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Let k ≥ 2 and s be positive integers, and let n be a large 
positive integer subject to certain local conditions. We prove 
that if s ≥ k2 + k + 1 and θ > 31/40, then n can be ex-
pressed as a sum pk1 + · · · + pks , where p1, . . . , ps are primes 
with |pj − (n/s)1/k| ≤ nθ/k. This improves on earlier work 
by Wei and Wooley [15] and by Huang [8] who proved similar 
theorems when θ > 19/24.
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1. Introduction

The study of additive representations of integers as sums of powers of primes goes 
back to the work of Hua [6,7]. In particular, Hua proved that when k and s are positive 
integers with s > 2k, every sufficiently large natural number n satisfying certain local 
solubility conditions can be represented as
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n = pk1 + · · · + pks , (1.1)

where p1, . . . , ps are prime numbers. (Henceforth, the letter p, with or without subscripts, 
always denotes a prime number.) To describe the local conditions, we let τ = τ(k, p) be 
the largest integer with pτ | k, and then define

K(k) =
∏

(p−1)|k
pγ(k,p), γ(k, p) =

{
τ(k, p) + 2 when p = 2, τ > 0,
τ(k, p) + 1 otherwise.

One typically studies (1.1) for n restricted to the congruence class

Hk,s =
{
n ∈ N : n ≡ s (mod K(k))

}
.

In this paper, we are interested in the additive representations of the form (1.1) with 
“almost equal” primes. Given a large integer n ∈ Hk,s, we ask whether it is possible to 
solve (1.1) in primes subject to

∣∣pj − (n/s)1/k
∣∣ ≤ H (1 ≤ j ≤ s), (1.2)

where H = o(n1/k). There is a long list of results on sums of five or fewer almost equal 
squares (k = 2, 3 ≤ s ≤ 5), beginning with the work of Liu and Zhan [11] and culminating 
with the results of Kumchev and Li [10] (see [10] for a detailed history of that problem). 
In particular, Kumchev and Li showed that when k = 2 and s = 5 the problem has 
solutions with H = nθ/2 for any fixed θ > 8/9. They were also the first to obtain results 
on sums of more than five almost equal squares, where the extra variables are used to 
reduce the admissible size of H. Let θk,s denote the least exponent θ such that (1.1) and 
(1.2) with H = nθ/k can be solved for sufficiently large n ∈ Hk,s whenever θ > θk,s. 
Kumchev and Li [10] proved that θ2,s ≤ 19/24 when s ≥ 17. The lower bound on s in this 
theorem was reduced to s ≥ 7 in a recent paper by Wei and Wooley [15], in which those 
authors also established surprisingly strong results for higher values of k: they proved 
that if s > 2k(k − 1), one has

θk,s ≤
{

4/5 if k = 3,
5/6 if k ≥ 4.

(1.3)

Huang [8] further reduced the bound (1.3) to θk,s ≤ 19/24 for all k ≥ 3 and s > 2k(k−1).
The main goal of the present work is to establish the bound θk,s ≤ 31/40 for all k ≥ 2. 

We also make use of a recent breakthrough by Bourgain, Demeter and Guth [2] to reduce 
the lower bound on s when k ≥ 4. Our main result is as follows.

Theorem 1. Let k ≥ 2, s ≥ k2 + k + 1, and θ > 31/40. When n ∈ Hk,s is sufficiently 
large, equation (1.1) has solutions in primes p1, . . . , ps satisfying (1.2) with H = nθ/k.
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Circle method experts will not be surprised that our methods lead also to improve-
ments on the results established by Wei and Wooley [15] and by Huang [8] on solubility 
for “almost all” n and on the number of exceptions for representations by six almost equal 
squares. Indeed, by adapting the ideas in [15, §9], we obtain the following theorems.

Theorem 2. Let k ≥ 2, s > k(k + 1)/2, θ > 31/40, and N → ∞. There is a fixed δ > 0
such that equation (1.1) has solutions in primes p1, . . . , ps satisfying (1.2) with H = nθ/k

for all but O(N1−δ) integers n ≤ N subject to n ∈ Hk,s (and, when k = 3 and s = 7, 
also 9 � n).

Theorem 3. Let θ > 31/40, and N → ∞. Let E6(N ; H) denote the number of integers 
n ≡ 6 (mod 24), with |n −N | ≤ HN1/2, such that equation (1.1) with k = 2 and s = 6
has solutions in primes p1, . . . , p6 satisfying (1.2). There is a fixed δ > 0 such that

E6(N ;Nθ/2) � N (1−θ)/2−δ.

Notation. Throughout the paper, the letter ε denotes a sufficiently small positive real 
number. Any statement in which ε occurs holds for each positive ε, and any implied 
constant in such a statement is allowed to depend on ε. The letter c denotes a constant 
that depends at most on k and s, not necessarily the same in all occurrences. As usual 
in number theory, μ(n), Λ(n), φ(n), and τ(n) denote, respectively, the Möbius function, 
von Mangoldt’s function, Euler’s totient function, and the number of divisors function. 
We write e(x) = exp(2πix) and (a, b) = gcd(a, b), and we use m ∼ M as an abbreviation 
for the condition M ≤ m < 2M . If χ denotes a Dirichlet character, we set δχ = 1 or 0
according as χ is principal or not. The sums 

∑
χ mod q and 

∑∗
χ mod q denote summations 

over all the characters modulo q and over the primitive characters modulo q, respectively.

2. Outline of the proof

Let x = (n/s)1/k, y = xθ, I = (x − y, x + y], and write

Rk,s(n) =
∑

n=pk
1+···+pk

s
pi∈I

1.

Let 1P denote the indicator function of the primes, and suppose that we have arithmetic 
functions λ± such that, for m ∈ I,

λ−(m) ≤ 1P(m) ≤ λ+(m). (2.1)

Then the vector sieve of Brüdern and Fouvry [3, Lemma 13] yields

1P(m1) · · ·1P(m5) ≥
5∑

λ−(mi)
∏

λ+(mj) − 4λ+(m1) · · ·λ+(m5). (2.2)

i=1 j �=i
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Thus, by the symmetry of the problem, we have

Rk,s(n) ≥ 5Rk,s(n, λ−) − 4Rk,s(n, λ+), (2.3)

where

Rk,s(n, λ) =
∑

n=pk
1+···+pk

s−5+mk
1+···+mk

5
pi,mj∈I

λ(m1)λ+(m2) · · ·λ+(m5).

To prove the theorem, we show that one can choose sieve functions λ± satisfying (2.1)
so that the right side of (2.3) is positive. Our choice of λ± is borrowed from Baker, 
Harman and Pintz [1]—namely, λ− and λ+ are, respectively, the functions a0 and a1
constructed in §4 of that paper. In many ways, the functions λ± imitate the indicator 
function 1P of the primes p ∈ I. We will discuss the similarities in detail later (see §3
below) and will focus here on their most crucial property:

(A0) Let A, B > 0 be fixed (possibly large) numbers and let x → ∞. If χ is a Dirichlet 
character modulo q ≤ (log x)B and x11/20+ε ≤ y ≤ x exp

(
− (log x)1/3

)
, then one 

has

∑
|m−x|≤y

λ±(m)χ(m) = 2y
φ(q) log x

(
δχκ± + O

(
(log x)−A

))
, (2.4)

where κ± are absolute constants satisfying

κ− > 0.99, κ+ < 1.01. (2.5)

We now sketch the application of the circle method to Rk,s(n, λ). Let δ > 0 be a fixed 
number, to be chosen later sufficiently small in terms of k, s and θ, and set

P = yδ, Q = xk−2y2P−1, L = log x. (2.6)

We write

M(q, a) =
{
α ∈ R : |qα− a| ≤ Q−1},

and define the sets of major and minor arcs by

M =
⋃

1≤a≤q≤P
(a,q)=1

M(q, a) and m =
[
Q−1, 1 + Q−1] \M, (2.7)

respectively. Further, for any Lebesgue measurable set B, we write
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Rk,s(n, λ;B) =
∫
B

f(α,1P)s−5f(α, λ)f(α, λ+)4e(−nα) dα,

where

f(α, λ) =
∑
m∈I

λ(m)e(mkα). (2.8)

By orthogonality and (2.7), we have

Rk,s(n, λ) = Rk,s(n, λ;M) + Rk,s(n, λ;m). (2.9)

In §4, we show that when s ≥ k2 + k + 1, δ < 1/(16k), and θ ≥ 31/40, one has

Rk,s(n, λ;m) � ys−1−δ/(3k)x1−k. (2.10)

Then, in §5, we show that when δ ≤ 2(θ − 31/40), one has

Rk,s(n, λ±;M) = C(n)ys−1x1−kL−s
(
κ±κ

4
+ + O(L−1)

)
, (2.11)

where 1 � C(n) � 1 for sufficiently large n ∈ Hk,s, and κ± are the constants from (2.4). 
Theorem 1 follows from (2.3), (2.5), and (2.9)–(2.11). �
3. The sieve weights

As we said before, we use sieve weights λ± constructed by Baker, Harman and Pintz 
[1] to have properties (2.1) and (A0) above. We remark that (A0) is a short-interval 
version of the Siegel–Walfisz theorem: when the functions λ± are replaced by 1P, the 
asymptotic formula (2.4) with κ = 1 and y ≥ x7/12+ε is a well-known extension of a 
celebrated result of Huxley [9]. In this section, we record some additional properties of 
the weights λ± that we will need later in the paper:

(A1) The functions λ±(m) vanish if m has a prime divisor p < x1/10.
(A2) Let S = {pj : p ∈ P, j ≥ 2}. When m ∼ 2x/3, one can express λ±(m) as a linear 

combination of a bounded function supported on S and of O(Lc) triple convolutions 
of the form

∑
m=uvw

u∼U, v∼V

ξuηvζw,

where |ξu| ≤ τ(u)c, |ηv| ≤ τ(v)c, max(U, V ) � x11/20, and either ζw = 1 for all w, 
or |ζw| ≤ τ(w)c and UV 
 x27/35.
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(A3) Let A, B, ε > 0 be fixed, let χ be a Dirichlet character modulo q ≤ LB , and put 
T0 = exp(L1/3) and T1 = x9/20−ε. Then

T1∫
T0

∣∣∣∣ ∑
m∼2x/3

λ±(m)χ(m)m−1/2−it

∣∣∣∣ dt � x1/2L−A.

Of the three properties above, (A3) is the easiest to justify, since it is a part of the 
proof of (A0) in [1]. Indeed, the method of Baker, Harman and Pintz reduces (2.4) to the 
classical Siegel–Walfisz theorem by decomposing λ± into a linear combination of O(Lc)
arithmetic functions for which (A3) holds and then applying [1, Lemma 11] to each of 
them. In order to justify that the functions λ± have also properties (A1) and (A2), we 
need to provide some details on their construction.

The core idea behind the construction of λ± is explained in [1, pages 32–33, 41–42]. 
It amounts to setting

λ±(m) = 1P(m) ±
J±∑
j=1

λ±
j (m) (3.1)

where J± = O(1) and the arithmetic functions λ±
j have the form

λ±
j (m) =

∑
m=u1···ud+1

ξ(u1, . . . , ud+1) (4 ≤ d ≤ 7),

with ξ(u1, . . . , ud+1) = 1 or 0. The latter functions impose various restrictions on the 
sizes and arithmetic properties of u1, . . . , ud+1 that amount to restricting the support of 
λ±
j to integers m with very specific (undesirable) factorizations. Moreover:

(i) Only the cases d = 4 and d = 6 occur in the construction of λ−, whereas only d = 5
and d = 7 occur in the construction of λ+.

(ii) ξ(u1, . . . , ud+1) = 0 if any of u1, . . . , ud+1 has a prime divisor < x1/10. Note that 
property (A1) is an immediate consequence of this observation.

(iii) When d = 5, λ+
j is supported on integers m that have a divisor u in the range 

x0.46 ≤ u ≤ x1/2: see [1, p. 42].
(iv) When d = 4, λ−

j is supported on integers m = n1n2n3, where ni = xαi with 
α = (α1, α2) lying in one of regions Γ, Δ2, Δ3, or Δ4 in [1, Diagram 1 on p. 33].

We now turn to property (A2). We note that when λ±
j is supported on integers m = uv, 

with x9/20 ≤ u ≤ x11/20, it has property (A2). Thus, by (iii) above, property (A2) holds 
for all terms λ+

j with d = 5. Moreover, the same is true for λ−
j with d = 4 and α in one of 

the regions Δ3 or Δ4: we have 0.46 ≤ α1 ≤ 0.5 when α ∈ Δ4, and 0.46 ≤ α1 +α2 ≤ 0.54
when α ∈ Δ3.
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We next consider the case d ≥ 6 and suppose that the variables ui have been labelled 
so that u1 ≥ u2 ≥ · · · ≥ ud+1. When λ±

j is supported on integers m = u1 · · ·ud+1 with 
u4 · · ·ud+1 ≥ x11/20, we have

u1u2u3 � x9/20 and u4 ≤ 3
√
u1u2u3 � x3/20.

Since u5 · · ·ud+1 � x1/2, we can then verify that λ±
j has property (A2) by grouping the 

variables u1, . . . , ud+1 into u = u1u2u3, v = u5 · · ·ud+1, and w = u4. On the other hand, 
when λ±

j is supported on integers m = u1 · · ·ud+1 with u4 · · ·ud+1 ≤ x11/20, we note 
that

u1u2 � x1/2 and u3 ≤ 3
√
u1u2u3 � x1/5.

Thus, we can verify that λ±
j has property (A2) by grouping the variables u1, . . . , ud+1

into u = u1u2, v = u4 · · ·ud+1, and w = u3.
The functions λ−

j with d = 4 and α ∈ Δ2 are supported on integers m = u1 · · ·u5, 
where

x1/10 ≤ u4 ≤ u3 ≤ u2 ≤ u1, and x0.32 ≤ u1u2 ≤ x0.36. (3.2)

(These functions arise by “decomposing twice the variable n3” in [1, (4.24)], so we have 
u1u2 = xα1+α2 .) Since the inequalities (3.2) imply that

x1/10 ≤ u4 ≤ u3 ≤ x0.18, u1u2u3 ≤ x0.54, u5 � x0.48,

we can verify that λ−
j has property (A2) by grouping the variables u1, . . . , u5 into u =

u1u2u3, v = u5, and w = u4. Similarly, the functions λ−
j with d = 4 and α ∈ Γ are 

supported on integers m = u1 · · ·u5, where

x0.32 � u1u2, u3u4 � x0.36, and u5 ≤ x1/3.

(In this case, we have u1u2 = xα1 and u5 = xα2 .) If we assume that the variables are 
labelled so that u1 ≤ u2 and u3 ≤ u4, we have

u2u4 ≤ x0.72/(u1u3) ≤ x0.52, u1u5 ≤ x0.18x1/3 < x0.52, u3 ≤ x0.18.

Hence, we can once again verify that λ−
j has property (A2) by grouping the variables 

u1, . . . , u5 into u = u2u4, v = u1u5, and w = u3.
We have shown that each term λ±

j on the right side of (3.1) satisfies (A2). It remains 
to show that so does the indicator function 1P. The proof of [4, Theorem 1.1] uses Heath-
Brown’s identity to establish (A2) for von Mangoldt’s function. In the case of 1P, we can 
use a variant of that argument based on Linnik’s identity instead of Heath-Brown’s.
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4. The minor arcs

In this section, we establish inequality (2.10). Our main tools are Propositions 1 and 2
below.

Proposition 1. Suppose that k ≥ 2, s ≥ k2 + k, and y ≥ x1/2. Then for any bounded 
arithmetic function λ, one has

Is(λ) :=
1∫

0

|f(α, λ)|s dα � ys−1x1−k+ε. (4.1)

Proposition 2. Let k ≥ 2, 0 < δ < 1/(16k), and y ≥ x31/40, and suppose that α ∈ m. 
Then

f(α,1P) � y1−δ/(2k)+ε.

It is straightforward to deduce (2.10) from these propositions. First, we remark 
that the functions λ± are bounded by construction—they are linear combinations of 
a bounded number of indicator functions. Thus, we may apply Proposition 1 to λ = λ±. 
By Hölder’s inequality,

|Rk,s(n, λ;m)| ≤
(

sup
α∈m

|f(α,1P)|
)
Is−1(λ)uIs−1(λ+)4uIs−1(1P)1−5u,

where u = (s − 1)−1. Thus, when s ≥ k2 +k+1, we may use Propositions 1 and 2 to get

Rk,s(n, λ;m) � y1−δ/(2k)+εys−2x1−k+ε � ys−1−δ/(3k)x1−k,

provided that δ and y satisfy the hypotheses of Proposition 2 and ε is chosen sufficiently 
small; this verifies (2.10). In the remainder of this section, we prove the propositions.

4.1. Proof of Proposition 1

This is a variant of [15, Proposition 2.2], which we have extended in two ways. First, we 
have included the arbitrary coefficients λ. This is straightforward, due to the “maximal 
inequality”

1∫
0

|f(α, λ)|s dα � ys−k2−k

1∫
0

|f(α,1)|k2+k dα, (4.2)

where 1 is the constant function 1(n) = 1 (compare this to [15, p. 1136]). Like Wei and 
Wooley, we estimate the right side of (4.2) by means of [5, Theorem 3] and standard 
bounds for Vinogradov’s mean-value integral. In particular, the recent work of Bourgain, 
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Demeter and Guth [2] allows us to reduce the lower bound on s to the one stated 
above. �
4.2. Proof of Proposition 2

Although it looks somewhat different, Proposition 2 is merely a slight variation of 
the main theorem of Huang [8], and our proof follows closely Huang’s. We first obtain 
variants of some technical estimates from [8] by making some slight changes to Huang’s 
arguments.

Lemma 1. Let k ≥ 2 be an integer and ρ be real, with 0 < ρ ≤ t−1
k , where

tk =
{

2 if k = 2,
k2 − k + 1 if k ≥ 3.

Suppose also that y = xθ, where

1
2 − tkρ

≤ θ ≤ 1.

Then either
∑

x<m≤x+y

e(mkα) � y1−ρ+ε,

or there exist integers a, q such that

1 ≤ q ≤ ykρ, (a, q) = 1, |qα− a| ≤ x1−kykρ−1,

and
∑

x<m≤x+y

e(mkα) � y1−ρ+ε + y

(q + yxk−1|qα− a|)1/k .

Proof. When k ≥ 3, we follow the argument of Huang [8, Lemma 1] with γ =
ρ−1(tk−1)−1. Within that argument, we apply the latest version of Vinogradov’s mean-
value theorem due to Bourgain, Demeter and Guth [2] in place of the earlier version by 
Wooley [16] used by Huang. When k = 2, we follow the same argument with γ = (2ρ)−1

but observe that in this case the bound at the top of [8, p. 512] can be improved to

Δ � q1/2+ε(1 + x2(qQ0)−1)1/2 � P
1/2+ε
0 xy−1.

This slight improvement is possible, because in the quadratic case, Daemen’s proof of [5, 
(3.5)] does not require the iterative process in [5, p. 78]. Thus, we need not incur a loss of 
a factor of q−1/2 in the above bound which the iterative method causes when k ≥ 3. �
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Lemma 2 (Type II sum). Let k ≥ 2 be an integer, let ρ be real, with 0 < ρ ≤
min

(
(4tk)−1, 1

20
)
, and suppose that y = xθ, where

3
4 − 4tkρ

≤ θ ≤ 1. (4.3)

Suppose also that α ∈ m and that the coefficients ξu, ηv satisfy ξu � τ(u)c and ηv �
τ(v)c. Then

∑
u∼U

∑
uv∈I

ξuηve(ukvkα) � y1−ρ+ε + y1+εP−1/(2k),

provided that

xy−1+2ρ � U � y1−2ρ. (4.4)

Proof. This is a version of [8, Proposition 2] that applies Lemma 1 above in place of [8, 
Lemma 1]. We have also slightly altered the choice of ν in Huang’s argument by choosing 
it so that Y ν = y2ρL−1 as opposed to Y ν = x2ρL−1 (see [8, p. 515]). �
Lemma 3 (Type I sum). Let k ≥ 2 be an integer, let ρ be real, with 0 < ρ ≤
min

(
(4tk)−1, 1

20
)
, and suppose that y = xθ, with θ in the range (4.3). Suppose also 

that α ∈ m and that the coefficients ξu satisfy ξu � τ(u)c. Then
∑
u∼U

∑
uv∈I

ξue(ukvkα) � y1−ρ+ε + y1+εP−1/(2k),

provided that

U � y1−2ρ. (4.5)

Proof. This is a version of [8, Proposition 1]. Following the proof of that result, with our 
Lemma 1 in place of [8, Lemma 1] and with ν chosen so that Y ν = yρL−1, one obtains 
the above bound when

U � x−1y2−tkρ, U2k � xk−1y1−2kρ.

On the other hand, when either of these inequalities fails, one has U 
 xy−1+2ρ and the 
result follows from Lemma 2. �
Proof of Proposition 2. It suffices to bound f(α, Λ), where Λ is von Mangoldt’s function. 
Let ρ = (31tk)−1 and X = xy−1+2ρ. We note that this choice of ρ ensures that (4.3) holds 
for all θ ≥ 31/40 and that X ≤ x9/40+(31ρ)/20 ≤ x1/4. We may thus apply Vaughan’s 
identity for Λ (see [14, p. 28]) to decompose f(α, Λ) into O(L) type I sums with U ≤ X2

and O(L) type II sums with X ≤ U ≤ xX−1. By the choice of X and ρ, Lemma 2 can 
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be applied to the arising type II sums. Moreover, since X2 ≤ xX−1 = y1−2ρ, Lemma 3
can be applied to the type I sums. We conclude that when α ∈ m, one has

f(α,Λ) � y1−ρ+ε + y1−δ/(2k)+ε.

Since the hypothesis δ < 1/(16k) ensures that δ/(2k) < ρ, this completes the proof. �
5. The major arcs

In this section, we establish (2.11). First, we need to introduce some notation. We 
write

S(q, a) =
∑

1≤h≤q
(h,q)=1

e(ahk/q), v(β; s) =
∫
I

us−1e(ukβ) du,

and define the singular series S(n) and the singular integral I(n) by

S(n) =
∞∑
q=1

φ(q)−s
∑

1≤a≤q
(a,q)=1

S(q, a)se(−an/q), I(n) =
∫
R

v(β; 1)se(−nβ) dβ.

If λ denotes one of the functions λ± and κ the respective constant κ±, we define a 
function f∗(α, λ) on the major arcs M by setting

f∗(α, λ) = κφ(q)−1S(q, a)v(β; 1)L−1 if α ∈ M(q, a).

This is the “major arc approximation” to f(α, λ). We also define a major arc approxi-
mation to f(α, 1P) by

f∗(α) = φ(q)−1S(q, a)v(β; 1)L−1 if α ∈ M(q, a).

Finally, we adopt the convention that for any arithmetic function λ, there is an associated 
Dirichlet polynomial F (s, λ), given by

F (s, λ) =
∑

m∼2x/3

λ(m)m−s.

5.1. Some technical estimates

Lemma 4. Let x11/20 ≤ y ≤ x and suppose that P, Q satisfy

PQ ≤ yxk−1, Q ≥ xk−9/20.



A. Kumchev, H. Liu / Journal of Number Theory 176 (2017) 344–364 355
Suppose also that g is a positive integer, ν > 1, and λ is a bounded arithmetic function 
satisfying hypothesis (A2) above. Then

∑
r≤P

[g, r]−ν
∑∗

χ mod r

( 1/(rQ)∫
−1/(rQ)

|f(β, λχ)|2dβ
)1/2

� g−ν+εy1/2x(1−k)/2Lc. (5.1)

Proof. When k = 2 and ν = 1 − ε, this is [10, Lemma 4.5]. The proof for general k ≥ 2
and ν ≥ 1 uses the same argument with some obvious changes: e.g., T1 = Δxk and 
H � Δ−1x1−k in place of the respective statements in [10, p. 618]. �
Lemma 5. Let x be a large integer, and suppose that y, b, T are reals with: y = o(x), 
‖y‖ = 1/2, 0 < b ≤ 1, and 1 ≤ T ≤ x1/2. Suppose also that λ is a bounded arithmetic 
function. Then

f(β, λ) = 1
2πi

b+iT∫
b−iT

F (s, λ)v(β; s) ds + O
(
(1 + yxk−1|β|)xLT−1).

Proof. For any u ∈ I with ‖u‖ = 1/2, Perron’s formula (see [12, Corollary 5.3]) gives

∑
x−y<m≤u

λ(m) = 1
2πi

b+iT∫
b−iT

F (s, λ)u
s − (x− y)s

s
ds + O(xLT−1). (5.2)

If we change u in (5.2) to u1, where |u1 −u| ≤ 1/2, the left side will change by O(1) and 
the integral on the right side will change by O(T ). Hence, the integral representation 
(5.2) can be extended to all u ∈ I. The conclusion of the lemma then follows by partial 
summation. �
Lemma 6. Under the assumptions of Lemma 4, we have

∑
r≤P

[g, r]−ν
∑∗

χ mod r

max
|β|≤1/(rQ)

|f(β, λχ)| � g−ν+εyLc. (5.3)

Furthermore, for any given A > 0, there is a B = B(A, ν) > 0 such that

∑
LB≤r≤P

r−ν
∑∗

χ mod r

max
|β|≤1/(rQ)

|f(β, λχ)| � yL−A. (5.4)

Proof. Let 1 ≤ R0 ≤ P . By a simple splitting argument,

∑
R0≤r≤P

[g, r]−ν
∑∗

χ mod r

max
|β|≤1/(rQ)

|f(β, λχ)| � (gR)−νL
∑
d|g

dνS(R, d), (5.5)
d≤2R
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where R0 ≤ R ≤ P and

S(R, d) =
∑
r∼R
d|r

∑∗

χ mod r

max
|β|≤1/(RQ)

|f(β, λχ)|.

We now estimate S(R, d). The contribution to S(R, d) from any powers of primes in 
the support of λ can be bounded trivially as O(yx−1/2(R2/d)). Under the assumptions 
of the lemma, we have P ≤ yx−11/20, so this contribution can be absorbed into the term 
y(R/d)L on the right side of (5.8) below. Thus, we may assume that λ is merely the 
linear combination of triple convolutions of the kind described in (A2). We may also 
assume that x ∈ Z and ‖y‖ = 1/2.

Let 0 < b ≤ 1, |β| ≤ (RQ)−1, T1 = 3kπxkQ−1, and T0 = T1/R. Then, by Lemma 5
with T = T1,

f(β, λχ) = 1
2πi

b+iT1∫
b−iT1

F (s, λχ)v(β; s) ds + O(yR−1L). (5.6)

Letting b ↓ 0 in (5.6), we obtain

f(β, λχ) = 1
2π

T1∫
−T1

F (it, λχ)v(β; it) dt + O(yR−1L). (5.7)

When |β| ≤ (RQ)−1 and |t| ≥ T0, we have

v(β; it) � |t|−1,

by the first-derivative test for exponential integrals (see [13, Lemma 4.5]). Combining 
this bound with (5.7) and the trivial estimate |v(β; it)| � yx−1, we find that

f(β, λχ) � yx−1
T0∫

−T0

|F (it, λχ)| dt +
∫

T0≤|t|≤T1

|F (it, λχ)| dt|t| + yR−1L.

Summing this inequality over r and χ and then splitting the range of t in the second 
integral into dyadic intervals, we deduce that

S(R, d) � yx−1S1(R, d;T0) +
∑

2j≤R

(2jT0)−1S1(R, d; 2jT0) + y(R/d)L, (5.8)

where
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S1(R, d;T ) =
∑
r∼R
d|r

∑∗

χ mod r

T∫
−T

|F (it, λχ)| dt.

Since λ is assumed to be a linear combination of convolutions of the type in (A2), we 
may apply [4, Theorem 2.1] to obtain the bound

S1(R, d;T ) �
(
x + (R2T/d)x11/20)Lc.

Combining this bound, (5.5) and (5.8), we conclude that the left side of (5.3) is

� g−ν+εy
(
1 + xk−9/20Q−1 + x1−ky−1PQ + Px11/20y−1)Lc.

This establishes the first claim of the lemma.
When g = 1, the above argument yields the bound

� yR1−ν
0

(
1 + xk−9/20Q−1 + x1−ky−1PQ + Px11/20y−1)Lc

for the left side of (5.4). When R0 = LB for a sufficiently large B > 0, this establishes 
the second claim of the lemma. �
Lemma 7. Let x11/20+2ε ≤ y ≤ x1−ε and suppose that P, Q satisfy

PQ ≤ yxk−1, Q ≥ xk−9/20+2ε. (5.9)

Suppose also that ν > 1 and λ is a bounded arithmetic function that satisfies hypotheses
(A0), (A2) and (A3) above. Then, for any given A > 0,

∑
r≤P

r−ν
∑∗

χ mod r

max
|β|≤1/(rQ)

|f(β, λχ) − ρχv(β; 1)| � yL−A, (5.10)

where ρχ = δχκL
−1, κ being the constant in hypothesis (A0) for λ.

Proof. By the second part of Lemma 6, it suffices to show that

max
|β|≤1/Q

|f(β, λχ) − ρχv(β; 1)| � yL−B−A (5.11)

for all primitive characters χ with moduli r ≤ LB , where B = B(A, ν) is the number that 
appears in (5.4). Let χ be such a character and suppose that |β| ≤ Q−1. By Lemma 5
with b = 1/2 and T = T1 = x9/20−ε,

f(β, λχ) = 1
2πi

1/2+iT1∫
F (s, λχ)v(β; s) ds + O

(
yx−ε/2 + yxk−9/20+εQ−1L

)
. (5.12)
1/2−iT1
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Since v(β; 1/2 + it) � yx−1/2, we deduce from (5.12) and hypothesis (A3) that

f(β, λχ) = 1
2πi

1/2+iT0∫
1/2−iT0

F (s, λχ)v(β; s) ds + O(yL−B−A),

where T0 = exp(L1/3). Note that when Re(s) = 1/2,

v(β; s) − xs−1v(β; 1) � (|s| + 1)y2x−3/2.

Hence,

f(β, λχ) = v(β; 1)
2πi

1/2+iT0∫
1/2−iT0

F (s, λχ)xs−1 ds + O(yL−B−A). (5.13)

When β = 0, we can evaluate the left side of (5.13) directly by means of hypothesis (A0). 
Thus,

1
2πi

1/2+iT0∫
1/2−iT0

F (s, λχ)xs−1 ds = ρχ + O(L−B−A). (5.14)

The desired inequality (5.11) follows from (5.13) and (5.14). �
Lemma 8. Let x7/12+2ε ≤ y ≤ x1−ε and suppose that P, Q satisfy

PQ ≤ yxk−1, Q ≥ xk−5/12+ε.

Suppose also that ν > 1. Then, for any given A > 0,

∑
r≤P

r−ν
∑∗

χ mod r

max
|β|≤1/(rQ)

|f(β,1Pχ) − δχL
−1v(β; 1)| � yL−A. (5.15)

Proof. This is a slight variation of [10, Lemma 4.7]. We use the same argument, but we 
slightly alter the choice of T in [10, p. 620]: instead of T = (x/y)2x3ε, we choose

T = xε max
(
xy−1, xkQ−1),

which suffices to complete the proof. �
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5.2. The asymptotic formula for Rk,s(n, λ; M)

We have

Rk,s(n, λ;M) =
∑

p1,...,pt∈I

∫
M

f(α, λ)f(α, λ+)4e(−npα) dα, (5.16)

where t = s − 5 and np = n − pk1 − · · · − pkt . We now proceed to show that, for any fixed 
A > 0, one has

∫
M

(
f(α, λ)f(α, λ+)4 − f∗(α, λ)f∗(α, λ+)4

)
e(−npα) dα � y4x1−kL−A. (5.17)

Let α ∈ M(q, a) and write β = α− a/q. Since q ≤ P , property (A1) ensures that the 
function λ is supported on integers m with (m, q) = 1. Hence, by the orthogonality of 
the characters modulo q, we have

f(α, λ) =
∑

1≤h≤q
(h,q)=1

e(ahk/q)
∑
m∈I

m≡h (mod q)

λ(m)e(mkβ)

= φ(q)−1
∑

χ mod q

S(χ, a)f(β, λχ),

where

S(χ, a) =
q∑

h=1

χ̄(h)e(ahk/q).

Hence,

f(α, λ) = f∗(α, λ) + Δ(α, λ), (5.18)

where

Δ(α, λ) = φ(q)−1
∑

χ mod q

S(χ, a)W (β, λχ),

W (β, λχ) = f(β, λχ− ρχ), ρχ = δχκL
−1.

Using (5.18), we can express the integral in (5.17) as the linear combination of integrals 
of the form ∫

f∗(α, λ)aΔ(α, λ)1−af∗(α, λ+)bΔ(α, λ+)4−be(−npα) dα, (5.19)

M
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where a ∈ {0, 1}, b ∈ {0, 1, · · · , 4} and a + b < 5. The estimation of all those integrals 
follows the same pattern, so we shall focus on the most troublesome among them, namely,

∫
M

Δ(α, λ)Δ(α, λ+)4e(−npα) dα. (5.20)

We can rewrite (5.20) as the multiple sum

∑
q≤P

∑
χ1 mod q

· · ·
∑

χ5 mod q

B(q;χ1, . . . , χ5)J(q;χ1, . . . , χ5), (5.21)

where

B(q;χ1, . . . , χ5) = φ(q)−5
∑

1≤a≤q
(a,q)=1

S(χ1, a) · · ·S(χ5, a)e(−anp/q),

J(q;χ1, . . . , χs) =
1/qQ∫

−1/qQ

W (β, λχ1)W (β, λ+χ2) · · ·W (β, λ+χ5)e(−npβ) dβ.

First, we reduce (5.21) to a sum over primitive characters. If χ is a Dirichlet character 
modulo q that is induced by a primitive character χ∗ modulo r, r | q, then by property 
(A1), λ±χ = λ±χ∗. Thus,

W (β, λ±χ) = W (β, λ±χ∗). (5.22)

Let χ∗
i modulo ri, ri|q, be the primitive character inducing χi and set q0 = [r1, . . . , r5]. 

By (5.22), we have

J(q;χ1, . . . , χ5) = J(q;χ∗
1, . . . , χ

∗
5).

Therefore, the sum (5.21) does not exceed

∑
r1≤P

∑∗

χ1 mod r1

· · ·
∑
r5≤P

∑∗

χ5 mod r5

J0(χ1, . . . , χ5)B0(χ1, . . . , χ5),

where

B0(χ1, . . . , χ5) =
∑
q≤P
q0|q

|B(q;χ1, . . . , χ5)|,

J0(χ1, . . . , χ5) =
1/(q0Q)∫

−1/(q0Q)

|W (β, λχ1)W (β, λ+χ2) · · ·W (β, λ+χ5)| dβ.
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Recalling the bound (see [15, Lemma 6.1])

B0(χ1, . . . , χ5) � q
−3/2+ε
0 Lc,

we conclude that the sum (5.21) is

� Lc
∑
r1≤P

∑∗

χ1 mod r1

· · ·
∑
r5≤P

∑∗

χ5 mod r5

q
−3/2+ε
0 V (λχ1)V (λ+χ2)V (λ+χ3)W (λ+χ4)W (λ+χ5),

(5.23)

where for a character χ modulo r, we write

V (λχ) = max
|β|≤1/(rQ)

|W (β, λχ)|,

W (λχ) =
( 1/(rQ)∫
−1/(rQ)

|W (β, λχ)|2 dβ
)1/2

.

Next, we proceed to estimate the sum in (5.23) by Lemmas 4, 6 and 7, which we will 
denote by Σ. When y = xθ with θ > 31/40 and δ ≤ 2(θ − 31/40), the definitions of P
and Q (recall (2.6)) ensure that they satisfy inequalities (5.9). Since the sieve functions 
λ± have properties (A0)–(A3), this means that all the hypotheses of the lemmas are in 
place.

To begin the estimation of Σ, we note that Lemma 4 yields
∑
r≤P

∑∗

χ mod r

[g, r]−νW (λ+χ) � g−ν+εy1/2x(1−k)/2Lc + g−νI
1/2
0 , (5.24)

where

I0 =
1/Q∫

−1/Q

|v(β; 1)|2 dβ �
∫∫
I2

du1du2

Q + |uk
1 − uk

2 |

� yx1−k + yLQ−1 � yx1−k.

(5.25)

(We remark that the second term on the right side of (5.24) accounts for the contribution 
of ρχ to W (β, λχ)—which is present only when r = 1.) Similarly, the first part of 
Lemma 6 yields

∑
r≤P

∑∗

χ mod r

[g, r]−νV (λ+χ) � g−ν+εyLc. (5.26)

Applying (5.24) to the summations over r5 and r4 in Σ and then (5.26) to the summations 
over r3 and r2, we obtain
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Σ � y3x1−kLc
∑
r≤P

∑∗

χ mod r

r−3/2+5εV (λχ).

Finally, we apply Lemma 7 to the last sum and conclude that

Σ � y4x1−kL−A

for any fixed A > 0. This inequality and its variants for other integrals of the form (5.19)
establish (5.17).

Having established (5.17), we can combine it with (5.16) to get

Rk,s(n, λ;M) =
∫
M

f(α,1P)tf∗(α, λ)f∗(α, λ+)4e(−nα) dα + O
(
ys−1x1−kL−A

)
.

We now define a new, slimmer set of major arcs M0, given by (2.7) with Q0 = xk−1yP−1

in place of Q. From the bound

f∗(α, λ±) � yq−1/2+ε
(
1 + yxk−1|α− a/q|

)−1/2 if α ∈ M(q, a),

we find that

∫
M\M0

∣∣f(α,1P)tf∗(α, λ)f∗(α, λ+)4
∣∣ dα �

∑
1≤a≤q≤P
(a,q)=1

∫
|β|≥1/(qQ0)

ysq−5/2+ε

(1 + yxk−1|β|)5/2 dβ

� ys−1x1−kP−1/2+ε.

Hence, for any fixed A > 0, we have

Rk,s(n, λ;M) =
∫
M0

f(α,1P)tf∗(α, λ)f∗(α, λ+)4e(−nα) dα + O
(
ys−1x1−kL−A

)
. (5.27)

Finally, we have

∫
M0

(
f(α,1P)t − f∗(α)t

)
f∗(α, λ)f∗(α, λ+)4e(−nα) dα � ys−1x1−kL−A. (5.28)

The proof of this inequality is similar to the proof of (5.17), except that we do not need 
to use Lemma 4 (the bound (5.25) can be used instead) and we use Lemma 8 instead 
of Lemma 7. We remark that during the process, we need to verify the hypotheses 
Q ≥ xk−9/20 and Q ≥ xk−5/12+ε of those lemmas for Q = Q0; with our choice of Q0, 
those hypotheses are satisfied when y ≥ x7/12+δ.
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By (5.27) and (5.28), we have

Rk,s(n, λ;M) = κκ4
+

∫
M0

f∗(α)se(−nα) dα + O
(
ys−1x1−kL−A

)
.

The evaluation of the last integral uses standard major arc techniques (e.g., see Wei and 
Wooley [15, pp. 1150–1151]), so we can omit it and report that

∫
M0

f∗(α)se(−nα) dα = S(n)I(n)L−s + O
(
ys−1x1−kP−1).

We note that S(n) is the standard singular series in the Waring–Goldbach problem for s
kth powers. In particular, it is known that 1 � S(n) � 1 when n ∈ Hk,s. Since the 
inequality

ys−1x1−k � I(n) � ys−1x1−k

is also standard (compare to [15, (6.5)]), we conclude that (2.11) holds with

C(n) = S(n)I(n)y1−sxk−1.
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