Koszul module from [11, Subsection 3.3] is modified accordingly: a positively graded 
module M over a Koszul algebra A is called Koszul if Hi,j(A, M) = 0 for all i �= j−1. As it 
was explained in 1.3, given compatible Γ -valued filtrations F on A and M , the algebra A
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is quadratic or Koszul whenever the algebra grF A is, and the A-module M is quadratic 
or Koszul whenever the grF A-module grF M is. The following theorem is a more delicate 
result in this direction. It is a generalization of the quadratic case of the Diamond Lemma 
for Gröbner bases [4,5].

Theorem. Let A be a Γ -filtered graded algebra and M be a Γ -filtered graded A-module. 
Then

(1) if the algebra A is quadratic, the algebra grF A is generated in degree 1, the algebra 
q grF A is Koszul, and the natural map q grF A −→ grF A is an isomorphism in the 
degree n = 3, then the algebras grF A and A are Koszul;

(2) if the algebra grF A is Koszul, the A-module M is quadratic, the grF A-module grF M

is generated in degree 1, the grF A-module qgrF A grF M is Koszul, and the natural 
map qgrF A grF M −→ grF M is an isomorphism in the degree n = 3, then the 
grF A-module grF M and the A-module M are Koszul.

Proof. One only has to prove that the algebra grF A or the module grF M is quadratic. 
Proceed by induction on n � 4 showing the map q grF A −→ grF A or qgrF A grF M −→
grF M is an isomorphism in degree n. For this purpose, consider the component of 
internal degree n of the initial fragment of the bar-complex A⊗4

+ −→ A⊗3
+ −→ A⊗2

+ −→
A+ −→ k or A⊗3

+ ⊗kM −→ A⊗2
+ ⊗kM −→ A+⊗kM −→ M −→ 0 (given that n � 4, this 

fragment is acyclic when the algebra A or the module M are Koszul). Then apply the 
second assertion of Lemma 1.1 in order to conclude that the associated quotient complex 
with respect to the Γn-valued filtration, which is isomorphic to the similar complex 
for the algebra grF A or the grF A-module grF M , has zero cohomology at the middle 
term (cf. [9, Theorem 7.1 from Chapter 4]). Indeed, the condition H3,n(q grF A) = 0 or 
H2,n(q grF A, qgrF A grF M) = 0 together with the induction assumption guarantee that 
the associated graded complex has no cohomology at the second term. The assumption 
of generation in degree 1 tells that it has no cohomology at the fourth term, and the 
quadraticity assumption means that the filtered complex has no cohomology at the 
middle term. �
1.5. Inverse lexicographical ordering

In this paper we will use graded ordered semigroups Γ of the following special form. 
As a graded semigroup, Γ is isomorphic to the free commutative semigroup generated 
by the set Γ1. So elements of Γn are the commutative monomials αn1

1 · · ·αnm
m , where 

α1 < · · · < αm are elements of Γ1 and n1 + · · ·+nm = n. The order on Γn is the inverse 
lexicographical order : αn′

1
1 · · ·αn′

m
m < α

n′′
1

1 · · ·αn′′
m

m if there exists 1 � j � m such that 
n′
i = n′′

i for i < j and n′
j > n′′

j . For example, α1α4 < α2α3 if α1 < α2 < α3 < α4.
We will be interested in Γ -valued filtrations F on graded algebras A such that the 

associated quotient spaces grFα A1 are one-dimensional for all α ∈ Γ1. Abusing termi-
nology, we will speak of Γ1-indexed bases {xα} of A1, presuming that xα ∈ FαA1 has 



L. Positselski / Journal of Number Theory 145 (2014) 126–152 133
a nonzero image, which will be also denoted by xα, in grFα A1. So the basis {xα} in A1
will be only defined up to an upper-triangular linear transformation. Similarly, we will 
consider Γ -valued filtrations F on graded modules M such that the associated quotient 
spaces grFα M1 are no more than one-dimensional for all α ∈ Γ1.

1.6. Koszulity of algebras

All our graded algebras A will be associative and unital, generated by A1, and ei-
ther commutative (when char k = 2) or supercommutative with respect to the parity 
associated with the grading (when char k is odd). Here a graded algebra A is called su-
percommutative if the identity a2 = 0 for all a ∈ An with odd n holds in A, together with 
the identity ab = (−1)nmba for a ∈ An and b ∈ Am. Notice that any supercommutative 
algebra over a field k of characteristic 2 is commutative, but not the other way.

We will also assume the graded algebra grF A to be generated in degree 1. Once 
a Γ1-indexed filtration of A1 is fixed, this condition defines a unique extension of this 
filtration to a Γ -valued filtration of A. Given a graded algebra A as above with a Γ -valued 
filtration F satisfying this condition together with the conditions of 1.5, the associated 
quotient algebra grF A is a commutative or supercommutative monomial algebra. In 
other words, it is the quotient algebra of the free commutative or supercommutative 
algebra generated by the elements xα of degree 1 by an ideal generated by a set of 
monomials in xα. This is easy to see; actually, no other relations can be compatible with 
the Γ -grading of grF A.

The quadratic part q grF A of a (super)commutative monomial algebra grF A is always 
Koszul. Indeed, when the set of generators {xα} is finite, this is the result of the paper [7]
(see also [9, Theorem 8.1 of Chapter 4]), and the general case follows by passing to the 
inductive limit of subalgebras generated by finite subsets of {xα}. By Theorem 1.4(1), if 
A is quadratic and grF A has no relations of degree 3, then grF A is quadratic. By the 
result of 1.3, if grF A is quadratic, then A is Koszul.

When grF A is quadratic, the basis in A formed by those monomials in xα that survive 
in grF A is called a commutative PBW-basis of A.

Remark. The commutative PBW-bases of (super)commutative algebras, which are used 
in this paper, are particular cases of commutative Gröbner bases [5] whose application 
to Koszulity questions is based on the result of R. Fröberg’s paper [7]. These are dif-
ferent from noncommutative PBW-bases, which are particular cases of noncommutative 
Gröbner bases [4] and whose application to Koszulity was worked out already by Priddy 
in [15] (see also [9, Sections 1–5 of Chapter 4]). In application to commutative algebras, 
the commutative PBW-bases are generally more powerful.

1.7. Koszulity of ideals of relations

Let B be a Koszul algebra and J ⊂ B be a two-sided ideal concentrated in the degrees 
n � 2. Set A = B/J . Then J is a Koszul left B-module (in the grading appropriately 
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shifted by 1) if and only if A+ = A1 ⊕ A2 ⊕ A3 ⊕ · · · is a Koszul left B-module. In this 
case, by [11, Corollary 6.2(c)], the algebra A itself is Koszul.

Now let Λ be the exterior (free supercommutative) algebra over a field k generated by 
a set of elements xα of degree 1 and A = Λ/J be the quotient algebra of Λ by an ideal of 
monomials of degree n � 2 in xα. Let T denote the set of all quadratic monomials xαxβ

that are nonzero in A; consider T as the set of edges of an (infinite) graph with the set 
of vertices {xα}.

Proposition. Assume that An = 0 for n � 3. Then

(1) the monomial algebra A is Koszul if and only if the graph T contains no triangles;
(2) the Λ-module A+ is Koszul if and only if the graph T contains no cycles of any 

(finite) length.

Proof. Part (1): it is clear that A is quadratic if and only if T does not contain triangles. 
Since A is supercommutative monomial, it is Koszul whenever it is quadratic (see 1.6
and [7] or [9, Theorem 8.1 of Chapter 4]).

Part (2), “if”: it suffices to consider the case when the set {xα} is finite, since then one 
can pass to the inductive limit of the similar modules over finitely generated subalgebras 
of Λ. In the finitely generated case, proceed by induction in the number of vertices. 
Choose a vertex xα with a single edge xαxβ coming out of it. The k-vector subspace 
spanned by xα and xαxβ is a Λ-submodule in A+ which is easily seen to be Koszul. Set 
(xα) = Λxα. The quotient module M = A+/〈xα, xαxβ〉 is a Koszul module over Λ/(xα)
by the induction assumption. Since the ideal (xα) ⊂ Λ is a Koszul Λ-module (cf. 1.8), 
it follows by the way of the spectral sequence E2

p,q = TorΛ/(xα)
p (Hq(Λ, Λ/(xα)), M) =⇒

Hp+q(Λ, M) [11, (6.1)] that A+/〈xα, xαxβ〉 is a Koszul module over Λ, too.
Part (2), “only if”: let Γ be the free commutative semigroup generated by the set 

of indices {α}; then Λ and A+ are Γ -graded. Considering subcomplexes of the bar-
complex consisting of all the Γ -grading components corresponding to a subsemigroup 
of Γ spanned by a subset of {α}, one can see that the Λ-module A+ corresponding to 
a graph T is Koszul if and only if the same is true for any full subgraph of T (i.e., 
any subgraph consisting of all T -edges between a given subset of vertices). So it suffices 
to consider the case when T is a finite polygon with n vertices and n edges. In this 
case, the homology exact sequence related to the short exact sequence of Λ-modules 
A2 −→ A+ −→ A1 shows that dimHn−2,n(Λ, A+) = 1. �
1.8. Koszulity of annihilator ideals

Let A be a commutative or supercommutative Koszul algebra and c ∈ A1 be a nonzero 
element. Then the annihilator ideal Ann(c) = {a ∈ A | ac = 0} ⊂ A is a Koszul A-module 
if and only if the ideal (c) = Ac ⊂ A is a Koszul A-module, and if and only if the quotient 
algebra A/(c) is a Koszul A-module in the grading shifted by −1.
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Assume that there exists a commutative PBW-basis in A corresponding to a well-
ordered set of generators {xα} ∈ A1 such that the minimal element of this set is x0 = c. 
Then the ideal (c) is a Koszul A-module. This is true due to our particular choice of the 
inverse lexicographical ordering of monomials in xα.

Indeed, let the Γ -valued filtration F on (c) ⊂ A be induced from the Γ -valued filtra-
tion F on A. Then the ideal grF (c) ⊂ grF A is generated by the class c̄ ∈ grF A1 of the 
element c (because c is the minimal element in the set of generators {xα} and the order 
of monomials is inverse lexicographical).

This is an ideal in a (super)commutative quadratic monomial algebra generated by 
a subset of the algebra generators. All such ideals are Koszul. Indeed, for a finitely 
generated monomial algebra, this is shown in [9, proof of Theorem 8.1 of Chapter 4], 
and the general case follows by passing to the inductive limit of ideals in finitely generated 
monomial algebras.

2. Preliminaries on number fields

First of all let us recall that for any field K and a prime number l the multiplication 
in KM(K)/l is supercommutative when l is odd or K contains a square root of −1, and 
commutative when l = 2. More precisely, one has {x, x} = {−1, x} in KM

2 (K) for any 
x ∈ KM

1 (K) [2, Section I.1].

2.0. Equal characteristics

For any field K of prime characteristic p such that [K : Kp] � p one has KM
n (K)/p = 0

for n � 2 [2, Proposition I.5.13]. This includes any finite extensions of Fp((z)) or Fp(z). 
For any field K of characteristic p, one has Hn(GK , Z/p) = 0 for n � 2 [16, n◦ II.2.2].

2.1. Finite and archimedean fields

For a finite field K = Fq, one has KM
n (K) = 0 = Hn(GK , μ⊗n

l ) for any n � 2 and any 
prime l not dividing q [2, Corollary I.5.12].

For the field of complex numbers K = C, one has KM
n (K)/l = 0 for any n � 1 and 

any l. For the field of real numbers K = R, one has KM
n (K)/l = 0 for any n � 1 and 

any odd l, while KM(K)/2 	 Z/2[{−1}] 	 H(GK , Z/2) is the polynomial ring with one 
generator of degree 1 corresponding to the class of the element −1 ∈ K∗.

2.2. Discrete valuation fields

Let K be a Henselian discrete valuation field and k be its residue field. Let l �= char k be 
a prime number. Then the Z/l-algebra KM(K)/l is generated by the Z/l-algebra KM(k)/l
and an element {π} ∈ KM

1 (K)/l, corresponding to any uniformizing element π ∈ K, 
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subject to the relations of supercommutativity of {π} with KM(k)/l and {π, π} = {−1, π}
[2, Proposition I.4.3].

The absolute Galois group GK is an extension of the semidirect product of Gk with 
the group Zl, where Gk acts by the cyclotomic character, by a group of order prime to l. 
This allows to obtain a similar description of the algebra 

⊕
n H

n(GK , μ⊗n
l ) in terms of 

the algebra 
⊕

n H
n(Gk, μ

⊗n
l ).

2.3. Nonarchimedean local fields

Let K be a finite extension of Qp or Fp((z)) and l �= charK be a prime number. The 
computation of KM

n (K)/l 	 Hn(GK , μ⊗n
l ) [17, Corollary on p. 268] is provided by the 

local class field theory.
When K does not contain a primitive l-root of unity, one has KM

n (K)/l = 0 for n � 2. 
When K contains a primitive l-root of unity, one has KM

n (K)/l = 0 for n � 3, and 
KM

2 (K)/l 	 μl. In the latter case, the multiplication map

KM
1 (K)/l ⊗Z/l KM

1 (K)/l −→ KM
2 (K)/l

is a nondegenerate pairing. This pairing provides the comparison between the isomor-
phism Gab

K /l 	 K∗/K∗l of the local class field theory and the isomorphism Gab
K /l 	

HomZ(K∗, μl) of the Kummer theory; hence the nondegeneracy.
The Z/l-vector space KM

1 (K)/l is finite-dimensional. Except when K is a finite exten-
sion of Ql, its dimension is equal to 2 when K contains a primitive l-root of unity, and 1
otherwise. When K is a finite extension of Ql, the dimension is � 3 when K contains a 
primitive l-root of unity, and � 2 otherwise.

When l is odd and K contains a primitive l-root of unity, or l = 2 and K contains a 
square root of −1, KM

1 (K)/l is a symplectic vector space with respect to the multiplica-
tion pairing. In other words, the multiplication pairing is skew-symmetric, i.e., {x, x} = 0
for all x ∈ KM

1 (K)/l. In particular, the dimension of KM
1 (K)/l is even.

When l = 2 and K does not contain a square root of −1, it follows from nondegeneracy 
and the relation {x, x} = {−1, x} that dim KM

1 (K)/l is even when {−1, −1} = 0 and odd 
when {−1, −1} �= 0. In both cases, the isomorphism class of the (nonskew-symmetric) 
pairing form is determined by dim KM

1 (K)/l.
Except when K is a finite extension of Ql, the product {x, y} of the classes of two 

elements x, y ∈ K∗ with the logarithmic valuations v(x) = 0 = v(y) is always zero in 
KM

2 (K)/l, and the product of the classes of two elements x ∈ K∗ \K∗l and y ∈ K∗ with 
v(x) = 0 and v(y) not divisible by l is always nonzero in KM

2 (K)/l.

2.4. Global fields with root of unity

For any field K and a prime number l �= charK, the group H2(GK , μl) is isomorphic 
to the subgroup lBrK of the Brauer group BrK consisting of all elements annihilated 
by l.
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For any finite extension K of Q or Fq(z) and a prime number l �= charK the natural 
map KM

2 (K)/l −→ H2(K, μ⊗2
l ) is an isomorphism [17, Theorem 5.1]. Assuming that K

contains a primitive l-root of unity and combining this isomorphism with the computa-
tion of BrK provided by the global class field theory, we see that there is a natural short 
exact sequence

0 −→ KM
2 (K)/l −→

⊕

v

KM
2 (Kv)/l 	

⊕

v′

μl −→ μl −→ 0.

Here the direct sum in the second term is over all valuations v of K, and the direct sum 
in the third term is taken over all the valuations v′ not including the complex valuations 
if l = 2, or not including the archimedean valuations if l is odd. The rightmost map 
is the simple summation over v′. The assertion that the composition of the two maps 
vanishes is one of the formulations of the reciprocity law.

Given two elements x and y in K∗, or K∗
v , or K∗

v/K
∗l
v , etc., we will denote by {x, y}v

their product in KM
2 (Kv)/l, and identify the latter group with μl (assuming that we are 

not in the case when KM
2 (Kv)/l = 0). So the reciprocity law takes the form 

∑
v{x, y}v = 0

for any x, y ∈ K∗.
For any n � 3 and any global field K, the natural map

KM
n (K) −→

⊕

v

KM
n (Kv)/2

is an isomorphism [2, Theorem II.2.1(3)]. Here the summation is over all the real valua-
tions v of K. One can obtain a compatible description of Hn(GK , μ⊗n

l ) from the global 
class field theory, by computing Hn(GK , μl) in terms of Hn(GK , K∗) and the latter in 
terms of Hn(GKv

, K∗
v ) and the cohomology of the classes of idèles.

2.5. Exceptional set of valuations

Let K be a finite extension of Q or Fq(z) containing a primitive l-root of unity. Let S
be a finite set of valuations of K containing all the archimedean valuations and all the 
valuations lying over l, and generating the class group of the field K. Denote by WS the 
Z/l-vector space

WS =
⊕

v∈S

K∗
v/K

∗l
v ,

and let KS ⊂ K∗ denote the subgroup of all elements b having the logarithmic valuation 
p(b) = 0 (in other words, b is integral and integrally invertible in Kp) for all valuations 
p /∈ S.

Lemma 1. The natural map KS/l −→ WS is injective.
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Proof. This is [6, Lemma VII.9.2 and Remark VII.9.3]. �
Define a μl-valued bilinear form on WS as the orthogonal sum of the bilinear forms 

on K∗
v/K

∗l
v , that is (x, y)S =

∑
v∈S{xv, yv}v.

Lemma 2. The subspace KS/l ⊂ WS coincides with its own orthogonal complement with 
respect to the pairing form (−,−)S.

Proof. The pairing form on WS is symmetric or skew-symmetric and nondegenerate, 
since the pairings on K∗

v/K
∗l
v are. By the reciprocity law, one has (KS/l, KS/l) = 0. It 

remains to check that dimWS = 2 dimKS/l. We will show that dimKS/l = #S and 
dimWS = 2#S, where #S is the number of elements in S.

Indeed, by Dirichlet’s unit theorem the group KS is the direct sum of a free abelian 
group of rank #S − 1 and the finite cyclic group of roots of unity in K, whose order is 
divisible by l by assumption. This computes dimKS/l.

To compute dimWS , consider two cases separately. When K is a finite extension 
of Fq(z), one has dimK∗

v/K
∗l
v = 2 for all v ∈ S. When K is a finite extension of Q, one 

has

• dimK∗
v/K

∗l
v = 2 for all nonarchimedean v ∈ S not lying over l;

• dimK∗
v/K

∗l
v = 2 + [Kv : Ql] for any nonarchimedean v ∈ S lying over l;

• dimK∗
v/K

∗l
v = 0 when Kv = C; and

• dimK∗
v/K

∗l
v = 1 when Kv = R, since such valuations v can only exist when l = 2, 

as R does not contain any other l-roots of unity.

Summing this up, one easily obtains dimWS = 2#S. �
The following lemma can be thought of as a kind of “approximation theorem for idèles 

modulo l”.

Lemma 3. Let w be an element of WS and D be a divisor of K supported outside of S, i.e., 
a formal linear combination of valuations of K, not belonging to S, with integral coeffi-
cients. The pairing with w defines a μl-valued linear function on KS/l, and another such 
function is provided by the linear combination of Frobenius elements in Gal(K[ l

√
KS ]/K)

corresponding to the divisor D. Suppose that these two linear functions coincide. Then 
there exists an element a ∈ K∗ whose image in WS is equal to w and whose divisor 
outside S is equal to D. Furthermore, the element a is unique modulo Kl

S.

Proof. Since S generates the class group of K, one can find an element b ∈ K∗ whose 
divisor outside of S is equal to D. Let us denote the image of b in WS also by b. By 
the reciprocity law, the element w/b ∈ WS is orthogonal to KS/l, hence by Lemma 2 it 
belongs to KS/l. Lift it to an element c ∈ KS and set a = bc. The uniqueness follows 
immediately from Lemma 1. �
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2.6. Symplectic case

The following lemma is useful in the case of a global field K which contains a primitive 
l-root of unity when l is odd, or contains a square root of −1 when l = 2. Recall that 
the pairing (−,−)S is skew-symmetric in this case.

Lemma. Suppose that a (finite-dimensional) symplectic vector space W over a field k is 
decomposed into an orthogonal direct sum of symplectic vector spaces Wv. Let L be a 
Lagrangian subspace in W . Then there exist Lagrangian subspaces Mv in Wv such that 
the direct sum of Mv is complementary to L in W .

Proof. It suffices to consider the case when all Wv are two-dimensional (otherwise de-
compose every one of them into an orthogonal direct sum of two-dimensional symplectic 
vector spaces). Order the set of indices {v} and proceed by induction, choosing subspaces 
Mv′ ⊂ Wv′ such that 

⊕
v′�v Mv′ does not intersect L. Assume that Mv′ have been cho-

sen so that 
⊕

v′<v Mv′ does not intersect L. Then, since L is Lagrangian, there exists 
at most one line Nv ⊂ Wv for which Nv ⊕

⊕
v′<v Mv′ intersects L. So a line Mv ⊂ Wv

such that 
⊕

v′�v Mv′ does not intersect L can always be chosen. �
2.7. Global fields without root of unity

Let K be a finite extension of Q or Fq(z) that does not contain a primitive l-root of 
unity. Notice that l is necessarily odd in this case, so KM(K)/l is supercommutative and 
KM

n (K)/l = 0 for n � 3.
Set L = K[ l

√
1 ]. The degree [L : K] of this field extension divides l − 1 and is prime 

to l. Passing to Gal(L/K)-invariants in the description of KM
2 (L)/l 	 H2(GL, μ

⊗2
l ) given 

in 2.4, one concludes that the Z/l-vector space KM
2 (K)/l 	 H2(GK , μ⊗2

l ) is isomorphic 
to the direct sum of the groups μl,v of l-roots of unity in Kv over all the nonarchimedean 
valuations v of K for which Kv contains a primitive l-root of unity.

So the product {x, y} in KM
2 (K)/l of the classes of two elements x, y ∈ K∗ can be 

considered as the collection of the local products {x, y}v ∈ KM
2 (Kv)/l 	 μl,v indexed 

by all such valuations v. There are no relations between the local products: any finite 
collection of elements in μl,v corresponds to an element of KM

2 (K)/l.
Let S′ and S be finite sets of valuations of K and L, respectively, such that S is 

the set of all valuations of L lying over the valuations of K belonging to S′, the set S′

contains all the archimedean valuations of K and all the valuations, lying over l, the 
set S′ generates the class group of K, and the set S generates the class group of L. 
Set WS =

⊕
v∈S L∗

v/L
∗l
v , and let W ′

S′ denote the direct sum of K∗
v/K

∗l
v over all the 

valuations v ∈ S′ such that Kv contains a primitive l-root of unity. There is a natural 
injective map W ′

S′ −→ WS . Set M = L[ l
√
LS ].

Lemma. For any element w′ ∈ W ′
S′ there exist infinitely many valuations p of K

outside S′ for which Kp does not contain a primitive l-root of unity and there exists 
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an element ap ∈ K∗ whose image in W ′
S′ is equal to w′ and whose divisor outside S′ is 

equal to p.

Proof. Let D′ be a divisor of the field K outside of S′; one can naturally assign to it 
a divisor D of the field L outside of S. For any element w′ ∈ W ′

S′ , consider its image 
w ∈ WS , the pairing with w in WS as a linear function LS/l −→ μl, and this linear 
function as an element of Gal(M/L). If the linear combination of Frobenius elements 
in Gal(M/L) corresponding to D is equal to this element, then by Lemma 2.5.3 there 
exists a unique, up to Ll

S , element a2 ∈ L∗ whose image in WS is equal to w and 
whose divisor outside of S is equal to D. Due to the uniqueness, this element defines a 
Gal(L/K)-invariant class in L∗/L∗l.

From the short exact sequence μl −→ L∗ −→ L∗l, Hilbert’s Theorem 90, and the 
order of the group Gal(L/K) being prime to l, one can see that H1(Gal(L/K), L∗l) = 0. 
Hence there exists a Gal(L/K)-invariant element a1 ∈ L∗ which differs from a2 by an 
element of L∗l. The element a1 belongs to K∗, and its image in W ′

S′ is equal to w′, since 
its image in WS is equal to w. The divisor of a1 ∈ K∗ is congruent to D′ modulo l, 
since the divisor of a1 ∈ L∗ is congruent to D modulo l and the ramification indices 
in the extension L/K are prime to l. Since S′ generates the class group of K, one can 
multiply a1 with an element of K∗l so that the resulting element a ∈ K has the divisor D′

outside of S′; clearly, the image of a in W ′
S′ is equal to w′.

The linear combination of Frobenius elements in Gal(M/L) corresponding to D is the 
image of the linear combination of Frobenius elements in Gal(M/K)ab corresponding 
to D′ under the transfer map tr: Gal(M/K)ab −→ Gal(M/L). Since the element h ∈
Gal(M/L) corresponding to w is invariant under Gal(L/K) and the order of the latter 
group is prime to l, the element h is equal to the transfer of the element g ∈ Gal(M/K)ab

obtained as the image of h/[L : K] under the map Gal(M/L) −→ Gal(M/K)ab.
Being an extension of the abelian groups Gal(L/K) and Gal(M/L) of coprime orders, 

the group Gal(M/K) is their semidirect product. So the group Gal(L/K) can be em-
bedded into Gal(M/K). Choose a nontrivial element f ∈ Gal(L/K) and consider the 
product q = (h/[L : K])f ∈ Gal(M/K). Its image in Gal(M/K)ab is the product of g
with the image of f , which we will denote also by f . For the reasons of orders of the 
elements, or commutation of transfer with the corestriction in group homology, it is clear 
that tr(f) = 1 and tr(gf) = tr(g) = h in Gal(L/K).

By Chebotarev’s density theorem, there exist infinitely many valuations p of the 
field K outside of S′ whose Frobenius elements in Gal(M/K) are conjugate to q. In 
this case, the Frobenius element of p in Gal(L/K) is nontrivial, so Kp does not contain 
a primitive l-root of unity. Furthermore, let D be the divisor of L outside S equal to 
the image of p (which is considered as a divisor of K). Then the linear combination 
of Frobenius elements in Gal(M/L) corresponding to D is equal to the pairing with w

in WS as a linear function LS/l −→ μl. Hence the element ap = a ∈ K∗ constructed 
above has the desired properties. �
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3. Koszulity for local fields

For any field K and a prime number l denote by Λ(K, l) the graded algebra over Z/l
generated by Λ1(K, l) = K∗/K∗l with the relations {x, −x} = 0 for x ∈ K∗. The algebra 
Λ(K, l) is always Koszul.

Indeed, when l is odd or K contains a square root of −1, this algebra is simply the 
exterior algebra generated by K∗/K∗l. Otherwise, choose any well-ordered basis {xα} of 
the Z/l-vector space K∗/K∗l such that the first basis vector is x0 = {−1}, and consider 
the related Γ -valued filtration F of Λ(K, l) (see 1.5–1.6). Then the algebra grF Λ(K, l)
is isomorphic to the tensor product of the symmetric algebra with one generator {−1}
and the exterior algebra generated by Λ1(K, l)/〈{−1}〉.

There is a natural morphism of graded Z/l-algebras Λ(K, l) −→ KM(K)/l. Let JK
denote its kernel; it is the ideal generated by the Steinberg symbols.

Theorem 1.

(1) Let K be an algebraic extension of R, Qp, or Fp((z)), and l be a prime number. Then 
the ideal JK ⊂ Λ(K, l) is a Koszul Λ(K, l)-module (in the grading shifted by 1). In 
particular, the algebra KM(K)/l is Koszul.

(2) Let K be a Henselian discrete valuation field with the residue field k and l �= char k
be a prime number. Then the algebra KM(K)/l is Koszul whenever the algebra 
KM(k)/l is. The ideal JK is a Koszul Λ(K, l)-module whenever the ideal Jk is a 
Koszul Λ(k, l)-module.

Proof. Part (1): the cases K ⊃ R and l = charK are trivial in view of 2.1 and 2.0, 
respectively. Indeed, in the former case one has JK = 0, and in the latter case one 
can use the fact that the left A-module A�2 = A2 ⊕ A3 ⊕ · · · is Koszul for any Koszul 
algebra A. Passing to the inductive limit, one reduces the problem to the case when K
is a finite extension of Qp or Fp((z)) (and l �= charK).

The case when K does not contain a primitive l-root of unity is similar to the above; 
see 2.3. When l is odd and K contains a primitive l-root of unity, or l = 2 and K contains 
a square roof of −1, one can choose any ordered basis of K∗/K∗l; the corresponding 
supercommutative monomial algebra grF KM(K)/l obviously satisfies the condition of 
Proposition 1.7(2), since the graph T contains only one edge.

When l = 2, the class of −1 is nontrivial in KM
1 (K)/2, but {−1, −1} = 0 in KM

2 (K)/2, 
choose any ordered basis {xα} of K∗/K∗2 with the minimal element x0 = {−1} and 
the second minimal element x1 such that x0x1 �= 0. Consider the related Γ -valued 
filtrations F of Λ(K, 2) and KM(K)/2. The corresponding algebra grF Λ(K, 2) is the 
tensor product of the symmetric algebra generated by x0 and the exterior algebra in 
other variables. The algebra grF KM(K)/2 is the commutative monomial algebra with 
the only nonzero monomial x0x1 in the degrees � 2. One easily checks that both the 
grF Λ(K, 2)-module spanned by x0 and x0x1 and the quotient module of grF KM

+ (K)/2
by this submodule are Koszul.
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When l = 2 and {−1, −1} �= 0 in KM
2 (K)/2, choose any ordered basis {xα} of K∗/K∗2

in which the minimal three elements x0, x1, x2 are such that x1 = {−1} and x2
0 =

x0x1 = 0 �= x0x2 in KM
2 (K)/2. Consider the related Γ -valued filtrations F of Λ(K, 2)

and KM(K)/2. The corresponding algebra grF KM(K)/2 is the commutative monomial 
algebra with the only nonzero monomial x0x2 in the degrees � 2. The algebra grF Λ(K, 2)
is the quadratic commutative monomial algebra with the defining relations x0x1 = 0
and x2

α = 0 for α � 2. As above, one easily checks that the graded grF Λ(K, 2)-module 
grF KM

+ (K)/2 is Koszul.
Part (2): the argument is based on the description of KM(K)/l given in 2.2. This 

time, the increasing filtrations on graded algebras that we need to use are indexed by 
the conventional integers. Set F0KM(K)/l = KM(k)/l and F1KM(K)/l = KM(K)/l. 
Then the graded algebra grF KM(K)/l is the supertensor product of KM(k)/l and the 
exterior algebra with one generator {π} in degree 1, hence it is Koszul provided that 
KM(k)/l is [9, Corollary 1.2 of Chapter 3].

To prove the second assertion, define also a compatible increasing filtration F on 
Λ(K, l) by the rule F0Λ(K, l) = Λ(k, l) and F1Λ(K, l) = Λ(K, l). Then the graded 
algebra grF Λ(K, l) is the supertensor product of Λ(k, l) and the exterior algebra with one 
generator {π}, so it remains to apply the module part of the same corollary from [9] (or 
more precisely, its straightforward generalization to the infinite-dimensional setting). �
Theorem 2.

(1) Let K be an algebraic extension of R, Qp, or Fp((z)), and l be a prime number. Let 
c be an element of KM

1 (K)/l. Then the ideal (c) ⊂ KM(K)/l is a Koszul module over 
KM(K)/l.

(2) Let K be a Henselian discrete valuation field with the residue field k and l �= char k
be a prime number. Assume that the graded algebra KM(k)/l is Koszul and for any 
element c ∈ KM

1 (k)/l the ideal (c) ⊂ KM(k)/l is a Koszul module over KM(k)/l. 
Then the graded algebra KM(K)/l has the same properties.

Proof. Part (1): the case of an infinite algebraic extension is deduced from that of a 
finite extension by passing to an inductive limit. When K ⊃ R, l = charK, or K does 
not contain a primitive l-root of unity, the assertion is trivial. The assertion is also trivial 
when c = 0. So let us assume that K is a finite extension of Qp or Fp((z)) containing a 
primitive l-root of unity and c �= 0.

When {c, c} = 0 in KM
2 (K)/l, choose any ordered basis of K∗/K∗l starting with x0 = c

(for simplicity, one can also pick the next basis vector x1 so that x0x1 �= 0) and use the 
result of 1.8. This covers the cases when l is odd or K contains a square root of −1. When 
{c, c} �= 0 in KM

2 (K)/2 but c �= {−1} in KM
1 (K)/2, choose an ordered basis of K∗/K∗2

starting with x0, x1 such that x2
0 = 0, x1 = c, and x0x1 �= 0 in KM

2 (K)/2. Then for 
the corresponding Γ -valued filtration F on KM(K)/2 the ideal grF (c) ⊂ grF KM(K)/2
is generated by the element c, so one can argue as in 1.8.



L. Positselski / Journal of Number Theory 145 (2014) 126–152 143
It remains to consider the case when c = {−1} in KM
1 (K)/2 and {−1, −1} �= 0

in KM
2 (K)/2. Choose an ordered basis of K∗/K∗2 starting from x0, x1, x2 such that 

x2
0 = 0 = x2

1, x0x1 �= 0, and x2 = {−1} (or x2
0 = 0, x1 = {−1}, and x0x2 �= 0). Consider 

the related Γ -valued filtration on KM(K)/2. Let us define a Γ -valued filtration on the 
ideal ({−1}) that is compatible with the action of KM(K)/2 on ({−1}) but is not induced 
by the embedding ({−1}) ⊂ KM(K)/2.

Namely, choose any Γ -valued filtration F on the degree 1 component of the 
ideal ({−1}) and extend it to the degree 2 component in such a way that the 
grF KM(K)/2-module grF (c) be generated by its degree 1 component (cf. 1.6). Then 
the grF KM(K)/2-module grF (c) is isomorphic to the quotient module of the quadratic 
commutative monomial algebra grF KM(K)/2 by the ideal generated by all the xα ex-
cept x2 (resp., x1), so it remains to use the result of [9, proof of Theorem 8.1 from 
Chapter 4]. It is essential here that x2

2 = 0 (resp., x2
1 = 0) in grF KM(K)/2.

Part (2): recall that KM(k)/l can be naturally considered as a subalgebra of KM(K)/l. 
If c ∈ KM

1 (k)/l, consider the filtration F on KM(K)/l defined in the proof of part (2) of 
Theorem 1 and the induced filtration on the ideal cKM(K)/l. Then grF KM(K)/l is the 
supertensor product of KM(k)/l with the exterior algebra with one generator in degree 1, 
and the grF KM(K)/l-module grF cKM(K)/l is the supertensor product of grF cKM(k)/l
with the same exterior algebra. So it remains to apply [9, Corollary 1.2 of Chapter 3].

If c ∈ KM
1 (K)/l but c /∈ KM

1 (k)/l, one can assume that c = {π} in the notation of 2.2. 
In this case the ideal (c) ⊂ KM(K)/l is Koszul whenever the algebra KM(k)/l is Koszul. 
It suffices to consider the same filtration F on KM(K)/l and the induced filtration 
on the ideal ({π}). The grF KM(K)/l-module grF ({π}) is the supertensor product of 
the KM(k)/l-module KM(k)/l and the trivial one-dimensional module over the exterior 
algebra with one generator. �
4. Module Koszulity in symplectic case

Let l be a prime number, and K be an algebraic extension of Q or Fq(z) containing 
a primitive l-root of unity if l is odd, or containing a square root of −1 if l = 2. Let 
Λ(K, l) denote the exterior algebra generated by the Z/l-vector space K∗/K∗l, and JK
denote the kernel of the morphism of graded algebras Λ(K, l) −→ KM(K)/l.

Theorem. The ideal JK is a Koszul module over Λ(K, l) (in the grading shifted by 1). In 
other words, the Λ(K, l)-module KM

+ (K)/l is Koszul.

Proof. Passing to the inductive limit of finite extensions of Q or Fq(z) containing the 
needed root of unity, one reduces the problem to the case when K is such a finite 
extension. So let K be a finite extension of Q or Fq(z) containing a primitive l-root of 
unity if l is odd, or containing a square root of −1 if l = 2.

Apply Lemma 2.6 to the case of the symplectic vector space WS decomposed into 
the orthogonal direct sum of symplectic subspaces K∗

v/K
∗l
v , v ∈ S, and the Lagrangian 
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subspace KS/l ⊂ WS (see 2.5). Let Mv ⊂ K∗
v/K

∗l
v be the Lagrangian subspaces so 

obtained. The restriction of the form (−,−)S defines a nondegenerate pairing between 
KS/l and 

⊕
v∈S Mv, which allows to identify KS/l with the direct sum of the dual 

spaces 
⊕

v∈S M∗
v . So we have constructed a direct sum decomposition of KS/l indexed 

by v ∈ S; let {bi : i = 0, . . . , #S − 1} be a basis in KS/l whose elements belong to the 
direct summands of this decomposition. Let b∗i denote the dual basis in 

⊕
Mv; introduce 

the notation b∗i ∈ Mv(i). Notice that the image of bi in K∗
v/K

∗l
v belongs to Mv for all 

v �= v(i).
For any divisor D of K outside S there exists a unique element aD ∈ K∗/Kl

S whose 
divisor outside S is equal to D and whose image in WS belongs to 

⊕
Mv. In particular, 

for any valuation p of K outside S there exists a unique element ap ∈ K∗/Kl
S with 

this property, whose divisor outside S is equal to p. The pairing with the image of ap
in

⊕
Mv, as a linear function KS/l −→ μl, coincides with the Frobenius element of p in 

Gal(K[ l
√
KS ]/K) (see Lemma 2.5.3).

Choose a well-ordered basis of K∗/K∗l consisting of the elements bi and ap (in any 
order). Consider the related Γ -valued filtration F on KM(K)/l and pass to the associated 
quotient monomial algebra grF KM(K)/l. The graph T of nonzero quadratic monomials 
in the latter algebra contains no cycles, so the assertion of theorem follows from Propo-
sition 1.7(2). Indeed, it suffices to notice that one can assign a valuation to every basis 
element in this basis so that the product of any two basis elements can only have nonzero 
components (see 2.4) at the two valuations corresponding to the two basis vectors be-
ing multiplied. Thus for any elements x1, x2, . . . , xn in this basis the products x1x2, 
x2x3, . . . , xn−1xn, xnx1 cannot be linearly independent in KM

2 (K) (one also has to take 
into account the reciprocity law).

To obtain a more explicit PBW-basis, choose for each i = 1, . . . , #S−1 a valuation pi
of K outside S such that the Frobenius element of pi in Gal(K[ l

√
KS ]/K) is equal to the 

pairing with b∗0 + b∗i , while its Frobenius element in Gal(K[ l
√
ap1 , . . . , l

√
api−1 ]/K) is triv-

ial. Denote by q those valuations of K outside of S and {pi} whose Frobenius elements 
in Gal(K[ l

√
KS ]/K) are equal to the pairing with b∗0, while the Frobenius elements in 

Gal(K[ l
√
ap1 , . . . , l

√
ap#S−1 ]/K) are trivial. Denote by r the remaining valuations. No-

tice that for each valuation r there exists a valuation q whose Frobenius element in 
Gal(K[ l

√
ar ]) is nontrivial.

Choose the following well-ordered basis of K∗/K∗l

b0, ap1 , . . . , ap#S−1 , aq, b1, . . . , b#S−1, ar,

where the ordering between aq and between ar is arbitrary. Then the set of surviving 
quadratic monomials T will consist of all the monomials b0api

and b0aq, some of the 
monomials b0bi or api

bi (exactly one monomial of one of these forms for every nonar-
chimedean valuation v(i) �= v(0) in S), and some of the monomials b0ar, api

ar, or aqar
(exactly one monomial of one of these forms for every valuation r). �
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Remark. One may wish to extend the above result to the global fields not necessarily 
containing a square root of −1 when l = 2 in the way suggested by Theorem 3.1. There is 
the following obstacle, however. If one tries to argue as in the proof of Theorem 3.1, one 
has to find a well-ordered basis of K∗/K∗2 that defines a PBW-basis for both algebras 
Λ(K, 2) and KM(K)/2. But constructing a PBW-basis for Λ(K, 2) requires putting the 
element −1 near the bottom of the Γ1-valued filtration on K∗/K∗2, while constructing 
a PBW-basis for KM(K)/2 requires putting all elements of K∗/K∗2 that are negative at 
some real valuations near the top of that filtration (cf. the construction in Section 5).

5. Algebra Koszulity in general case

Let l be a prime number, and K be an algebraic extension of Q or Fq(z) containing 
a primitive l-root of unity.

Theorem. The graded algebra KM(K)/l is Koszul.

Proof. As above, one can assume that K is a finite extension of Q or Fq(z). The case 
when l is odd follows from the result of Section 4 and [11, Corollary 6.2(c)], so we will 
implicitly assume that l = 2 (though this is not necessary).

Choose a set of exceptional valuations S for the field K satisfying a slightly stronger 
condition than in 2.5: namely, let it be additionally required that the nonarchimedean 
valuations in S generate the extended class group of K (i.e., the class group defined 
taking into account the signs of elements of K∗ at the real valuations). Let K+

S ⊂ KS

and K+ ⊂ K∗ denote the subgroups of all elements that are positive at all the real 
valuations. Then one has K∗ = K+KS .

For each nonarchimedean valuation s ∈ S pick an element ws ∈ K∗
s /K

∗l
s orthogonal 

to the class of −1 in K∗
s /K

∗l
s with respect to the pairing {−,−}s, and consider ws as 

an element of WS . We need the pairings with the elements ws to define nonzero linear 
functions K+

S /Kl
S −→ μl. Enlarging, if it be necessary, the set S, one can always choose 

such elements ws.
Indeed, one only has to use the weak approximation theorem [6, Section II.6] in order 

to find a finite set of valuations S′ ⊃ S such that the pairings with the given elements ws

define nonzero linear functions K+
S′/Kl

S′ −→ μl for all s ∈ S. Now for any u ∈ S′ \ S

there is an element d ∈ K+
S′ with the logarithmic valuation u(d) not divisible by l, 

because nonarchimedean valuations in S generate the extended class group. Since u is 
a nonarchimedean valuation not lying over l, choosing wu to be the class of an element 
b ∈ K∗

u with u(b) = 0 and b /∈ K∗l
u guarantees {−1, wu}u = 0 and {wu, d}u �= 0, as 

desired.
Let p be a valuation of K outside S such that the Frobenius element of p in 

Gal(K[ l
√
KS ]/K) is trivial. Then by Lemma 2.5.3 there exists an element ap ∈ K∗ whose 

divisor outside S is equal to p and whose image in WS is zero. For each nonarchimedean 
valuation u ∈ S, pick a valuation qu outside S whose Frobenius in Gal(K[ l

√
KS ]/K)
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as a linear function KS −→ μl is equal to the pairing with wu, while the Frobenius 
in Gal(K[ l

√
ap ]/K) is nontrivial. All the valuations qu must be different. By the same 

lemma, there exists an element aqu ∈ K∗ whose divisor outside S is equal to qu and 
whose image in WS is equal to wu. By the definition, the elements ap and aqu belong 
to K+, and one has {ap, ap} = 0 in KM

2 (K)/l.
For each valuation r of the field K outside of S, p, and qu, choose an element ar ∈ K+

whose divisor outside of S is equal to r. Let us denote by r′ those valuations r whose 
Frobenius element in Gal(K[ l

√
ap ]/K) is nontrivial and by r′′ the remaining ones. For 

each real valuation v pick an element av ∈ KS that is negative at v and positive at all 
the other real valuations. Choose any basis kj in K+

S /Kl
S .

Consider the following well-ordered basis of K∗/K∗l

ap, aqu , kj , ar′ , ar′′ , av,

where the order within each group can be arbitrary. Consider the related Γ -valued fil-
tration F on KM(K)/l and the associated quotient algebra grF KM(K)/l. The set of 
surviving quadratic monomials T consists of all the monomials apaqu and apar′ , some 
monomials of the form aqukj (exactly one such monomial for every u), some monomials 
of the forms aquar′′ , kjar′′ , or ar′ar′′ (exactly one monomial of one of these forms for 
every r′′), and all the monomials a2

v.
To prove these assertions, introduce the notion of the support of an element α ∈

KM
2 (K)/l, defined as the set of all valuations y such that the image of α in KM

2 (Ky)/l
is nontrivial. The subspace of KM

2 (K)/l consisting of all the elements supported inside 
a set of valuations Y has the dimension equal to the number of noncomplex valuations 
in Y minus one (see 2.4).

Let us discuss all the quadratic monomials in our basis in the order of their increase. 
The product {ap, aqu} is nonzero in KM

2 (K)/l and supported in p and qu. Likewise, the 
product {ap, ar′} is nontrivial and supported in p and r′. Taken together, these products 
generate the whole subspace of all elements supported inside the set of valuations p, qu, 
and r′. Every element divisible by ap in KM

2 (K)/l is supported inside this set, hence 
the products {ap, av} are linear combinations of smaller monomials with respect to our 
ordering. The products {ap, kj} and {ap, ar′′} vanish in KM

2 (K)/l.
A product of the form {aqu1

, aqu2
}, where u1 and u2 belong to the set of valuations u, 

is supported inside the set of two valuations qu1 and qu2 , so it is a linear combination 
of smaller monomials. Indeed, this holds for u1 �= u2, since {wu1 , wu2}s = 0 for all 
s ∈ S, and one actually has {aqu , aqu} = 0 in KM

2 (K)/l for u1 = u = u2, because 
{wu, wu}u = {−1, wu}u = 0.

A product of the form {aqu , kj} either vanishes or is supported in u and qu, and there 
exists at least one nonvanishing product of such form for every u. Taken together with the 
monomials containing ap, this product generates the subspace of all elements supported 
inside the set of valuations in the above list together with the valuation u. The products 
{aqu , ar′} and {aqu , av} are contained in this subspace, so they are linear combinations 
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of smaller monomials. Taken together for all u, the products we have mentioned up to 
this point generate the subspace of all elements supported inside the set of valuations p, 
qu, r′, and all the nonarchimedean valuations from S. The products {kj1 , kj2}, {kj , ar′}, 
{kj , av}, {ar′1 , ar′2}, and {ar′ , av} are contained in this subspace, so they are also linear 
combinations of smaller monomials.

The product {aqu , ar′′} is supported inside the set of three valuations u, qu, and r′′, 
so one can easily see that at most one such product belongs to the set of surviving 
monomials T , and this can only happen if the support of this product contains r′′. On 
the other hand, recall that it is only the Γ1-valued filtration on KM

1 (K)/l rather than 
the basis itself that determines the set T . The filtration does not change if we assume 
that for those valuations r′ whose Frobenius element is trivial in Gal(K[ l

√
KS ]/K) the 

element ar′ is chosen in such a way that its image in WS is trivial.
By Chebotarev’s density theorem applied to the field extension K[ l

√
KS , ap, ar′′ ]/K, 

for every valuation r′′ there exists a valuation r′ with the above property such that the 
Frobenius element of r′ in Gal(K[ l

√
ar′′ ]/K) is nontrivial. Then the product {ar′ , ar′′}

in KM
2 (K)/l is supported in r′ and r′′, and nonzero. For every r′′, the set T contains the 

minimal of the products {aqu , ar′′}, {kj , ar′′}, and {ar′ , ar′′} whose support contains r′′; 
the above argument shows that such a monomial exists.

Taken together, the products listed up to this point generated the whole subspace 
of all elements in KM

2 (K)/l supported outside of the real valuations v. The products 
{ar′′1 , ar′′2 }, {ar′′ , av}, and {av1 , av2} for v1 �= v2 belong to this subspace, so they are 
linear combinations of smaller monomials. The support of the product {av, av} contains v
and does not contain any other real valuations, so all the monomials of this type belong 
to T .

The set/graph T contains no triangles and no monomials divisible by av except a2
v. 

The elements anv are obviously linearly independent in KM
n (K)/l for all n � 1, so one 

readily checks that the algebra grF KM(K)/l is quadratic. Consequently the algebra 
KM(K)/l is Koszul (see 1.3 and 1.6).

Alternatively, one can write after the elements aqu in the above well-ordering the 
elements aq′ with zero images in WS corresponding to the valuations q′ outside of S
and p whose Frobenius elements in Gal(K[ l

√
KS ]/K) are trivial and in Gal(K[ l

√
ap ]/K)

are nontrivial. In this approach, one does not introduce the distinction between r′ and r′′, 
but instead excludes the valuations q′ from the list of valuations r. Then the set of 
surviving quadratic monomials T will consist of all the monomials apaqu and apaq′ , some 
monomials of the form aqukj (exactly one such monomial for every u), some monomials of 
the forms apar, aquar, or aq′ar (exactly one monomial of one of these forms for every r), 
and all the monomials a2

v. �
6. Koszulity of annihilator ideals

Let l be a prime number, K be an algebraic extension of Q or Fq(z) containing a 
primitive l-root of unity, and c ∈ K∗/K∗l be an element such that {c, c} = 0 in KM

2 (K)/l. 
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In particular, when l is odd, or l = 2 and K contains a square root of −1, the element c
can be arbitrary.

Theorem. The ideal (c) = cKM(K)/l ⊂ KM(K)/l is a Koszul module over the Koszul 
algebra KM(K)/l.

Proof. The argument below is a variation of the proof in Section 5. As above, we can 
assume that K is finite over Q or Fq(z); we can also assume that c �= 0 in K∗/K∗l.

Choose a set of exceptional valuations S for the field K satisfying the conditions of 
Section 5 and containing the divisor of the element c. Choose an element ap ∈ K∗ whose 
divisor outside S is equal to a certain valuation p and whose image in WS is zero. For 
each nonarchimedean valuation u ∈ S such that the image of c in K∗

u/K
∗l
u is zero, choose 

an element wu ∈ K∗
u/K

∗l
u such that {wu, −1}u = 0 and the pairing with wu is a nonzero 

linear function K+
S /Kl

S −→ μl. Pick an element aqu ∈ K∗ whose divisor outside S is 
equal to a certain valuation qu and whose image in WS is equal to wu. We also need the 
Frobenius element of qu to be nontrivial in Gal(K[ l

√
ap ]/K) and all the valuations qu to 

be different. Clearly, one has ap and aqu ∈ K+ and {c, ap} = {c, aqu} = {ap, ap} = 0 in 
KM(K)/l.

For each valuation r outside of S, p and qu, choose an element ar ∈ K+ whose divisor 
outside of S is equal to r. Denote by r′ those valuations r whose Frobenius element in 
Gal(K[ l

√
ap ]/K) is nontrivial and by r′′ the remaining ones. For each real valuation v

pick an element av ∈ KS that is negative at v and positive at all the other real valuations. 
Notice that c ∈ K+

S /Kl
S ; let elements kj ∈ K+

S complement the element c to a basis of 
K+

S /Kl
S .

Consider the following well-ordered basis of K∗/K∗l

c, ap, aqu , kj , ar′ , ar′′ , av,

where the ordering within each group can be arbitrary. The related set T of surviv-
ing quadratic monomials consists of all the monomials apaqu , some monomials of the 
forms ckj and car′ , some monomials of the form aqukj (exactly one such monomial for 
every valuation u), some monomials apar′ , some monomials of the forms car′′ , aquar′′ , 
kjar′′ , or ar′ar′′ (exactly one monomial of one of these forms for every r′′), and all the 
monomials a2

v.
Let us prove these assertions. Denote by Y the set of all valuations y of K for which 

c ∈ K∗
y \K∗l

y . First we will have to show that the products {c, kj} and {c, ar′} generate 
the subgroup of all elements in KM

2 (K)/l supported inside the set of those valuations 
y ∈ S or y = r′ that belong to Y . Specifically, for every element w ∈ WS such that 
(c, w)S = 0 let us consider a valuation r′ such that the image of ar′ in WS belongs to 
w + KS/l. Then {c, ar′}r′ = 0, hence r′ /∈ Y , and the support of {c, ar′} is contained 
in S.

The products {c, ar′} for such valuations r′ generate the subgroup of all elements in 
KM

2 (K)/l supported inside the set of valuations S ∩ Y . Indeed, the subspace of vectors 
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of the form ({cs, ws}s)s∈S in 
⊕

s∈S μl, where w = (ws)s∈S runs over all the elements 
in WS for which 

∑
s∈S{cs, ws}s = 0, consists precisely of those vectors that belong to 

the kernel of the summation map 
⊕

s∈S μl −→ μl and are supported inside the set of all 
places s ∈ S at which the component cs ∈ K∗

s /K
∗l
v is nonzero. On the other hand, for a 

valuation r′ belonging to Y the support of the product {c, ar′} is contained in S ∪ {r′}
and contains r′.

The product {c, ar′′} is supported inside S and r′′, so it belongs to the set of surviving 
monomials T if and only if its support contains r′′, that is r′′ ∈ Y . The products {c, kj}, 
{c, ar′}, and {c, ar′′} generate the subgroup of all elements supported inside the set Y , so 
the products {c, av} are linear combinations of smaller monomials in the ordering. The 
products {ap, kj} and {ap, ar′′} vanish in KM

2 (K)/l. The product {ap, aqu} is nonzero 
and supported in the two valuations p and qu, which do not belong to Y ; hence this 
monomial belongs to T . Likewise, the product {ap, ar′} is nontrivial and supported in p
and r′, hence it belongs to T whenever r′ /∈ Y ; of all the products {ap, ar′} with r′ ∈ Y , 
it is only the smallest one that belongs to T .

Taken together, the products mentioned up to this point generate the subgroup of 
KM

2 (K)/l supported inside the set of valuations p, qu, r′, and all valuations from Y . The 
rest of the argument is very similar to the one in Section 5, the only difference being 
that all the valuations from Y have been already “covered”.

The set/graph T contains no triangles and no monomials divisible by av except a2
v, 

so one readily checks that the algebra grF KM(K)/l is quadratic. By the result of 1.8, 
the ideal (c) ⊂ KM(K)/l is a Koszul module over KM(K)/l. �
7. Fields without the root of unity

Let K be an algebraic extension of Q or Fq(z) and l be a prime number such that either 
l = charK or K contains no primitive l-root of unity. Let Λ(K, l) be the exterior algebra 
generated by Λ1(K, l) = K∗/K∗l and JK ⊂ Λ(K, l) be the kernel of the map of graded 
algebras Λ(K, l) −→ KM(K)/l. Let c ∈ KM

1 (K)/l be an element and (c) ⊂ KM(K)/l be 
the ideal generated by c.

Theorem. The ideal JK is a Koszul Λ(K, l)-module (in the grading shifted by 1). The 
ideal (c) is a Koszul module over a Koszul algebra KM(K)/l.

Proof. The case l = charK is trivial (see 2.0 and the beginning of the proof of Theo-
rem 3.1). It also suffices to consider the case when K is finite over Q or Fq(z).

Let S′ be an exceptional set of valuations of K satisfying the conditions of 2.7. To 
prove the first assertion of theorem, for each nonarchimedean valuation u ∈ S′ such that 
Ku contains a primitive l-root of unity choose a pair of elements w′

u, w
′′
u ∈ K∗

u/K
∗l
u such 

that {w′
u, w

′′
u}u �= 0 in KM

2 (Ku)/l. Using Lemma 2.7, choose valuations p′u and p′′u of K
such that all of them are different, do not belong to S′, the completions Kp′

u
and Kp′′

u

do not contain a primitive l-root of unity, and there exist elements ap′ and ap′′ ∈ K∗

u u



150 L. Positselski / Journal of Number Theory 145 (2014) 126–152
whose images in W ′
S′ are equal to w′

u and w′′
u, and whose divisors outside S′ are equal 

to p′u and p′′u.
Choose a numbering by nonnegative integers for all the valuations r of K outside S′

such that Kr contains a primitive l-root of unity, and order them according to this 
numbering. By induction on this order, choose for each such valuation r a valuation 
q = q(r) outside of S′ and all p′u, p′′u such that Kq does not contain a primitive l-root of 
unity, the valuations q(r) are different for different r, and there exists an element aq ∈ K∗

whose divisor outside S′ is equal to q, whose image in W ′
S′ and in Kr′/K

∗l
r′ is zero for all 

r′ < r, and whose image in Kr/K
∗l
r is nontrivial. The existence of such a valuation q(r)

follows from Lemma 2.7 applied to the set S′ ∪ {r′ | r′ < r} ∪ {r} in place of S′.
Finally, for all the valuations v of K outside of the sets S′, {p′u}, {p′′u}, and {q(r)}

choose elements av ∈ K∗ whose divisors outside S′ are equal to v. Let kj be any basis 
of KS′/Kl

S′ . Consider the following well-ordered basis of K∗/K∗l

aq(r), ap′
u
, ap′′

s
, kj , av,

where the ordering of aq(r) is according to the ordering of r, while the ordering within 
each of the other groups is arbitrary. The related set T of surviving quadratic monomials 
consists of the monomials aq(r)ar and ap′

u
ap′′

u
. Not only this graph does not contain any 

cycles, but there is even no vertex adjacent to more than one edge. By Proposition 1.7(2), 
the ideal JK is Koszul. It follows that the graded algebra KM(K)/l is Koszul, too.

Now let us prove the second assertion. We can assume that the element c is nonzero 
in K∗/K∗l. Let S′ be an exceptional set of valuations satisfying the conditions of 2.7
and containing the divisor of c. For each nonarchimedean valuation u′ ∈ S′ such that 
Ku′ contains a primitive l-root of unity and the image of c in K∗

u′/K∗l
u′ is nonzero, 

choose an element wu′ ∈ K∗
u′/K∗l

u′ such that {wu′ , c}u′ �= 0. For each of the remaining 
nonarchimedean valuations u′′ ∈ S′ such that Ku′′ contains a primitive l-root of unity, 
choose a pair of elements w′

u′′ , w′′
u′′ ∈ Ku′′ such that {w′

u′′ , w′′
u′′}u′′ �= 0.

Choose valuations pu′ , p′u′′ , and p′′u′′ outside of S′ such that all of them are different, the 
corresponding completions do not contain a primitive l-root of unity, and there exist ele-
ments apu′ , ap′

u′′ , and ap′′
u′′ ∈ K∗ whose divisors outside S′ are equal to these valuations 

and whose images in W ′
S′ are equal to wu′ , w′

u′′ , and w′′
u′′ . For each valuation r outside S′

such that Kr contains a primitive l-root of unity, choose a valuation q(r) outside of S′, 
pu′ , p′u′′ , and p′′u′′ such that the valuations q(r) are different for different r, the completion 
Kq(r) does not contain a primitive l-root of unity, and there exists an element aq(r) ∈ K∗

whose divisor outside S′ is equal to q(r) and whose image in K∗
r /K

∗l
r is nonzero.

Finally, for all the valuations v of K outside of the sets S′, {pu′}, {p′u′′}, {p′′u′′}, 
and {q(r)} choose elements av ∈ K∗ whose divisors outside S′ are equal to v. Let 
elements kj ∈ KS′/Kl

S′ complement c to a basis of KS′/Kl
S′ . Consider the following 

well-ordered basis of K∗/K∗l

c, ap ′ , ap′ , ap′′ , aq(r), kj , av,
u u′′ u′′
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where the ordering within each group can be arbitrary. Then the related set T of sur-
viving quadratic monomials consists of all the monomials capu′ and ap′

u′′ap′′
u′′ and some 

monomials of the forms cav, apu′av, ap′
u′′av, ap′′

u′′av, or aq(r)av (exactly one monomial of 
one of these forms for each valuation v outside S′ such that Kv contains a primitive l-root 
of unity, and no such monomial for all other valuations v). The graph T contains no tri-
angles (and not even any cycles), so the desired assertion follows from Proposition 1.7(1) 
and the result of 1.8. �
Acknowledgments

The author is grateful to Vladimir Voevodsky for posing the problem. This project 
would never have a chance to succeed without the invaluable participation of Alexander
Vishik in its early stages. The work was largely done when I was a graduate student at 
Harvard University in the Fall of 1995, and I want to thank Harvard for its hospitality. 
The author was partially supported by a 2008–2010 grant from P. Deligne 2004 Balzan 
prize and RFBR grants 10-01-93113-NTsNIL_a, 11-01-00393-a, 12-01-92697-IND_a 
while finalizing the arguments and preparing the manuscript. I was also visiting 
Weizmann Institute of Science during the later part of this time in 2014. Finally, I want 
to thank the referee for reading the manuscript carefully and making a number of helpful 
suggestions.

References

[1] J. Backelin, R. Fröberg, Koszul algebras, Veronese subrings and rings with linear resolutions, Rev. 
Roumaine Math. Pures Appl. 30 (2) (1985) 85–97.

[2] H. Bass, J. Tate, The Milnor ring of a global field, in: K-Theory II, in: Lecture Notes in Math., 
vol. 342, 1973, pp. 349–446.

[3] A. Beilinson, V. Ginzburg, W. Soergel, Koszul duality patterns in representation theory, J. Amer. 
Math. Soc. 9 (2) (1996) 473–527.

[4] G. Bergman, The diamond lemma for ring theory, Adv. Math. 29 (2) (1978) 178–218.
[5] B. Buchberger, Gröbner bases: an algorithmic method in polynomial ideal theory, in: N.K. Bose 

(Ed.), Multidimensional Systems Theory, Reidel, Dordrecht, 1985, pp. 184–232.
[6] J.W.S. Cassels, A. Fröhlich (Eds.), Algebraic Number Theory, Proceedings of an Instructional Con-

ference Organized by the London Mathematical Society (a NATO Advanced Study Institute) with 
the Support of the International Mathematical Union, Academic Press, 1967.

[7] R. Fröberg, Determination of a class of Poincaré series, Math. Scand. 37 (1) (1975) 29–39.
[8] A.S. Merkurjev, A.A. Suslin, K-cohomology of Severi–Brauer varieties and the norm residue homo-

morphism, Math. USSR Izv. 21 (2) (1983) 307–340.
[9] A. Polishchuk, L. Positselski, Quadratic Algebras, Univ. Lecture Ser., vol. 37, Amer. Math. Soc., 

Providence, RI, 2005.
[10] L. Positselski, Mixed Tate motives with finite coefficients and conjectures about the Galois groups 

of fields, abstracts of talks at the conference “Algebraische K-Theorie”, Tagungsbericht 39/1999, 
September–October 1999, Oberwolfach, Germany, pp. 8–9, available from http://www.mfo.de/
document/9939/Report_39_99.ps or http://www.math.uiuc.edu/K-theory/0375/.

[11] L. Positselski, Koszul property and Bogomolov’s conjecture, Int. Math. Res. Not. IMRN 2005 (31) 
(2005) 1901–1936, arXiv:1405.0965 [math.KT].

[12] L. Positselski, Galois cohomology of certain field extensions and the divisible case of Milnor–Kato 
conjecture, K-Theory 36 (1–2) (2005) 33–50, arXiv:math.KT/0209037.

[13] L. Positselski, Mixed Artin–Tate motives with finite coefficients, Mosc. Math. J. 11 (2) (2011) 
317–402, arXiv:1006.4343 [math.KT].

http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4246s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4246s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4254s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4254s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4247536F65s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4247536F65s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib426572s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib42756368s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib42756368s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4346s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4346s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4346s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4672s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4D53s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib4D53s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib5050s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib5050s1
http://www.mfo.de/document/9939/Report_39_99.ps
http://www.mfo.de/document/9939/Report_39_99.ps
http://www.math.uiuc.edu/K-theory/0375/
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib50626F676F6Ds1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib50626F676F6Ds1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib506469766973s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib506469766973s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib50617274696Es1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib50617274696Es1


152 L. Positselski / Journal of Number Theory 145 (2014) 126–152
[14] L. Positselski, A. Vishik, Koszul duality and Galois cohomology, Math. Res. Lett. 2 (6) (1995) 
771–781, arXiv:alg-geom/9507010.

[15] S. Priddy, Koszul resolutions, Trans. Amer. Math. Soc. 152 (1) (1970) 39–60.
[16] J.-P. Serre, Cohomologie Galoisienne, Lecture Notes in Math., vol. 5, Springer, 1964–1994.
[17] J. Tate, Relations between K2 and Galois cohomology, Invent. Math. 36 (1) (1976) 257–274.
[18] V. Voevodsky, On motivic cohomology with Z/l-coefficients, Ann. of Math. 174 (1) (2011) 401–438, 

arXiv:0805.4430 [math.AG].

http://refhub.elsevier.com/S0022-314X(14)00198-X/bib5056s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib5056s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib5072s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib536572s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib54617465s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib566F6576s1
http://refhub.elsevier.com/S0022-314X(14)00198-X/bib566F6576s1

	Galois cohomology of a number ﬁeld is Koszul
	0 Introduction
	1 Preliminaries on PBW-bases
	1.1 Well-ordered sets and ﬁltrations
	1.2 Graded ordered semigroups
	1.3 Filtered algebras and modules
	1.4 PBW-theorem
	1.5 Inverse lexicographical ordering
	1.6 Koszulity of algebras
	1.7 Koszulity of ideals of relations
	1.8 Koszulity of annihilator ideals

	2 Preliminaries on number ﬁelds
	2.0 Equal characteristics
	2.1 Finite and archimedean ﬁelds
	2.2 Discrete valuation ﬁelds
	2.3 Nonarchimedean local ﬁelds
	2.4 Global ﬁelds with root of unity
	2.5 Exceptional set of valuations
	2.6 Symplectic case
	2.7 Global ﬁelds without root of unity

	3 Koszulity for local ﬁelds
	4 Module Koszulity in symplectic case
	5 Algebra Koszulity in general case
	6 Koszulity of annihilator ideals
	7 Fields without the root of unity
	Acknowledgments
	References


