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1. Introduction

An important and very active topic of number theory concerns the representation 
of numbers by the positive ternary quadratic forms ax2 + by2 + cz2, 1 ≤ a ≤ b ≤ c, 
also denoted by (a, b, c). From a historical perspective, the representations may include 
zeros, and permutations as well as sign changes of representations are viewed as different. 
A cornerstone of the classical theory of these forms is the theorem of Legendre–Gauss, 
which states that sums of three squares represent exactly all positive integers not of 
the form 4k(8m + 7). Dirichlet [12] gave an elegant proof of this theorem (e.g. Dickson 
[9], pp. 263–264) and also proved that the form (1, 1, 3) represents all positive integers 
not divisible by 3. Dickson [10] showed that the forms (1, 1, 2), (1, 2, 3) and (1, 2, 4)
represent all odd positive integers. Later on, Kaplansky [23] proved that there are no 
other such ternary forms (see also Panaitopol [27]). Williams [38] determines the 28 forms 
(a, b, c) that represent all positive integers n ≡ 4 (mod 8) under the assumption of the 
Generalized Riemann Hypothesis. Williams [39] determines the 9 forms that represent 
all positive integers n ≡ 2 (mod 4).

Although the form (1, 1, 2) represents all odd positive integers, some of them cannot 
be represented with three non-zero squares. Examples are the primes 5, 11, 17, 29, 41, 
which belong to the arithmetic progressions of primes p ≡ 1, 3, 5 (mod 8). On the other 
hand, all primes in the arithmetic progression p ≡ 7 (mod 8) can be represented by 
this form using non-zero squares. Being interested in such zero-free representations of 
primes by positive ternary quadratic forms of type (1, b, c), it is useful to introduce some 
terminology. An arithmetic progression of primes with initial term r and modulus m is 
a set of primes satisfying the congruence p ≡ r (mod m), i.e., such that p = km + r

for some k ≥ 0. The whole set of such primes is denoted by P (r, m). For a fixed form 
(1, b, c) we assume that a prime p satisfies p ≥ 1 + b + c, a necessary condition for 
a zero-free representation of primes. When not mentioned explicitly, this condition is 
tacitly assumed.

Definitions 1.1. A set P (r, m) is universal zero-free for the ternary quadratic form (1, b, c) 
if every prime p ∈ P (r, m), p ≥ 1 + b + c, is of the form p = x2 + by2 + cz2, xyz �= 0. 
A form (1, b, c) is strictly universal zero-free if all primes p, with the exception of finitely 
many of them, are of the form p = x2 + by2 + cz2, xyz �= 0 (independently of arithmetic 
progressions). If a form (1, b, c) is not strictly universal zero-free there is some arithmetic 
progression of primes P (r, m) such that infinitely many p ∈ P (r, m) are not of the form 
p = x2 + by2 + cz2, xyz �= 0.

For the above form (1, 1, 2) the set P (7, 8) is universal zero-free, but the sets P (r, 8), 
r ∈ {1, 3, 5}, are not universal zero-free, the exceptional primes being 17, 41 for P (1, 8), 
11 for P (3, 8), and 5, 29 for P (5, 8), as shown in the later Table 3.1. Moreover, this 
form is strictly universal zero-free. On the other hand, for the simplest form (1, 1, 1), i.e., 
a sum of three squares, the sets P (r, 8), r ∈ {1, 3} are universal zero-free, but P (5, 8) is 
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not, the exceptional primes being 5, 13, 37, as follows from Table 3.1. Furthermore, the 
form (1, 1, 1) is not strictly universal zero-free because none of the primes p ∈ P (7, 8) are 
represented by sums of three squares (theorem of Legendre–Gauss). These two examples 
suggest that for a more precise and complete classification of primes represented by a 
form (1, b, c) some additional notions are required.

Definitions 1.2. An arithmetic progression of primes P (r, m) is called an infinite excep-
tional set for the form (1, b, c) if all primes p ∈ P (r, m) cannot be represented by this 
form. A finite set of primes in P (r, m) is called a finite exceptional set for the form 
(1, b, c), denoted by F (r, m), if the finitely many primes p ∈ F (r, m), are the only primes 
in P (r, m), p ≥ 1 + b + c, which are not of the form p = x2 + by2 + cz2, xyz �= 0.

The Definitions 1.1 and 1.2 allow for a complete classification of primes with respect 
to a zero-free representation by a form (1, b, c) (see Theorem 3.1/Table 3.1). If a form is 
strictly universal zero-free, then there are no infinite exceptional sets but there may be 
some finite exceptional sets. By the mentioned theorems of Dirichlet [12], Dickson [10] and 
Kaplansky [23], it is clear that the forms (1, 1, 2), (1, 1, 3), (1, 2, 3) and (1, 2, 4) are the only 
possible strictly universal zero-free ternary quadratic forms. This unified result can be 
viewed as a zero-free extension of these classical theorems when restricted to odd primes.

The finite exceptional sets for these forms are given as follows (see the Table 3.1):

(1, 1, 2): F (1, 8) = {17, 41}, F (3, 8) = {11}, F (5, 8) = {5, 29},
(1, 2, 4): F (1, 8) = {17, 41}, F (3, 8) = {11}, F (5, 8) = {29},
(1, 1, 3): F (7, 24) = {7, 31}, F (19, 24) = {19},
(1, 2, 3): F (1, 24) = {73}, F (11, 24) = {11, 83}, F (19, 24) = {19, 43},

F (r, 24) = {r}, r ∈ {7, 13, 17}.

All other forms of type (1, b, c) are not strictly universal zero-free. For each of them, 
there is at least one infinite exceptional set P (r, m). Moreover, the remaining primes in 
arithmetic progressions, which are not infinite exceptional sets, fall into distinct universal 
zero-free and/or finite exceptional sets. Some examples of forms, taken from Table 3.1, 
illustrate this fact:

(1, 1, 1): P (7, 8) is the infinite exceptional set,
P (1, 8) and P (3, 8) are the universal zero-free sets,
F (5, 8) = {5, 13, 37} is the finite exceptional set,

(1, 1, 8): P (3, 8) and P (7, 8) are the infinite exceptional sets,
F (1, 8) = {17, 41} and F (5, 8) = {29} are the finite exceptional 
sets, there is no universal zero-free set,

(1, 2, 2): P (7, 8) is the infinite exceptional set,
P (r, 8) = {r}, r ∈ {1, 3, 5}, are the universal zero-free sets, there 
is no finite exceptional set.

A brief summary of the content follows.
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The preliminary Section 2 reviews essential material on counting functions of ternary 
quadratic forms required in the subsequent analysis. If one denotes by Rd

(1,b,c)(n) the 
number of distinct zero-free representations of a given number n by a positive ternary 
quadratic form (1, b, c), then Theorem 2.1 recalls the general expressions for its evalua-
tion. Specialization to the case n = p of prime numbers follows. The considered fifteen 
pairs of values 1 ≤ b ≤ c have all the property that the corresponding counting formulas 
Rd

(1,b,c)(p) depend on the number h(D) of classes of binary quadratic forms with negative 
fundamental discriminant D associated to primes in arithmetic progressions. Of first im-
portance is the theorem of Gauss, which enables to express Rd

3(p) = Rd
(1,1,1)(p) in terms 

of the class numbers h(−p) and h(−4p). Similarly, the counting functions Rd
(1,b,c)(p)

of the Bell forms (1, b, c) with b, c ∈ {1, 2, 4, 8}, and the generalized Bell forms with 
(b, c) ∈ {(2, 16), (8, 16)}, are functions of h(−p), h(−4p) and h(−8p) (Theorem of Bell [3], 
Hürlimann [20], Theorems 2.1 and 3.1). Presumably, the counting function Rd

(1,b,c)(p) of 
other forms will share a similar property. For example, the form (1, 1, 3) can be expressed 
in terms of h(−3p) and h(−12p) in virtue of the Conjecture 18 of Sun [32], which has 
been proved by Guo et al. [17]. Corollary 2.1 lists the class number conditions required 
to solve the equation Rd

(1,b,c)(p) = m ≥ 0 for all the considered fifteen forms (1, b, c). 
Then, Section 3 presents the detailed analysis of the universal zero-free property (Defi-
nitions 1.1) and a description of the infinite and finite exceptional sets (Definitions 1.2) 
for the fifteen ternary quadratic forms (1, b, c). Section 4 proposes a classification of the 
zero-free prime representations by ternary quadratic forms in essentially m ways and 
illustrate it for sums of three squares.

2. Zero-free representations of primes by some ternary quadratic forms

In classical arithmetic, given a quadratic form Q(x1, x2, ..., xk), one is interested in rep-
resenting a number n by this form, i.e., in integer solutions of the Diophantine equation 
Q(x1, x2, ..., xk) = n. The number of such representations, counting zeros, permutations 
and sign changes, is denoted by rQ(n). This, and the total number of primitive solu-
tions only, denoted by RQ(n), are related by the formula rQ(n) =

∑
d2|n RQ( n

d2 ), which 
can be inverted using Möbius inversion, if necessary (e.g. Cooper and Hirschhorn [7], 
Eq. (1.3)). In the important special case of sums of k ≥ 2 squares with Q(x1, x2, ..., xk) =
x2

1 + x2
2 + · · · + x2

k, the standard notations rk(n) and Rk(n) are of common use. In gen-
eral, one is also interested in the number Rd

Q(n) of distinct primitive representations 
of n by the quadratic form Q(x1, x2, ..., xk) without zeros such that 

∏k
j=1 xj �= 0. In case 

Q(x1, x2, ..., xk) = x2
1 + x2

2 + · · · + x2
k the notation Rd

k(n) is used.
Clearly, the number Rd

Q(n) depends upon RQ(n), which is called principal component
of Rd

Q(n). For combinatorial reasons, a formula for Rd
Q(n) will also depend upon other 

auxiliary components Rd
Q′(n) for various other quadratic forms Q′ or degree less than k. 

For example, the number of primitive quadruples Rd
3(t2) depends besides the principal 

ternary component R3(t2) on the auxiliary binary components Rd
Q1

(t2) and Rd
Q2

(t2)
with Q1(x1, x2) = x2

1 + x2
2 and Q2(x1, x2) = x2

1 + 2x2
2 respectively (e.g. Hürlimann [18]). 
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In the present work, we study the number Rd
Q(p), p and odd prime number, for some 

ternary diagonal quadratic forms Q(x, y, z) = x2 + by2 + cz2 with 1 ≤ b ≤ c. Instead 
of rQ(n), RQ(n) and Rd

Q(n) we use the notations r(1,b,c)(n), R(1,b,c)(n) and Rd
(1,b,c)(n). 

In the process of finding formulas for Rd
(1,b,c)(n), one is led to consider also the number 

of distinct primitive solutions of Q(x1, x2, ..., xk) = n with 
∏k

j=1 xj �= 0 and two-by-two 
different entries xi �= xj , 1 ≤ i < j ≤ k, a counting function denoted by DQ(n). 
In particular, for the binary quadratic forms Q(x, y; a, b) = ax2+by2 we use the notation 
DQ(n) = D(a,b)(n). Moreover, the notational convention D2(n) = D(1,1)(n) is made. 
General expressions for the evaluation of Rd

(1,b,c)(n) are summarized in the following 
basic result.

Theorem 2.1. The number of distinct zero-free primitive representations of a number 
n ≥ 1 + b + c by the forms x2 + by2 + cz2, 1 ≤ b ≤ c, satisfies the following parametric 
formulas:

48Rd
3(n) = R3(n) + 24D(1,2)(n) − 24D2(n), (b, c) = (1, 1), (2.1)

16Rd
(1,1,2)(n) = R(1,1,2)(n) + 16D(2,2)(n) − 8D2(n) − 8D(1,2)(n),

(b, c) = (1, 2), (2.2)

16Rd
(1,1,c)(n) = R(1,1,c)(n) + 8D(2,c)(n) − 8D2(n) − 8D(1,c)(n), 1 = b, 2 < c, (2.3)

16Rd
(1,b,b)(n) = R(1,b,b)(n) + 8D(1,2b)(n) + 16D(b,1+b)(n) − 8D(1,b)(n) − 8D(b,b)(n),

1 < b = c, (2.4)

8Rd
(1,b,c)(n) = R(1,b,c)(n) − 4D(1,b)(n) − 4D(1,c)(n) − 4D(b,c)(n), 1 < b < c. (2.5)

Proof. In the present form (2.1) is found in Hürlimann [21], formula (5). Some other 
formulas have been shown for the special case n = t2 in Hürlimann [19]. In its full 
generality, Theorem 2.1 is shown in Hürlimann [22], Section 2. �

According to this result, the exact evaluation of any specific Rd
(1,b,c)(n) requires explicit 

expressions for the right hand side counting functions in (2.1)–(2.5).
From now on, we specialize to the case n = p of prime numbers. The considered 

values of 1 ≤ b ≤ c have all the property that the corresponding counting formulas 
Rd

(1,b,c)(p) depend on the number h(D) of classes of binary quadratic forms with neg-
ative fundamental discriminant D associated to primes in arithmetic progressions. Of 
first importance is the theorem of Gauss [14] (cf. Dickson [9], p. 262, Grosswald [16], 
Section 4.8, Theorem 2′, Rehm [29] for a modern proof, Bateman and Grosswald [2], 
Lemma 3), which states that for a square-free number n one has

R3(n) =

⎧⎪⎨
⎪⎩

12h(−4n), n > 1, n ≡ 1, 2, 5, 6 mod 8,
24h(−n), n > 3, n ≡ 3 mod 8,
0, n ≡ 7 mod 8.

(2.6)
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This result is very useful because for the Bell forms (1, b, c) with b, c ∈ {1, 2, 4, 8}, and 
the generalized Bell forms with (b, c) ∈ {(2, 16), (8, 16)} the counting function R(1,b,c)(n)
depends only upon R3(n) (Bell [3] and Hürlimann [20], Theorems 2.1 and 3.1). Without 
further mention, frequent use will also be made of the binary quadratic formulas

D2(p) = 1
2

(
1 +

(
−1
p

))
, D(1,2)(p) = 1

2

(
1 +

(
−2
p

))
, D(2,2)(p) = 0, (2.7)

where ( ·
p ) denotes the symbol of Legendre. The first formula is found in Cooper and 

Hirschhorn [7], Eq. (1.6), the second one follows from Cox [8], Lemma 3.25, p. 55, and 
the third is trivial because p is an odd prime. The basic building block of the present 
study is the following result.

Theorem 2.2. Let p ≥ 1 + b + c be an odd prime. Table 2.1 determines the number of 
distinct solutions of the Diophantine equation p = x2 + by2 + cz2, xyz �= 0, for the listed 
set of fifteen ternary quadratic forms (1, b, c).

The proof makes use of some auxiliary known congruence conditions about the rep-
resentation of primes by binary quadratic forms. In particular, the following result will 
be repeatedly used.

Lemma 2.1. For the given values of (a, b), the following necessary and sufficient condi-
tions for the unique representation of primes p by the binary quadratic form ax2 + by2

hold:

(C1) (a, b) = (1, 8) : p ≡ 1 (mod 8)

(C2) (a, b) = (2, 3) : p ≡ 5, 11 (mod 24)

(C3) (a, b) = (4, 5) : p ≡ 1, 9 (mod 20)

(C4) (a, b) = (1, 16) : p ≡ 1 (mod 8)

(C5) (a, b) = (1, 5) : p ≡ 1, 9 (mod 20)

(C6) (a, b) = (2, 5) : p ≡ 1, 9, 21, 29 (mod 40)

Proof. All the congruence conditions follow from Sun and Williams [33], Lemma 9.2 and 
Table 9.1, pp. 159–160.

Proof of Theorem 2.2. To be represented by a form (1, b, c) without zeros, one must 
have p ≥ 1 + b + c. The formulas for the form (1, 1, 1), i.e., for sums of three squares, 
follow easily by inserting (2.6)–(2.7) into (2.1) and taking into account the values of the 
Legendre symbols (note that h(−p) = 1 for p = 3). For the next eleven forms, the value 
of R(1,b,c)(p) = r(1,b,c)(p) is taken from Hürlimann [21], Theorems 2.1 and 3.1. Based on 
Theorem 2.1 above the formulas are shown as follows.
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Table 2.1
Class number formulas for the counting function Rd

(1,b,c)(p).

Form Arithmetic 
progression

Counting 
function

Form Arithmetic 
progression

Counting 
function

(1, 1, 1) p ≡ 1 (mod 8)
p ≡ 5 (mod 8)
p ≡ 3 (mod 8)
p ≡ 7 (mod 8)

1
4h(−4p)
1
4 [h(−4p) − 2]
1
2 [h(−p) + 1]
0

(1, 4, 4) p ≡ 1, 9 (mod 40)
p ≡ 17, 25, 33 (mod 40)
p ≡ 21, 29 (mod 40)
p ≡ 3 (mod 4)

1
4 [h(−4p) + 4]
1
4h(−4p)
1
4 [h(−4p) + 2]
0

(1, 1, 2) & 
(1, 2, 4)

p ≡ 1 (mod 8)
p ≡ 3, 5 (mod 8)
p ≡ 7 (mod 8)

1
4 [h(−8p) − 4]
1
4 [h(−8p) − 2]
1
4h(−8p)

(1, 2, 16) p ≡ 1 (mod 8)
p ≡ 3 (mod 8)
p ≡ 5, 7 (mod 8)

1
4 [h(−8p) − 4]
1
4 [h(−8p) − 2]
0

(1, 1, 4) p ≡ 1 (mod 4)
p ≡ 3 (mod 4)

1
2 [h(−4p) − 2]
0

(1, 8, 16) p ≡ 1 (mod 8)
p ≡ 3, 5, 7 (mod 8)

1
4 [h(−8p) − 4]
0

(1, 2, 2) p ≡ 1 (mod 8)
p ≡ 5 (mod 24)
p ≡ 13, 21 (mod 24)
p ≡ 11 (mod 24)
p ≡ 3, 19 (mod 24)
p ≡ 7 (mod 8)

1
4h(−4p)
1
4 [h(−4p) + 6]
1
4 [h(−4p) + 2]
1
2 [3h(−p) + 1]
1
2 [3h(−p) − 1]
0

(1, 1, 3) p ≡ 1 (mod 24)
p ≡ 17 (mod 24)
p ≡ 5 (mod 24)
p ≡ 13 (mod 24)
p ≡ 7, 19 (mod 24)
p ≡ 11 (mod 24)
p ≡ 23 (mod 24)

1
4 [3h(−3p) − 4]
1
4 [3h(−3p) − 2]
1
2h(−3p)
1
2 [h(−3p) − 2]
1
8 [h(−12p) − 4]
1
8 [h(−12p) + 4]
1
8h(−12p)

(1, 1, 8) & 
(1, 4, 8)

p ≡ 1 (mod 8)
p ≡ 5 (mod 8)
p ≡ 3 (mod 4)

1
4 [h(−8p) − 4]
1
4 [h(−8p) − 2]
0

(1, 2, 3) p ≡ 1, 11, 19 (24)
p ≡ 5, 7, 13, 17 (24)
p ≡ 23 (24)

1
8 [h(−24p) − 8]
1
8 [h(−24p) − 4]
1
8h(−24p)

(1, 2, 8) p ≡ 1 (mod 8)
p ≡ 3 (mod 8)
p ≡ 5, 7 (mod 8)

1
2 [h(−4p) − 2]
1
2 [3h(−p) − 1]
0

(1, 1, 5) p ≡ 1, 9, 21, 29 (40)
p ≡ 17, 33 (40)
p ≡ 13, 37 (40)
p ≡ 31, 39 (40)
p ≡ 7, 23 (40)
p ≡ 3 (mod 8)

1
8 [h(−20p) − 8]
1
8 [h(−20p) − 4]
1
8h(−20p)
1
4h(−5p)
1
4 [h(−5p) + 2]
0

(1, 8, 8) p ≡ 1 (mod 8)
p ≡ 3, 5, 7 (mod 8)

1
4 [h(−4p) + 4]
0

Forms (1,1,2) & (1,2,4)
For the form (1, 1, 2), insert R(1,1,2)(p) = 1

3R3(2p) = 4h(−8p) into (2.2) to get 
Rd

(1,1,2)(p) =
1
4h(−8p) − 1

4(1 + (−1
p )) − 1

4 (1 + (−2
p )), which implies the stated counting 

function taking into account the corresponding values of the Legendre symbol. Similarly, 
one has R(1,2,4)(p) = 1

6R3(2p) = 2h(−8p). Inserted into (2.5) yields the same counting 
function by noting that D(1,4)(p) = D2(p) = 1

2 (1 + (−1
p )).

Form (1,1,4)
One has R(1,1,4)(p) = 2

3R3(p) = 8h(−4p) if p ≡ 1 (mod 4) and R(1,1,4)(p) = 0
otherwise. Inserting into (2.3) and using again that D(1,4)(p) = D2(p) one obtains the 
result.

Forms (1,1,8) & (1,4,8)
First, one has R(1,1,8)(p) = 1

3R3(2p) = 4h(−8p) if p ≡ 1 (mod 4) and R(1,1,8)(p) = 0
otherwise. Inserted into (2.3) one gets Rd (p) = 1 R(1,1,8)(p) − 1D2(p) − 1D(1,8)(p). 
(1,1,8) 16 2 2
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Now, the binary quadratic form x2+8y2 represents an odd prime in one and only one way 
if, and only if, it belongs to the arithmetic progression p ≡ 1 (mod 8) (condition (C1) of 
Lemma 2.1). With this, the stated counting function follows without difficulty. Similarly, 
one has R(1,4,8)(p) = 1

6R3(2p) = 2h(−8p) if p ≡ 1 (mod 4) and R(1,4,8)(p) = 0 otherwise. 
Inserted into (2.5) the same counting function follows.

Form (1,2,8)
For this form the theorem of Bell tells us that

R(1,2,8)(p) =

⎧⎪⎨
⎪⎩

1
3R3(p), p ≡ 1 (mod 8)
1
2R3(p), p ≡ 3 (mod 8)
0, p ≡ 5, 7 (mod 8)

=

⎧⎪⎨
⎪⎩

4h(−4p), p ≡ 1 (mod 8),
12h(−p), p ≡ 3 (mod 8),
0, p ≡ 5, 7 (mod 8).

The desired formula follows by inserting into (2.5) using that D(1,8)(p) = 1 ⇔ p ≡ 1
(mod 8).

Form (1,2,2)
Similarly to the preceding form, one has

R(1,2,2)(p) =

⎧⎪⎨
⎪⎩

1
3R3(p), p ≡ 1 (mod 4)
R3(p), p ≡ 3 (mod 8)
0, p ≡ 7 (mod 8)

=

⎧⎪⎨
⎪⎩

4h(−4p), p ≡ 1 (mod 4),
24h(−p), p ≡ 3 (mod 8),
0, p ≡ 7 (mod 8).

Inserted into (2.4) one sees that Rd
(1,2,2)(p) =

1
16R(1,2,2)(p) + 1

2D(1,4)(p) + D(2,3)(p) −
1
2D(1,2)(p). Condition (C2) of Lemma 2.1 implies that D(2,3)(p) = 1 if p ≡ 5, 11 (mod 24)
and D(2,3)(p) = 0 otherwise. Now, a careful case by case analysis shows that Rd

(1,2,2)(p)
is determined by the formulas in Table 2.1.

Form (1,4,4)
One has R(1,4,4)(p) = 1

3R3(p) = 4h(−4p) if p ≡ 1 (mod 4) and R(1,4,4)(p) = 0 other-
wise. Inserted into (2.4) one sees that Rd

(1,4,4)(p) =
1
16R(1,4,4)(p) + 1

2D(1,8)(p) +D(4,5)(p) −
1
2D(1,4)(p). Furthermore, as seen above one has D(1,8)(p) = 1 ⇔ p ≡ 1 (mod 8), and with 
condition (C3) of Lemma 2.1 one has D(4,5)(p) = 1 if p ≡ 1, 9 (mod 20) and D(4,5)(p) = 0
otherwise. A careful analysis implies the desired formulas.

Form (1,8,8)
One has R(1,8,8)(p) = 1

3R3(p) = 4h(−4p) if p ≡ 1 (mod 8) and R(1,4,4)(p) = 0
otherwise. Inserted into (2.4) one sees that Rd

(1,8,8)(p) =
1
16R(1,8,8)(p) + 1

2D(1,16)(p) +
D(8,9)(p) − 1

2D(1,8)(p). From condition (C4) of Lemma 2.1 one gets D(1,16)(p) = 1 if 
p ≡ 1 (mod 8) and D(1,16)(p) = 0 otherwise. On the other hand, the binary quadratic 
form 8x2 + 9y2 with discriminant d = −288 is a reduced form with a single class in each 
genus (e.g. Dickson [11], Table I, p. 85), and since 8x2 + 9y2 = p ≡ 3, 5, 7 (mod 8) is 
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impossible, one sees that D(8,9)(p) = 1 if p ≡ 1 (mod 8) and D(8,9)(p) = 0 otherwise. 
The desired formula follows.

Form (1,2,16)
For this generalized Bell ternary quadratic form one has R(1,2,16)(p) = 1

6R3(2p) =
2h(−8p) if p ≡ 1, 3 (mod 8) and R(1,2,16)(p) = 0 otherwise. Inserted into (2.5) one 
sees that Rd

(1,2,16)(p) =
1
8R(1,2,16)(p) − 1

2D(1,2)(p) − 1
2D(1,16)(p), which implies the result 

taking into account that D(1,16)(p) = 1 if p ≡ 1 (mod 8) and D(1,16)(p) = 0 otherwise 
((C4) of Lemma 2.1).

Form (1,8,16)
For this generalized Bell form one has R(1,8,16)(p) = 1

6R3(2p) = 2h(−8p) if p ≡ 1
(mod 8) and R(1,2,16)(p) = 0 otherwise. From (2.5) one gets Rd

(1,8,16)(p) =
1
8R(1,8,16)(p) −

1
2D(1,8)(p) − 1

2D(1,16)(p), which implies the result.

Form (1,1,3)
From the Conjecture 18 of Sun [32], which has been proved by Guo et al. [17], one 

knows that

R(1,1,3)(p) =

⎧⎪⎨
⎪⎩

12h(−3p), p ≡ 1 (mod 8),
8h(−3p), p ≡ 5 (mod 8),
2h(−12p), p ≡ 3 (mod 4).

Note that Guo et al. [17] define h(d) as the class number of the imaginary quadratic 
field Q(

√
d) while here h(D) denotes the class number of the corresponding fundamental 

discriminant. One has D = d if d ≡ 1 (mod 4) and D = 4d otherwise. Inserted into (2.3)
one gets Rd

(1,1,3)(p) =
1
16R(1,1,3)(p) + 1

2D(2,3)(p) − 1
2D2(p) − 1

2D(1,3)(p). From the proof 
for the form (1, 2, 2) one knows that D(2,3)(p) = 1 if p ≡ 5, 11 (mod 24) and D(2,3)(p) = 0
otherwise. Furthermore, one knows that D(1,3)(p) = 1 if p ≡ 1 (mod 3) and D(1,3)(p) = 0
otherwise (e.g. Dickson [11], Exercises XII, no. 3, p. 80). The result follows. �

Form (1,2,3)
With the method of Guo et al. [17], Section 6, and p. 247, one gets R(1,2,3)(p) =

h(−24p). Inserted into (2.5) one obtains Rd
(1,2,3)(p) = 1

8R(1,2,3)(p) − 1
2D(1,2)(p) −

1
2D(1,3)(p) − 1

2D(2,3)(p). One concludes as in the proof for the form (1, 1, 3).

Form (1,1,5)
With the same method, one obtains also the following formula

R(1,1,5)(p) =

⎧⎪⎨
⎪⎩

2h(−20p), p ≡ 1 (mod 4),
4h(−5p), p ≡ 7 (mod 8),
0, p ≡ 3 (mod 8).
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Table 2.2
Class number conditions for solving the equation Rd

(1,b,c)(p) = 0.

Form Arithmetic 
progression

Condition Form Arithmetic 
progression

Condition

(1, 1, 1) p ≡ 5 (mod 8)
p ≡ 7 (mod 8)

h(−4p) = 2
none

(1, 4, 4) p ≡ 3 (mod 4) none

(1, 1, 2)& 
(1, 2, 4)

p ≡ 1 (mod 8)
p ≡ 3, 5 (mod 8)

h(−8p) = 4
h(−8p) = 2

(1, 8, 8) p ≡ 3, 5, 7 (mod 8) none

(1, 1, 4) p ≡ 1 (mod 4)
p ≡ 3 (mod 4)

h(−4p) = 2
none

(1, 2, 16) p ≡ 1 (mod 8)
p ≡ 3 (mod 8)
p ≡ 5, 7 (mod 8)

h(−8p) = 4
h(−8p) = 2
none(1, 2, 2) p ≡ 7 (mod 8) none

(1, 1, 8) & 
(1, 4, 8)

p ≡ 1 (mod 8)
p ≡ 5 (mod 8)
p ≡ 3 (mod 4)

h(−8p) = 4
h(−8p) = 2
none

(1, 8, 16) p ≡ 1 (mod 8)
p ≡ 3, 5, 7 (mod 8)

h(−8p) = 4
none

(1, 2, 8) p ≡ 1 (mod 8)
p ≡ 5, 7 (mod 8)

h(−4p) = 2
none

(1, 1, 3) p ≡ 13 (mod 24)
p ≡ 7, 19 (mod 24)

h(−3p) = 2
h(−12p) = 4

(1, 2, 3) p ≡ 1, 11, 19 (24)
p ≡ 5, 7, 13, 17 (24)

h(−24p) = 8
h(−24p) = 4

(1, 1, 5) p ≡ 1, 9 (mod 20)
p ≡ 17, 33 (mod 40)
p ≡ 3 (mod 8)

h(−20p) = 8
h(−20p) = 4
none

Inserted into (2.3) one gets Rd
(1,1,5)(p) =

1
16R(1,1,5)(p) + 1

2D(2,5)(p) − 1
2D2(p) − 1

2D(1,5)(p). 
With (C5) of Lemma 2.1, one has D(1,5)(p) = 1 if p ≡ 1, 9 (mod 20), D(1,5)(p) = 0
otherwise, and similarly, with (C6) of Lemma 2.1, one has D(2,5)(p) = 1 if p ≡ 1, 9, 21,
29 (mod 40), D(2,5)(p) = 0 otherwise. The formulas in Table 2.1 follow and the proof is 
complete. �

As a simple consequence of Table 2.1, one sees that the number of primes satisfying 
Rd

(1,b,c)(p) = m, m ≥ 0, are determined by specific values of the class number of binary 
quadratic forms with negative fundamental discriminants.

Corollary 2.1. Let m ≥ 0 be a fixed positive integer. For the fifteen ternary quadratic 
forms in Table 2.1, the number of primes satisfying Rd

(1,b,c)(p) = m is determined by 
Table 2.2 in case m = 0 and by Table 2.3 in case m ≥ 1. In particular, for fixed m ≥ 1, 
there are only a finite number of primes with the stated conditions.

Proof. This follows from Theorem 2.2. If m ≥ 1 one notes that there are only a fi-
nite number of discriminants D with given class number h(D), as already shown by 
Gauss [14]. �

The class number formulas in the Table 2.3 imply some interesting congruence con-
ditions.



294 W. Hürlimann / Journal of Number Theory 171 (2017) 284–300
Table 2.3
Class number conditions for solving the equation Rd

(1,b,c)(p) = m ≥ 1.

Form Arithmetic 
progression

Condition Form Arithmetic 
progression

Condition

(1, 1, 1) p ≡ 1 (8)
p ≡ 5 (8)
p ≡ 3 (8)

h(−4p) = 4m
h(−4p) = 4m + 2
h(−p) = 2m − 1

(1, 4, 4) p ≡ 1, 9 (40)

p ≡ 17, 25, 33 (40)
p ≡ 21, 29 (40)

h(−4p) = 4m − 4
m ≥ 2
h(−4p) = 4m
h(−4p) = 4m − 2

(1, 1, 2) & 
(1, 2, 4)

p ≡ 1 (8)
p ≡ 3, 5 (8)
p ≡ 7 (8)

h(−8p) = 4m + 4
h(−8p) = 4m + 2
h(−8p) = 4m

(1, 8, 8) p ≡ 1 (8) h(−4p) = 4m − 4
m ≥ 2

(1, 1, 4) p ≡ 1(4) h(−4p) = 2m + 2 (1, 2, 16) p ≡ 1 (8)
p ≡ 3 (8)

h(−8p) = 4m + 4
h(−8p) = 4m + 2

(1, 1, 8) & 
(1, 4, 8)

p ≡ 1 (8)
p ≡ 5 (8)

h(−8p) = 4m + 4
h(−8p) = 4m + 2

(1, 8, 16) p ≡ 1 (8) h(−8p) = 4m + 4

(1, 2, 8) p ≡ 1 (8)
p ≡ 3 (8)

h(−4p) = 2m + 2
h(−p) = 2k + 1,
m = 3k + 1

(1, 1, 3) p ≡ 1 (24)

p ≡ 17 (24)

p ≡ 5 (24)
p ≡ 13 (24)
p ≡ 7, 19 (24)
p ≡ 11 (24)
p ≡ 23 (24)

h(−3p) = 4k,
m = 3k − 1
h(−3p) = 4k − 2,
m = 3k − 2
h(−3p) = 2m
h(−3p) = 2m + 2
h(−12p) = 8m + 4
h(−12p) = 8m − 4
h(−12p) = 8m

(1, 2, 2) p ≡ 1 (8)
p ≡ 5 (24)

p ≡ 13, 21 (24)
p ≡ 11 (24)

p ≡ 3, 19 (24)

h(−4p) = 4m
h(−4p) = 4m − 6
m ≥ 2
h(−4p) = 4m − 2
h(−p) = 2k + 1
m = 3k + 2
h(−p) = 2k + 1
m = 3k + 1

(1, 2, 3) p ≡ 1, 11, 19 (24)
p ≡ 5, 7, 13, 17 (24)
p ≡ 23 (24)

h(−24p) = 8m + 8
h(−24p) = 8m + 4
h(−24p) = 8m

(1, 1, 5) p ≡ 1, 9 (20)
p ≡ 17, 33 (40)
p ≡ 13, 37 (40)
p ≡ 31, 39 (40)
p ≡ 7, 23 (40)

h(−20p) = 8m + 8
h(−20p) = 8m + 4
h(−20p) = 8m
h(−5p) = 4m
h(−5p) = 4m − 2

Corollary 2.2. Let p be an odd prime number. Then, the class numbers of the funda-
mental discriminants D = −kp, k ∈ {3, 4, 5, 8, 12, 20, 24} satisfy the following necessary 
congruence properties:

(P1)
{

p ≡ 1 (mod 8) ⇒ h(−4p) ≡ 0 (mod 4),
p ≡ 5 (mod 8) ⇒ h(−4p) ≡ 2 (mod 4).

(P2)
{

p ≡ 1, 7 (mod 8) ⇒ h(−8p) ≡ 0 (mod 4),
p ≡ 3, 5 (mod 8) ⇒ h(−8p) ≡ 2 (mod 4).

(P3)

⎧⎪⎨
⎪⎩

p ≡ 1 (mod 24) ⇒ h(−3p) ≡ 0 (mod 4),
p ≡ 17 (mod 24) ⇒ h(−3p) ≡ 2 (mod 4),
p ≡ 5, 13 (mod 24) ⇒ h(−3p) ≡ 0 (mod 2).
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(P4)
{

p ≡ 23 (mod 24) ⇒ h(−12p) ≡ 0 (mod 8),
p ≡ 7, 11, 19 (mod 24) ⇒ h(−12p) ≡ 4 (mod 8).

(P5)
{

p ≡ 1, 11, 19, 23 (mod 24) ⇒ h(−24p) ≡ 0 (mod 8),
p ≡ 5, 7, 13, 17 (mod 24) ⇒ h(−8p) ≡ 4 (mod 8).

(P6)
{

p ≡ 7, 23 (mod 40) ⇒ h(−5p) ≡ 2 (mod 4),
p ≡ 31, 39 (mod 40) ⇒ h(−5p) ≡ 0 (mod 4).

(P7)
{

p ≡ 1, 9 (mod 20) ∨ p ≡ 13, 37 (mod 40) ⇒ h(−20p) ≡ 0 (mod 8),
p ≡ 17, 33 (mod 40) ⇒ h(−20p) ≡ 4 (mod 8).

Proof. The formulas in Table 2.3 imply these results as follows: (1, 1, 1) ⇒ (P1), 
(1, 1, 2) ⇒ (P2), (1, 1, 3) ⇒ (P3) and (P4), (1, 2, 3) ⇒ (P5), (1, 1, 5) ⇒ (P6) and (P7). �
Remarks 2.1. It is important to observe that the congruence properties (P1)–(P7) are 
known, some for a long time. Improvements are possible and have consequences on 
solving the equation Rd

(1,b,c)(p) = m ≥ 1, as shown below. According to Brink [5] the 
property (P1) even characterizes the primes p ≡ 1 (mod 4), a result already derived by 
Glaisher [15] (see also Lerch [25], p. 224). Glaisher also characterizes the set of all odd 
primes by the property (P2). A unified approach to the congruences (P1)–(P7) with some 
improvements and further references is found in Berndt [4]. For still further information 
consult the monograph by Urbanowicz and Williams [34], Chap. II. Divisibility properties 
by higher powers of 2 depend upon the 2-Sylow subgroup structure of the class group, 
which has often been studied (e.g. Rédei [28], Shanks [30], Dominguez et al. [13], etc.). 
Some comments on the use of (P1)–(P7) and its improvements should be useful. With 
them, some statements in Table 2.3 can be strengthened. For example, with (P1), the 
condition in Table 2.3 for the form (1, 1, 4) can be improved to the more precise condition:

h(−4p) = 2m + 2, m odd, p ≡ 1 (mod 8),

h(−4p) = 2m + 2, m even, p ≡ 5 (mod 8). (2.8)

As already said, in some cases the properties (P1)–(P7) are not best possible. For exam-
ple, instead of (P3), Corollary 4.4 in Berndt [4] states the more stringent property:

(
P3′

) {
p ≡ 1 (mod 12) ⇒ h(−3p) ≡ 0 (mod 4),
p ≡ 5 (mod 12) ⇒ h(−3p) ≡ 2 (mod 4).

With this, solving Rd
(1,1,3)(p) = m ≥ 1 for the primes p ≡ 5, 13 (mod 24) can be 

made more precise. For p ≡ 5 (mod 24), respectively p ≡ 13 (mod 24), the condition 
h(−3p) = 2m, respectively h(−3p) = 2m +2, is only possible for odd m. Similarly, using 
Corollary 5.4 in Berndt [4], the property (P6) can be improved to
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(
P6′

)
⎧⎪⎨
⎪⎩

p ≡ 7, 23 (mod 40) ⇒ h(−5p) ≡ 2 (mod 4),
p ≡ 31 (mod 40) ⇒ h(−5p) ≡ 4 (mod 8),
p ≡ 39 (mod 40) ⇒ h(−5p) ≡ 0 (mod 8).

With this, the condition h(−5p) = 4m for the form (1, 1, 5) in Table 2.3 is only possible 
for odd m if p ≡ 31 (mod 40) and even m if p ≡ 39 (mod 40).

3. Universal zero-free property, infinite and finite exceptional sets

We present the detailed analysis of the universal zero-free property (Definitions 1.1) 
and a description of the infinite and finite exceptional sets (Definitions 1.2) for the 
fifteen ternary quadratic forms (1, b, c) listed in Theorem 2.1. Based on Corollary 2.1, 
Table 2.2, one sees that the structure of the solutions to Rd

(1,b,c)(p) = 0 depends upon 
the imaginary quadratic fields with even discriminant two and four, which have been 
completely determined by Stark [31] and Arno [1] respectively. Recall the following notion 
(e.g. Cohen [6], Definition 5.1.2).

Definition 3.1. An integer D is called a fundamental discriminant if D is the discriminant 
of a quadratic field. This means that D �= 1 and either D ≡ 1 (mod 4) is squarefree, or 
D ≡ 0 (mod 4), D/4 is squarefree and D/4 ≡ 2, 3 (mod 4).

Theorem 3.1. Based on Definitions 1.1 and 1.2, the fifteen ternary quadratic forms 
(1, b, c) from Table 2.1 are completely classified by the Table 3.1.

Proof. The discriminants of relevance D = −kp, k ∈ {1, 3, 4, 5, 8, 12, 20, 24} are all fun-
damental discriminants by Definition 3.1. Using the two sets of negative fundamental 
discriminants with class numbers two and four (e.g. Weisstein [37]), it is straightforward 
to filter out all primes p ≥ 1 + b + c that satisfy the required class number conditions for 
finite exceptional sets. The remaining assertions are consequences of the results stated 
in the Tables 2.2 and 2.3. �

Some comments are in order. The only Bell forms with empty finite exceptional sets 
are the forms (1, 2, 2), (1, 2, 8), (1, 4, 4) and (1, 8, 8). The only forms, which do not satisfy 
the universal zero-free property for some arithmetic progression of primes are the forms 
(1, 1, 8), (1, 4, 8), and (1, 8, 16). The strictly universal zero-free forms (1, 1, 2), (1, 1, 3), 
(1, 2, 3) and (1, 2, 4) have been previously discussed in the introductory Section 1. By the 
Definitions 1.1 and 1.2, if a form is not strictly universal, then the union of the residue 
classes within the sets P (r, m) and F (r, m) in the three columns of Table 3.1 always 
encompass the whole set of odd primes. Except for the form (1, 1, 5) (residue classes 
mod 40) these are the residue classes mod 8.
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Table 3.1
Universal zero-free forms, infinite and finite exceptional sets for selected forms.

Form Universal 
zero-free sets

Infinite 
exceptional sets

Finite 
exceptional sets

(1, 1, 1) P (r, 8), r = 1, 3 P (7, 8) F (5, 8) = {5, 13, 37}
(1, 1, 2) strictly universal none F (1, 8) = {17, 41}, F (3, 8) = {11}, F (5, 8) = {5, 29}
(1, 1, 4) P (1, 8) P (r, 8), r = 3, 7 F (5, 8) = {13, 37}
(1, 1, 8) none P (r, 8), r = 3, 7 F (1, 8) = {17, 41}, F (5, 8) = {29}
(1, 2, 2) P (r, 8), r = 1, 3, 5 P (7, 8) none
(1, 2, 4) strictly universal none F (1, 8) = {17, 41}, F (3, 8) = {11}, F (5, 8) = {29}
(1, 2, 8) P (r, 8), r = 1, 3 P (r, 8), r = 5, 7 none
(1, 4, 4) P (r, 8), r = 1, 5 P (r, 8), r = 3, 7 none
(1, 4, 8) none P (r, 8), r = 3, 7 F (1, 8) = {17, 41}, F (5, 8) = {29}
(1, 8, 8) P (1, 8) P (r, 8), r = 3, 5, 7 none
(1, 2, 16) P (3, 8) P (r, 8), r = 5, 7 F (1, 8) = {41}
(1, 8, 16) none P (r, 8), r = 3, 5, 7 F (1, 8) = {41}
(1, 1, 3) strictly universal none F (7, 24) = {7, 31}, F (19, 24) = {19}
(1, 2, 3) strictly universal none F (1, 24) = {73}, F (11, 24) = {11, 83}, 

F (19, 24) = {19, 43}, F (7, 24) = {7}, 
F (13, 24) = {13}, F (17, 24) = {17}

(1, 1, 5) P (r, 40), r = 7, 13,
23, 31, 33, 37, 39

P (3, 8) F (1, 40) = {41}, F (21, 40) = {101}, 
F (9, 40) = {89}, F (29, 40) = {29}, F (17, 40) = {17}

4. Zero-free prime representations by ternary quadratic forms in essentially m ways

From a historical perspective, the present topic is related to the problem of expressing 
a positive integer as a sum of three squares in essentially one way studied first by Bateman 
and Grosswald [2], and completely solved by Arno [1] (see also Grosswald [16], Chapter 7, 
Theorem 4). The original version of the problem, which goes back to Lehmer [24], asks 
for the number of partitions of a positive integer n as a sum of three squares, denoted by 
P3(n), i.e., the number of integer triples (x, y, z) solving the equation n = x2 + y2 + z2, 
0 ≤ x ≤ y ≤ z. Bateman and Grosswald [2] asked for all n satisfying P3(n) = 1. If 
n ≡ 3 (mod 8) the solution is a simple consequence of the determination of the imaginary 
quadratic fields with odd discriminant and class number one or two. In this case, one 
finds twelve solutions, namely

P3(n) = 1 ⇔ n ∈ {3, 11, 19, 35, 43, 67, 91, 115, 163, 235, 403, 427}. (4.1)

For the primes p ≡ 3 (mod 8) among them, which all have class number one, one finds 
the six solutions

Rd
3(p) = 1 ⇔ P3(p) = 1 ⇔ p ∈ {3, 11, 19, 43, 67, 163}. (4.2)

The first equivalence holds because a sum of three squares is congruent to 3 mod 8 if, 
and only if, all three squares are odd. If n ≡ 1, 2, 5, 6 (mod 8) the solution depends 
upon the knowledge of all the imaginary quadratic fields with even discriminant and 
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Table 4.1
The number of primes (not congruent to 7 mod 8) satisfying Rd

3(p) = m, m ≤ 5.

m #{p : Rd
3(p) = m} p ≡ 3 (mod 8) p ≡ 1 (mod 8) p ≡ 5 (mod 8)

0 3 0 0 3
1 17 6 4 7
2 35 14 7 14
3 43 21 10 12
4 51 26 11 14
5 56 29 16 11

class number one, two or four. The thirty-three fields with this property give rise to 
twenty-one integers n satisfying

P3(n) = 1 ⇔
n ∈ {1, 2, 5, 6, 10, 13, 14, 21, 22, 30, 37, 42, 46, 58, 70, 78, 93, 133, 142, 190, 253}. (4.3)

Unfortunately, none of the prime solutions are expressible without zero squares com-
ponents, and (4.3) do not lead to any solution of Rd

3(p) = 1. In fact, the structure of 
the solutions to Rd

3(p) = 1 differs completely when p ≡ 1, 5 (mod 8) and depends via 
Corollary 2.1 upon the imaginary quadratic fields with even discriminant four and six, 
where the last ones have been completely determined by Wagner [35]. In this case, one 
finds the eleven primes

Rd
3(p) = 1 ⇔ p ∈ {17, 29, 53, 61, 73, 97, 109, 157, 193, 277, 397}. (4.4)

Therefore, one has a total of seventeen primes satisfying the condition Rd
3(p) = 1.

The problem of determining the number of primes and the primes satisfying the equa-
tion Rd

(1,b,c)(p) = m for our fifteen ternary quadratic forms can be solved similarly. In 

general, to find all primes satisfying Rd
(1,b,c)(p) = m, m ≥ 0, one uses Corollary 2.1

and modern computations of the class number of imaginary quadratic fields with ar-
bitrary discriminants. Note that Watkins [36], Table 4, provides for each N ≤ 100 the 
number of negative fundamental discriminants with class number N and the largest such 
discriminant in absolute value. Especially useful are the lists of negative fundamental dis-
criminants with class number N ≤ 25 by Weisstein [37]. Beyond this it might be necessary 
to apply some more sophisticated computational methods (e.g. Cohen [6], Sections 5.3 
and 5.4, Mosunov and Jacobson [26]). Analytical methods to challenge these properties 
are also of interest. On the other hand, in analogy to the well-known Taxicab numbers, 
one might consider the smallest, respectively largest, prime in a given arithmetic pro-
gression p ≡ r (mod s), denoted by S(1,b,c)(m, r, s) respectively L(1,b,c)(m, r, s), that is 
expressible by a ternary quadratic form (1, b, c) with three non-zero squares in essentially 
m ways. The finite number of such primes, denoted by N(1,b,c)(m, r, s), might also be of 
interest. To illustrate, only sums of three squares are considered. For m ≤ 5 the numbers 
of primes N(1,1,1)(m, r, s) are listed in the Table 4.1. The numbers S(1,1,1)(m, r, s) and 
L(1,1,1)(m, r, s) are found in Table 4.2.
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Table 4.2
The primes S(1,1,1)(m, r, s) and L(1,1,1)(m, r, s) (in parentheses) for 1 ≤ m ≤ 5.

m p ≡ 3 (8) p ≡ 1 (8) p ≡ 5 (8)
1 3 (163) 17 (193) 29 (397)
2 59 (907) 41 (577) 181 (1213)
3 131 (2683) 89 (2017) 107 (2293)
4 251 (5923) 257 (3217) 293 (3733)
5 419 (10627) 281 (4153) 269 (6637)
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