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1. Introduction

1.1. Statement of results

Let K be a finite extension of Qp. Examples of crystalline representations of the Galois 
group GK in characteristic zero are those arising from the étale cohomology of proper 
varieties over K with a smooth model over the ring of integers OK due to the crystalline 
comparison theorem in cohomology ([17]; see also [10,8]), and can be classified in general 
via the theory of filtered φ-modules ([7]). To define crystalline representations over local 
artinian W (k)-algebras with residue field k, and thus approach the theory of crystalline 
framed deformation problems, we may in sufficiently simple situations1 use the theory of 
Fontaine–Laffaille modules discussed in [12]. These objects are sufficiently explicit that 
we can actually parameterise all lifts in terms of filtration preserving endomorphisms of 
the underlying filtered module.

Consider residual crystalline representations as above together with a flag of maximal 
length. These take the form

ρ =

⎛
⎜⎜⎜⎜⎝

ρ1 ∗ . . . ∗
0 ρ2 . . . ∗
...

...
. . .

...
0 0 . . . ρr

⎞
⎟⎟⎟⎟⎠

for ρi (not necessarily distinct) irreducible crystalline representations of rank ni (i =
1, 2, . . . , r). A framed deformation problem is specified by lifting the maximal flag, giving 
lifts ρ of this same form. By relating crystalline extensions of representations to filtration 
preserving homomorphisms between the corresponding Fontaine–Laffaille modules and 
adapting an argument from [15], we may prove the following theorem.

Theorem A. The flagged crystalline framed deformation functor associated to ρ as above 
with labelled Hodge–Tate weights differing by at most p − 2 is smoothly representable of 
relative dimension

r∑
i=1

(
∑
j<i

nj)ni([K : Qp] + 1) − dρ<i,ρi

where dρ<i,ρi
is an explicit quantity depending only on the labelled Hodge–Tate weight 

structure of the representations ρi (i = 1, 2, . . . , r).

The above theorem gives a simple deduction of one of the main theorems of [13] on 
“universally twistable lifts”, a notion to be defined in Definition 3.10.

1 Namely when K is unramified over Qp and all labelled Hodge–Tate weights differ by at most p − 2.
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Theorem B. Suppose K is unramified over Qp, and let ρ be a rank n Fontaine–Laffaille 
residual representation of GK together with a maximal flag. Assume additionally that the 
labelled Hodge–Tate weights of ρ differ by at most p − 2. Then ρ admits a universally 
twistable lift.

These results rely heavily on the theory of Fontaine–Laffaille modules and so any 
significant generalisations would likely require additional theoretical input, for example 
the theory of Wach modules [18].

1.2. Notational conventions

Notational conventions will be introduced as needed throughout this article, but for 
the convenience of the reader we list some essential common notation here.

Throughout, p denotes a fixed prime number, and K is a finite unramified extension 
of Qp, with Frob (or sometimes φ) denoting arithmetic Frobenius on K. L is a finite 
extension of Qp, contained in Qp and containing the image of all embeddings σ : K ↪→ Qp, 
with residue field kL. The p-adic valuation vp will be normalised so that vp(p) = 1, and 
we write OK and OL for the rings of integers of K and L, respectively. We let CK denote 
the completion of the algebraic closure of K, with ring of integers OCK

. We write GK

for the absolute Galois group of K, χp for the p-adic cyclotomic character of GK , and 
adopt the sign convention that χp has all labelled Hodge–Tate weights equal to +1. Let 
Repcris

L (GK) denote the category of crystalline representations of GK valued in L, with 
associated category MFφ,w.a.

K

⊗
Qp

L of weakly admissible filtered φ-modules.
For a ring R and a finite module M over R, we write lgR(M) for the length of M as 

an R-module.
We write CkL

for the category of complete local artinian OL-algebras with residue 
field kL, and ˆCkL

for the category of complete local noetherian OL-algebras with residue 
field kL; in both cases, morphisms are local OL-algebra homomorphisms reducing to the 
identity on residue fields. For A ∈ CkL

(or A ∈ ˆCkL
), we write mA for the maximal ideal 

of A.

2. Crystalline representations in characteristic p and Fontaine–Laffaille modules

Definition 2.1. Let A ∈ CkL
, and suppose ρ : GK −→ GLn(A) is a representation. Fix an 

integer r ≥ 0. We say that ρ is crystalline with Hodge–Tate weights at most r if there 
is V ∈ Repcris

L (GK) with all labelled Hodge–Tate weights in the range [0, r] containing 
GK-stable OL-lattices T ′ ⊆ T , and an OL-algebra map A −→ EndOL

( T
T ′ ) such that 

An with GK -action given by ρ is isomorphic as an A[GK ]-module to T
T ′ . We denote by 

Repcris,≤r
A (GK) the category of such ρ.

Remark 2.2. In the above notation, if r ≤ p − 2 then we shall sometimes refer to ρ
as simply being Fontaine–Laffaille, or say that ρ has weights in the Fontaine–Laffaille 
range.
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As in the case of characteristic zero representations, we seek some semilinear algebra 
data which classify such representations. In certain cases the answer is given via the 
theory of Fontaine–Laffaille modules.

2.1. Fontaine–Laffaille modules

We now introduce various categories of algebraic objects that, in certain cases, allow 
us to classify crystalline representations in characteristic p in much the same way that 
one classifies crystalline representations in characteristic zero using MFφ,w.a.

K

⊗
Qp

L. 
The main references for the results in this section are [12] and [14].

Definition 2.3.

(1) A Fontaine–Laffaille module is a finite length module over OK together with a 
decreasing filtration by OK -module direct summands M i such that M0 = M , 
Mp = 0, and a collection of Frobenius-semilinear maps φi

M : M i −→ M such that 
φi
M |Mi+1 = pφi+1

M for all i, and M =
∑

i φ
i
M (M i). The corresponding category is 

denoted MF f,p−1
tor,OK

; morphisms in this category are filtration-preserving OK-linear 
maps which are equivariant with respect to the corresponding φi for all i. When 
there is no risk of confusion we will write simply φi in place of φi

M .
(2) For A ∈ C, a Fontaine–Laffaille module over A consists of giving an object M ∈

MF f,p−1
tor,OK

together with a map θ : A −→ EndMF f,p−1
tor,OK

(M) that makes M into a 

free finitely generated module over OK

⊗
Zp

A in such a way that the filtered pieces 
above are OK

⊗
Zp

A-direct summands of M . A morphism between two such objects 
is required to additionally preserve the A-structure. We will denote this category as 
MF f,p−1

tor,OK

⊗
Zp

A.

Definition 2.4. Let M ∈ MF f,p−1
tor,OK

. A submodule of M is an OK submodule N ⊆ M

given the subspace filtration N i = N ∩ M i such that φi(N i) ⊆ N for all i. When 
M has A-structure for some A ∈ CkL

we additionally demand that N be a free 
OK

⊗
Zp

A-module direct summand of M . If M has no submodules then we say M
is irreducible.

We will have occasion to use various full subcategories of MF f,p−1
tor,OK

; in particular the 
following.

Definition 2.5.

(1) MF f,p−1,′
tor,OK

consists of those objects M ∈ MF f,p−1
tor,OK

which have no non-trivial quo-
tient object N with Np−1 = N .

(2) MF f,p−1,′′
tor,OK

consists of those objects M ∈ MF f,p−1
tor,OK

which have no non-trivial sub-
object N with N1 = 0.
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(3) Let 0 ≤ r ≤ p − 1. Then MF f,r
tor,OK

consists of those objects M ∈ MF f,p−1
tor,OK

such 
that Mr+1 = 0.

We also have the analog of these subcategories for MF f,p−1
tor,OK

⊗
Zp

A, where the objects 
are required additionally to have A-structure in the sense of part 2 of Definition 2.3. 
The analogous full subcategories will be denoted (respectively) as MF f,p−1,′

tor,OK

⊗
Zp

A, 
MF f,p−1,′′

tor,OK

⊗
Zp

A, and MF f,r
tor,OK

⊗
Zp

A.

Remark 2.6. MF f,r
tor,OK

⊆ MF f,p−1,′
tor,OK

for 0 ≤ r ≤ p − 2.

We now give some basic facts about Fontaine–Laffaille modules; see [12,14].

Proposition 2.7. Let M, N ∈ MF f,p−1
tor,OK

and f ∈ HomMF f,p−1
tor,OK

(M, N). Then f is strict 
with filtrations in the sense that f(M i) = f(M) ∩N i for all i.

We note also that MF f,p−1
tor,OK

is an abelian category, as follows from [12], Proposi-
tion 1.8.

Definition 2.8. Let A ∈ CkL
. For every embedding σ : K ↪→ Qp, we denote by eσ the 

element of OK

⊗
Zp

A whose component at σ is 1 and all other components are 0, in the 
sense of Lemma 2.19. If M is a Fontaine–Laffaille module over A, put Mσ = eσ ·M and 
M i

σ = eσ ·M i for all i.

Note that for all σ, τ(eσ) = eσ·Frob−1 ; thus if M is a Fontaine–Laffaille module over A
of rank n, then φi(M i

σ) ⊆ Mσ·Frob−1 for all i, and Mσ·Frob−1 =
∑

i φ
i(M i

σ). Considering 
Mσ as an A-module in the natural way, Mσ is free over A of rank n, and the M i

σ are 

free direct summands. Any i for which Mi
σ

Mi+1
σ

	= 0 is called a labelled Hodge–Tate weight 

for M (with label σ); the multiplicity of the label is rkA( Mi
σ

Mi+1
σ

). The multiset of labelled 
Hodge–Tate weights (counted with multiplicity) of a Fontaine–Laffaille module M over 
A for any embedding σ will be denoted as HTσ(M).

Remark 2.9. The definition of Hodge–Tate weights for Fontaine–Laffaille modules given 
above is consistent with the contravariant Fontaine–Laffaille functor US introduced in 
Theorem 2.10 and the convention adopted that the cyclotomic character has weight +1. 
That is, under this convention, we have that HTσ(M) = HTσ(US(M)) for any M ∈
MF f,p−1

tor,OK

⊗
Zp

A.

The main reason for our interest in Fontaine–Laffaille modules is the following fun-
damental Theorem of [12] – see also [4].
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Theorem 2.10.

(1) There is a contravariant functor

US : MF f,p−1
tor,OK

−→ RepfZp
(GK)

which is exact, additive, faithful, and length preserving in the sense that
lgZp

(US(M)) = lgOK
(M) for all M ∈ MF f,p−1

tor,OK
. Moreover, M has the same in-

variant factors over OK as US(M) does over Zp.
(2) US is full when restricted to either of the full subcategories MF f,p−1,′

tor,OK
or MF f,p−1,′′

tor,OK

of MF f,p−1
tor,OK

.
(3) For A ∈ CkL

, every object in the essential image of US on MF f,p−1
tor,OK

⊗
Zp

A is 
crystalline in the sense of Definition 2.1. For any 0 ≤ r ≤ p − 2, US gives 
an anti-equivalence of categories between MF f,r

tor,OK

⊗
Zp

A and its essential image 

Repcris,≤r
A (GK).

For convenience we will sometimes replace the functor US above with the covariant 
version U(M) = HomZp

(US(M), Qp

Zp
).

We now give some simple results on the Fontaine–Laffaille functor that will be needed 
later.

Proposition 2.11.

(1) Let M be a rank n Fontaine–Laffaille module over A. Then US(M) is free over A
of rank n.

(2) Let A −→ B be a morphism in CkL
and M be a rank n Fontaine–Laffaille module 

over A. Then U(M
⊗

A B) = U(M) 
⊗

A B.
(3) Let 0 ≤ r ≤ p − 2 and ρ : GK −→ GLn(kL) be a residual crystalline representation 

with Hodge–Tate weights in the range [0, r]. Then the subfunctor D�,cris
ρ ⊆ D�

ρ , 
which associates to A ∈ CkL

the set of crystalline lifts of ρ to A with Hodge–Tate 
weights in the range [0, r], is a deformation condition.

Proof. See [16]. �
Remark 2.12. This is a straightforward extension of section 2 of [15].

Given two Fontaine–Laffaille representations ρ1, ρ2 and an embedding σ, we write 
HTσ(ρ1) > HTσ(ρ2) if there is an integer j such that all elements of HTσ(ρ1) are 
greater than or equal to j, and all elements of HTσ(ρ2) are strictly less than j. Note this 
same notation works in characteristic 0 and p.
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Proposition 2.13. Let ρi (i = 1, 2) be irreducible characteristic 0 Fontaine–Laffaille 
representations. Assume that for each σ, we have HTσ(ρ1) > HTσ(ρ2). Then unless 
ρ1 ∼= χp

⊗
ρ2, every extension of ρ2 by ρ1 is Fontaine–Laffaille. In the exceptional case, 

the space of Fontaine–Laffaille extensions is a subspace of the space of all extensions 
which is of codimension 1.

Proof. This follows from a straightforward calculation of Euler characteristics and an 
application of local Tate duality; see [16] for the details. �
2.2. Classification of low rank Fontaine–Laffaille modules

As an illustration of these ideas, we classify Fontaine–Laffaille modules of small rank. 
See [16] for more details.

Example 2.14. Let M be a rank 1 Fontaine–Laffaille module over A, with labelled Hodge–
Tate weights (iσ)σ. Then M is specified by the collection (iσ)σ of labelled Hodge–Tate 
weights together with a unit a ∈ A×. In particular we see that the rank 1 crystalline de-
formation functor over an unramified base is smooth of relative dimension 1. The reader 
should compare this with Remark 3.3.

Example 2.15. Suppose K = Qp. We classify the rank 2 Fontaine–Laffaille modules 
over A.

Let i ≤ j be the Hodge–Tate weights of a rank 2 Fontaine–Laffaille module M . If i = j

then φi is specified up to a choice of basis by a matrix φi ∈ GL2(A). The corresponding 
representation will be the ith cyclotomic twist of an unramified representation whose 
action on Frobenius is specified by φi.

So suppose i < j, and consider the A-line M j ⊂ M . For convenience, we use the 
notation N

⊕
f M for extensions of Fontaine–Laffaille modules, details of which can be 

found in the proof of Proposition 2.17. Also, for an integer i in the range 0 ≤ i ≤ p − 2
and a unit a ∈ A×, (i, a) will denote the rank 1 Fontaine–Laffaille module of weight i
and parameter a as in the previous example. There are then 3 cases.

(1) φj(M j) = M j . In this case, there exist units a, d ∈ A× depending only on M such 
that M splits as (i, a) 

⊕
(j, d) (in other words, M ∼= (i, a) 

⊕
0(j, d) in the notation 

of Proposition 2.17).
(2) φj(M j) 

⊕
M j = M . In this case M is irreducible and is specified by 2 parameters 

a ∈ mA, c ∈ A× which depend only on M . A basis for M as a filtered module can 
be chosen such that the matrix of φ takes the form

(
a 1
c 0

)
.
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This follows from the observation that any basis {e} for M j gives a basis {φj(e), e}
for M . We require that a ∈ mA since otherwise the module constructed here is 
isomorphic to the non-split extension (i, a +y ·pj−i) 

⊕
−y−1(j, −y) in the notation of 

Proposition 2.17, where y ∈ A× is any root of the polynomial pj−iy2 + ay − c (that 
this polynomial has a root in A× follows from Hensel’s lemma).
The corresponding representation is irreducible. Note that in particular, when 
A = Fp, there is only one such representation up to unramified twist. One sees 
also that if ρ corresponds to such a Fontaine–Laffaille module, then the crys-
talline deformation problem for ρ is smooth of relative dimension 2 over Zp, and so 
(since ρ is irreducible of dimension 2), the crystalline framed deformation problem 
is smooth of relative dimension 5. The reader should compare this with Theo-
rem 3.2.

(3) φj(M j) 	= M j but φj(M j) ∩M j 	= 0. In this case, by Hensel’s lemma, one shows that 
∃ 0 	= b ∈ mA (determined by M up to unit), and a, d ∈ A× (determined uniquely 
by M) such that M is isomorphic to the non-split extension (i, a) 

⊕
b(j, d) in the no-

tation of Proposition 2.17. All such modules, and the corresponding representations, 
are residually split.

In particular in the case when ρ is upper triangular with strictly decreasing Hodge–
Tate weights, the upper triangular crystalline framed deformation problem associated to 
ρ (as in Theorem 3.6) is smooth of relative dimension 3, since one must specify lifts of 
the quantities a, b, and d. The reader should compare this with Corollary 3.7.

2.3. Extensions of Fontaine–Laffaille modules

Finally we establish an important result on the structure of the group of exten-
sion classes in the category of Fontaine–Laffaille modules. We will need the following 
lemma.

Lemma 2.16. Let A ∈ CkL
. Let M and N be Fontaine–Laffaille modules over A, and y ∈

HomFil,OK

⊗
Zp

A(M, N). Suppose we have elements mi ∈ M i such that 
∑

i φ
i
M (mi) = 0. 

Then 
∑

i φ
i
N (y(mi)) = 0.

Proof. Beginning with the smallest filtered piece of M , we may repeatedly extend bases 
from the direct summands M i until we obtain a basis for M . Denoting by M̃ j the span 
of only those basis elements introduced when extending to M j, we can therefore write 
each mi as a sum:

mi =
∑
j≥i

mi,j

where mi,j ∈ M̃ j . Since y preserves the filtration, y(mi,j) ∈ N j . By assumption,
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0 =
∑
i

φi
M (mi) =

∑
j

∑
i≤j

φj
M (pj−imi,j)

from which conclude that 
∑j

i=1 p
j−imi,j = 0 for all j, since φj

M is injective on M̃ j , and 
M =

⊕
j φ

j
M (M̃ j). Thus

∑
i

φi
N (y(mi)) =

∑
j

∑
i≤j

pj−iφj
N (y(mi,j)) = 0

as required. �
We can now state the main result of this section.

Proposition 2.17. Suppose A ∈ CkL
. Let M and N be Fontaine–Laffaille modules over A. 

Then we have an exact sequence:

0 −→ HomMF f,p−1
tor,OK

⊗
Zp

A(M,N) −→ HomFil,OK
⊗

Zp
A(M,N) −→

−→ HomOK
⊗

Zp
A(M,N) −→ Ext1

MF f,p−1
tor,OK

⊗
Zp

A
(M,N) −→ 0.

Proof. The construction of this sequence is similar to that performed in the proof of 
Proposition 2.16 in [9]. For convenience we give some details here.

Given y ∈ HomFil,OK
⊗

Zp
A(M, N), define φ(y) ∈ HomOK

⊗
Zp

A(M, N) as follows: if 
m =

∑
i φ

i
M (mi) then φ(y)(m) =

∑
i φ

i
N (y(mi)). This is well defined by Lemma 2.16. 

The equation Ker(φ −1) = HomMF f,p−1
tor,OK

⊗
Zp

A(M, N) is then an immediate consequence.
For any f ∈ HomOK

⊗
Zp

A(M, N) we can construct an extension which we will de-
note N

⊕
f M as follows: the filtration structure is (N

⊕
f M)i = N i

⊕
M i, and φi

sends the pair (ni, mi) to (φi
N (ni) + f(φi

M (mi)), φi
M (M i)). It is trivial to check that 

the resulting module satisfies the definition. In this way we have obtained a map 
HomOK

⊗
Zp

A(M, N) −→ Ext1
MF f,p−1

tor,OK

⊗
Zp

A
(M, N). Unravelling, we see that a map 

f lies in the kernel precisely when there is a θ, necessarily of the form θ(n, m) =
(n + y(m), m) with y ∈ HomFil,OK

⊗
Zp

A(M, N), fitting in to the commutative diagram

0 −−−−→ N −−−−→ N
⊕

f M −−−−→ M −−−−→ 0⏐⏐� ⏐⏐� ⏐⏐�
0 −−−−→ N −−−−→ N

⊕
M −−−−→ M −−−−→ 0

(where the leftmost and rightmost arrows are the identity) and such that φi
N(y(mi)) =

y(φi
M (mi)) + f(φi

M (mi)) for all i and elements mi ∈ M i, by φ-compatibility of θ. 
In other words, the kernel consists precisely of those f of the form φ(y) − y for 
y ∈ HomFil,OK

⊗
A(M, N).
Zp
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It remains to show this map is surjective. Given D ∈ Ext1
MF f,p−1

tor,OK

⊗
Zp

A
(M, N), we 

have D ∼= N
⊕

M as filtered modules. Pick filtration compatible linear sections a :
D −→ N and b : M −→ D. We may then define a map f : M −→ N by sending φi

M (mi)
to a(φi

Db(mi)) and extending linearly. Again this is well-defined by Lemma 2.16, thus 
exhibiting D as lying in same class as N

⊕
f M . The result follows. �

Note that the formation of this exact sequence commutes with base extension in the 
sense that, if A −→ B is a map in the category CkL

, the resulting exact sequence over 
B is obtained by tensoring each term with B over A. Also by Fontaine–Laffaille theory, 
HomMF f,p−1

tor,OK

⊗
Zp

A(M, N) ∼= HomA[GK ](US(N), US(M)) provided that M and N lie in 

MF f,r
tor,OK

⊗
Zp

A (by Theorem 2.10, part 3). In particular, the first term in the exact 
sequence is free over A. The third term is also free over OK

⊗
Zp

A and hence over A. 
Thus by a repeated application of Lemma 2.20 below, we see that all terms are in fact 
free over A.

Definition 2.18. We denote the A-rank of HomFil,OK

⊗
Zp

A(M, N) as dM,N , or simply as 
dM in the special case where M = N . Observer that this quantity depends only on the 
labelled Hodge–Tate weight structure of M and N .

There are two notable cases.

(1) Suppose for every σ : K ↪→ Qp that HTσ(M) > HTσ(N). There is thus an 
integer i (depending on σ) such that N i

σ = 0 and M i
σ = Mσ. It follows that 

HomFil,OK

⊗
Zp

A(M, N) = 0, so dM,N = 0 and Ext1
MF f,p−1

tor,OK

⊗
Zp

A
(M, N) has rank 

[K : Qp]rk(M1)rk(M2) over A by Proposition 2.17. Note that this is the maximum 
possible value for rkA(Ext1

MF f,p−1
tor,OK

⊗
Zp

A
(M, N)). We call this case the Hodge–Tate

case.
(2) Suppose conversely that for every σ, HTσ(N) > HTσ(M). There is thus an in-

teger i (depending on σ) such that N i
σ = Nσ and M i

σ = 0. Pick any f ∈
HomMF f,p−1

tor,OK

⊗
Zp

A(M, N) and m ∈ Mσ·Frob−1 . We may write m =
∑

j<i φ
j
M (mj)

for appropriate mj ∈ M j
σ. We then have

f(m) =
∑
j<i

φj
N (f(mj)) =

∑
j<i

pi−jφi
N (f(mj)) ∈ p ·Nσ·Frob−1

and so f(M) ⊆ p · N . By induction one then sees that in fact f(M) ⊆ pr · N for 
every r ∈ N, and so since pr ·N = 0 for sufficiently large r we conclude that f = 0.
On the other hand, since N i

σ = Nσ and M i
σ = 0, it follows that every ele-

ment of HomOK
⊗

Zp
A(M, N) preserves the filtration. We conclude dM,N = [K :

Qp]rk(M1)rk(M2) and Ext1
MF f,p−1

tor,OK

⊗
Zp

A
(M, N) = 0. We call this case the anti-

Hodge–Tate case.



T. Kalloniatis / Journal of Number Theory 199 (2019) 229–250 239
2.4. Commutative algebra

We end this chapter with a few simple commutative algebra facts that were referred 
to in this chapter or will be needed in the following.

We record the following lemma, whose proof is straightforward.

Lemma 2.19. Let A ∈ CkL
. Then the map OK

⊗
Zp

A −→
∏

σ A which sends x ⊗ y to 

(σ(x) · y)σ, where the product runs over all embeddings σ : K ↪→ Qp, is an isomorphism.

Given an element of OK

⊗
Zp

A, we may thus refer to its σ-component for any em-
bedding σ.

Lemma 2.20. Let A be a local ring.

(1) Suppose N is a free finitely generated A-module and M is a free submodule of N
such that the reduced map M −→ N is an injection. Then M is a direct summand.

(2) Let

0 −→ M −→ D −→ N −→ 0

be an exact sequence of finitely generated A-modules with M and N free over A. 
Then D is free.

Proof. See [16] for details. �
3. Smoothness of crystalline framed deformation functors and universally twistable 
lifts

In this section we prove the main results of this article on the representability 
and formal smoothness of framed deformation functors associated to various classes 
of Fontaine–Laffaille Galois representations. We also provide calculations on the dimen-
sions of these functors, and apply the main theorems to the problem of the existence of 
universally twistable lifts of Fontaine–Laffaille representations.

3.1. Representability and formal smoothness

The first main result we demonstrate is the smooth representability of the framed de-
formation problem associated to an irreducible Fontaine–Laffaille representation. Note 
that in [6], Corollary 2.4.3, a similar result is demonstrated for (not necessarily irre-
ducible) representations with the property that, for all σ : K ↪→ Qp, the labelled 
Hodge-weights for σ occur with multiplicity 1 (so in particular, n ≤ p + 1). To re-
move this condition we are forced to take a different approach, motivated by a counting 
argument from [15] which there is applied to flat deformations.
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Definition 3.1. For a Fontaine–Laffaille representation ρ : GK −→ GLn(kL), let D�,cris
ρ

denote the associated framed deformation functor that associates to A ∈ CkL
the set 

of all continuous crystalline lifts ρ : GK −→ GLn(A) with Hodge–Tate weights in the 
Fontaine–Laffaille range (and sends morphisms to the natural map).

Note that this is a relatively representable subfunctor of the (unframed) deformation 
functor which associates A with the strict equivalence class of continuous crystalline lifts 
of ρ. For more discussion on deformation functors, see for example [16].

Theorem 3.2. Let ρ : GK −→ GLn(kL) be an irreducible Fontaine–Laffaille represen-
tation, with associated crystalline framed deformation functor D�,cris

ρ . Let M be the 

rank n Fontaine–Laffaille module associated with ρ as in Theorem 2.10. Then D�,cris
ρ is 

represented by a power series ring over OL in n2([K : Qp] + 1) − dM variables.

Proof. The argument is based on a generalisation of that found in [15].
By Proposition 2.17 we have (since ρ is irreducible) that Ext1MF (M, M) is of rank 

n2[K : Qp] + 1 − dM over kL. From the theory of representable functors, we see that 
the associated deformation problem is representable by a ring RM , and that there is a 
surjection

OL[[(Ti)
n2[K:Qp]+1−dM
i=1 ]] � RM

of OL-algebras. It suffices to prove that this is in fact an isomorphism, since in this case 
the associated framed deformation problem will be represented by a power series ring 
over OL in rkOL

(RM ) + n2 − 1 variables (as ρ is irreducible).
Supposing without loss of generality that L is unramified over Qp, we count for 

each r ∈ N the lifts M of M to OL/p
r. We will show that there are precisely 

q(r−1)(n2[K:Qp]+1−dM ), where q is the size of the residue field of L; since this is the 

number of OL/p
r-points of OL[[(Ti)

n2[K:Qp]+1−dM
i=1 ]] we deduce that the above map is 

an isomorphism (for any f in the kernel, f(t1, t2, . . . , tn2[K:Qp]+1−dM
) = 0 whenever 

t1, t2, . . . , tn2[K:Qp]+1−dM
∈ pOL, which implies f = 0).

We are thus seeking matrices φ ∈ GLn(OK

⊗
Zp

OL/p
r) with specified reduction 

φ ∈ GLn(OK

⊗
Zp

kL), determined up to τ -semilinear conjugation by a matrix R which 
preserves the filtration on M and reduces to the identity modulo p.

There are q(r−1)n2[K:Qp] choices for φ, and q(r−1)dM choices for R. Of these, since M
is irreducible, qr−1 commute with each φ in the sense that τ -semilinear conjugation by 
R preserves φ; or in other words, that

φσRσ = Rσ·Frob−1φσ

for every σ : K ↪→ L. There are thus q(r−1)(n2[K:Qp]+1−dM ) lifts of M up to isomorphism, 
as required. �
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Remark 3.3. If n = 1 then dM = [K : Qp] and so D�,cris
ρ is smooth of rank 1, as expected.

We will now extend this result to the situation where ρ is block upper triangular with 
n diagonal blocks. To this end, we make the following definition.

Definition 3.4. Suppose

ρ =

⎛
⎜⎜⎜⎜⎝

ρ1 ∗ . . . ∗
0 ρ2 . . . ∗
...

...
. . .

...
0 0 . . . ρr

⎞
⎟⎟⎟⎟⎠

is a block upper triangular representation of a group G valued in some ring A. Given a 
positive integer i ≤ r, the ith truncation of ρ is the representation

ρ≤i =

⎛
⎜⎜⎜⎜⎝

ρ1 ∗ . . . ∗
0 ρ2 . . . ∗
...

...
. . .

...
0 0 . . . ρi

⎞
⎟⎟⎟⎟⎠ .

Remark 3.5. Assuming that ρ and ρ1, ρ2, . . . , ρr as above are Fontaine–Laffaille rep-
resentations of GK valued in some ring A ∈ CkL

, all truncations ρ≤i of ρ are also 
Fontaine–Laffaille. This follows from Theorem 2.10 together with the fact that MF f,p−1

tor,OK

is an abelian category ([12], Proposition 1.8).

In the situation of the above remark, we will denote the Fontaine–Laffaille module as-
sociated to ρ≤i as M≤i, and the Fontaine–Laffaille module associated to ρ≤i−1 as M<i, for 
i ≤ r. Note that M≤i ∈ Ext1

MF f,p−1
tor,OK

⊗
Zp

A
(M<i, Mi), where Mi is the Fontaine–Laffaille 

module associated to ρi.
We are now in a position to prove the following theorem.

Theorem 3.6. For i = 1, 2, . . . , r, let ρi : GK −→ GLni
(kL) be irreducible Fontaine–

Laffaille representations, with framed deformation functors D�,cris
i , and associated 

Fontaine–Laffaille modules Mi, of rank ni. Fix a Fontaine–Laffaille representation ρ
which is block upper triangular with ρ1, ρ2, . . . , ρr (not necessarily distinct) on the diago-
nal, and define a functor Fρ : CkL

−→ Set which sends a ring A to the set of crystalline 
lifts ρ of ρ to A of the form

ρ =

⎛
⎜⎜⎜⎜⎝

ρ1 ∗ . . . ∗
0 ρ2 . . . ∗
...

...
. . .

...
0 0 . . . ρ

⎞
⎟⎟⎟⎟⎠
r
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for ρi ∈ D�,cris
i (A) (i = 1, 2, . . . , r). Then Fρ is representable. Moreover, the natural 

map Fρ −→
∏r

i=1 D
�,cris
i is smooth of relative dimension 

∑r
i=1 di, where

di = (
∑
j<i

nj)ni([K : Qp] + 1) − dM<i,Mi
.

Proof. Suppose first that r = 2. It suffices to prove that the collection Z1
crys,A(ρ2, ρ1) of 

crystalline cocyles is a free A-module of rank n1n2([K : Qp] +1) −dM1,M2
, for any A ∈ CkL

and pair of lifts (ρ1, ρ2) ∈ (D�,cris
1 × D�,cris

2 )(A). Note that crystalline cocyle refers to 
any cocyle map whose image lies in H1

crys,A(ρ2, ρ1). Letting B1
crys,A(ρ2, ρ1) denote the 

kernel of this map (the collection of crystalline coboundaries), we have an exact sequence

0 −→ HomGK
(ρ2, ρ1) −→ Matn1×n2(A) −→ B1

crys,A(ρ2, ρ1) −→ 0

and so B1
crys,A(ρ2, ρ1) is free over A of rank n1n2 − dim(HomGK

(ρ2, ρ1)) by part 1 of 
Lemma 2.20.

By Proposition 2.17 and the discussion following it, H1
crys,A(ρ2, ρ1) is free over A of 

rank n1n2[K : Qp] + dim(HomGK
(ρ2, ρ1)) − dM1,M2

.2 From the exact sequence

0 −→ B1
crys,A(ρ2, ρ1) −→ Z1

crys,A(ρ2, ρ1) −→ H1
crys,A(ρ2, ρ1) −→ 0

and Lemma 2.20 (part 2), we deduce the result.
Now let r be arbitrary. For i = 1, 2, . . . , r, let Fρ,i be the crystalline lift functor 

corresponding to the ith truncation of ρ. We have just seen that Fρ,2 −→ D�,cris
1 ×D�,cris

2
is relatively representable and smooth of relative dimension d2. Suppose that Fρ,r−1 −→
Fρ,r−2 ×D�,cris

r−1 is relatively representable and smooth of relative dimension dr−1. Then 
by the same reasoning as for the case r = 2, Fρ,r −→ Fρ,r−1 × D�,cris

r is relatively 
representable and smooth of relative dimension dr. Thus the result follows by induction 
on r. �
Corollary 3.7. Let notation be as in Theorem 3.6. Then Fρ is represented by a power 
series ring over OL in ([K : Qp] + 1)(

∑
i,j:i≤j ninj) −

∑r
i=1 dM≤i,Mi

variables.

Proof. By Theorem 3.2, each D�,cris
i for i = 1, 2, . . . , r is smooth of relative dimension 

ci, for ci = n2
i ([K : Qp] + 1) − dMi

. The result then follows from Theorem 3.6 after 
observing that

ci + di = (
∑
j≤i

nj)ni([K : Qp] + 1) − dM≤i,Mi
,

using the fact that M≤i = M<i

⊕
Mi as filtered modules. �

2 Note that H1
crys,A(ρ2, ρ1) is identified with Ext1

MFf,p−1
tor,OK

⊗
Zp

A
(M1, M2); the rank then follows by dimen-

sion counting along the exact sequence in Proposition 2.17.
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Remark 3.8. In Corollary 2.4.3 of [6] it is shown that if ρ is an n-dimensional crystalline 
representation of GK with labelled Hodge–Tate weights all of multiplicity 1, then the 
crystalline framed deformation problem for ρ is representable by a power series ring over 
OL in n2 + [K : Qp]n(n−1)

2 variables. Note that if ρ is irreducible and corresponds to the 

Fontaine–Laffaille module M then dM = [K : Qp]n(n+1)
2 and so this result is a special 

case of Theorem 3.2.

Example 3.9. Suppose ρ is an r-dimensional upper triangular Fontaine–Laffaille repre-
sentation with Fontaine–Laffaille characters χ1, χ2, . . . , χr on the diagonal, and that χj

has labelled Hodge–Tate weights ij,σ for 1 ≤ j ≤ r. Then Fρ is represented by a power 
series ring over OL in

r(r + 1)
2 +

∑
a≤b

#{σ | ib,σ < ia,σ}

variables. In particular, if ρ is ordinary in the sense that ib,σ < ia,σ for all σ when a < b

then the dimension is r + r(r−1)
2 ([K : Qp] + 1).

3.2. Dimension bounds

Suppose ρ is irreducible Fontaine–Laffaille of dimension n, and corresponds to the 
Fontaine–Laffaille module M . It is straightforward to show that

[K : Qp]
n(n + 1)

2 ≤ dM ≤ [K : Qp]n2.

Hence the crystalline framed deformation problem for ρ is smooth of relative dimen-
sion cρ, where

n2 ≤ cρ ≤ n2 + [K : Qp]
n(n− 1)

2 .

The lower bound here comes from being able to twist by any representation which is 
unramified and residually trivial, and is attained only if all labelled Hodge–Tate weights 
occur with multiplicity n; in other words, when ρ is a twist by some character of an 
unramified representation.

Now suppose ρ1, ρ2, . . . , ρr are irreducible Fontaine–Laffaille of dimension n, and cor-
respond to the Fontaine–Laffaille modules M1, M2, . . . , Mr. Let ρ be a Fontaine–Laffaille 
representation of GK which is upper triangular with ρ1, ρ2, . . . , ρr on the diagonal. Using 
the notation of Theorem 3.6,

(i− 1)n2 ≤ di ≤ ([K : Qp] + 1)(i− 1)n2
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for each i, which implies by taking the sum over i that

r(r + 1)
2 n2 ≤ dimOL

Fρ ≤ r(r + 1)
2 n2 + rn(rn− 1)

2 [K : Qp].

3.3. Application to universal twistable lifts

We now discuss how the results of this chapter can be applied to the work on so-called 
“universally twistable lifts” carried out in [13]. We first review some of the definitions in 
that paper. We temporarily remove all restrictions on notation that have been present 
up until now, and assume only that K is a finite extension of Qp, and L is a subfield of 
Qp containing the images of all embeddings σ : K ↪→ Qp with residue field kL.

Let ρ : GK −→ GLn(kL) be any representation, and denote by V the underlying 
kL[GK ]-module. Suppose 0 = U0 � U1 � . . . � Ur = V is an increasing filtration of V
by kL[GK ]-submodules, and put Vi = Ui/Ui−1 for i = 1, 2, . . . , r.

Definition 3.10. ρ admits a universally twistable lift with respect to the filtration (Ui)ri=0
if there exists lifts Vi of Vi to OL for i = 1, 2, . . . , r, together with, for every r-tuple of 
unramified residually trivial characters (ψ1, ψ2, . . . , ψr) of GK , a lift V (ψ1, ψ2, . . . , ψr)
of V to OL, satisfying the following additional properties for i = 1, 2, . . . , r:

(1) V (ψ1, ψ2, . . . , ψr) has an increasing filtration by OL[GK ]-submodules 0 = U(ψ1, ψ2,

. . . , ψr)0 � U(ψ1, ψ2, . . . , ψr)1 � . . . � U(ψ1, ψ2, . . . , ψr)r = V (ψ1, ψ2, . . . , ψr) which 
are free OL-direct summands, such that U(ψ1, ψ2, . . . , ψr)i/U(ψ1, ψ2, . . . , ψr)i−1 ∼=
Vi

⊗
OL

ψi.
(2) The reduction V (ψ1, ψ2, . . . , ψr) 

⊗
OL

kL ∼= V induces reductions U(ψ1, ψ2, . . . , ψr)i⊗
OL

kL ∼= Ui.
(3) The submodule U(ψ1, ψ2, . . . , ψr)i depends up to isomorphism only on (ψ1, ψ2,

. . . , ψi), and not on (ψi+1, ψi+2, . . . , ψr).

Definition 3.11. ρ admits a universally twistable lift if it does so with respect to a sat-
urated filtration (Ui)ri=0; here we say that a filtration (Ui)ri=0 is saturated if the graded 
pieces Vi = Ui/Ui−1 are absolutely irreducible, for all i = 1, 2, . . . , r.

Example 3.12. If ρ is semisimple then it admits a universally twistable lift. Indeed, 
choosing the saturated filtration (Ui)ri=0 displaying ρ as block diagonal with represen-
tations ρ1, ρ2, . . . , ρr on the diagonal, we know from [16] that each ρi lifts to OL (for 
i = 1, 2, . . . , r). We can therefore choose any lifts Vi of Vi and a family of block diagonal 
lifts V (ψ1, ψ2, . . . , ψr) of V to OL.

We now show that, in addition to semisimple representations as discussed above, the 
class of Fontaine–Laffaille representations also admit universally twistable lifts.
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Theorem 3.13. Suppose K is unramified over Qp, and let ρ : GK −→ GLn(kL) be a 
representation with underlying space V and an increasing saturated filtration (Ui)ri=0 by 
kL[GK ]-submodules. Assume additionally that ρ is Fontaine–Laffaille (in the sense of 
Definition 2.1) with Hodge–Tate weights in the range [a, a + p − 2] for some integer a. 
Then ρ admits a universally twistable lift. Moreover, the lifts V (ψ1, ψ2, . . . , ψr) of V to 
OL are Fontaine–Laffaille for every r-tuple of unramified residually trivial characters 
(ψ1, ψ2, . . . , ψr) of GK .

Remark 3.14. This is essentially the statement of Proposition 2.2.1 of [13]. We now give 
a proof using the methods of this article.

Proof. For i = 1, 2, . . . , r, let ρi be the representation of GK whose underlying space is Vi. 
Then ρi is irreducible and Fontaine–Laffaille for all i. Put ni = dim(ρi). By Theorem 3.2, 
each Vi lifts to a crystalline Vi since D�,cris

i is smooth of dimension at least n2
i ≥ 1 from 

the discussion of the previous section.
Now, given any r-tuple of unramified residually trivial characters (ψ1, ψ2, . . . , ψr)

of GK , we may inductively lift Ui to an OL[GK ]-submodule U(ψ1, ψ2, . . . , ψr)i con-
taining U(ψ1, ψ2, . . . , ψr)i−1 which is a free OL-direct summand depending only on 
(ψ1, ψ2, . . . , ψi) with U(ψ1, ψ2, . . . , ψr)i/U(ψ1, ψ2, . . . , ψr)i−1 ∼= Vi

⊗
OL

ψi, since, in the 

notation of Theorem 3.6, Fρ,i −→ Fρ,i−1 × D�,cris
i is smooth of relative dimension at 

least ni

∑
j<i nj ≥ 1, again from the discussion of the previous section.

In this way we have constructed the lift V (ψ1, ψ2, . . . , ψr) of V . �
We note in passing that the proof of this theorem gives an explicit understanding 

of the freedom we have in constructing the universally twistable lift of V as above. 
In particular, we may lift each Vi arbitrarily (and the set of allowable lifts is of rank 
n2([K : Qp] + 1) − dVi

over OL for i = 1, 2, . . . , r), and given any lifts, the collection 
of allowable lifts of Ui at each stage i is parametrised by a free OL-module of explicitly 
calculable (non-zero) rank.

4. Generalisations

We can hope to generalise the theorems of Section 3.1 in several ways. Three particular 
avenues for generalisation are:

(1) Relax the unramified condition on the extension K of Qp.
(2) Consider other classes of representations, such as semistable representations.
(3) Relax the condition on the Hodge–Tate weights being inside the Fontaine–Laffaille 

range.

It seems that all of these questions will need techniques outside those discussed in this 
article to be answered fully; however, in this section we will make a few brief remarks 



246 T. Kalloniatis / Journal of Number Theory 199 (2019) 229–250
about the second question, and also explore the third question in the situation where 
the departure from the Fontaine–Laffaille range is relatively “mild”. In full generality 
however, note that we do not expect formal smoothness, as in for example Theorem 3.2, 
to continue to hold.

4.1. Semistable representations

A natural approach to the second question would be to establish a category of semi-
linear algebra data analogous to Fontaine–Laffaille modules which, in a similar way to 
Theorem 2.10, correspond with subcategories of semistable representations. There is 
some hope here as, in the characteristic zero situation, semistable representations (with 
coefficients) correspond to so-called “weakly admissible (φ, N)-modules” (see Theorem A 
of [7]).

However, there are issues with simply adding a “monodromy operator” N to the 
definition of a Fontaine–Laffaille module, since demanding that Nφi+1 = φiN requires 
that N(M i+1) ⊆ M i for all i, but the analogous property is not true of all weakly 
admissible (φ, N)-modules. See [2] and [3] for an alternative approach, which may give 
a sufficiently concrete correspondence to allow the methods of this article to extend to 
certain subcategories of semistable representations.

4.2. Hodge–Tate weights outside the Fontaine–Laffaille range

We now discuss two possible approaches to the third question.

4.2.1. (φ, Γ)-modules, Wach modules, and crystalline representations
A possible approach to this question would be to seek semilinear algebraic data to 

categorise crystalline representations where no restrictions on the labelled Hodge–Tate 
weights are imposed. This is done in [18] and [1]; a good summary, particularly of the 
generalisation needed to allow coefficients, can be found in [5], upon which this subsection 
is based. See also [16] and [14], particularly sections 3.2 and 3.3.

Assume K is unramified over Qp and L is a finite extension of Qp containing the image 
of all embeddings σ : K ↪→ Qp. Recall the construction (see for example [16]) of the rings 
A+

K,L ⊆ AK,L (respectively B+
K,L ⊆ BK,L) equipped with an OL-linear (respectively 

L-linear) action of φ and ΓK = GK/Ker(χp). We write π for the distinguished element 
on which φ and ΓK act as φ(π) = (1 + π)p − 1 and g(π) = (1 + π)χp(g) − 1 for g ∈ ΓK . 
We then make the following definition.

Definition 4.1. A (φ, Γ)-module over AK,L (respectively BK,L) is a finitely generated 
AK,L-module (respectively BK,L-module) M with continuous semilinear commuting ac-
tions of a Frobenius endomorphism φM and of ΓK . M is étale if the image of φM

spans M over AK,L (respectively if M contains a φM -stable AK,L-lattice which is étale 
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over AK,L). We denote the category of étale (φ, Γ)-modules over AK,L (respectively 
BK,L) as Mφ,Γ,et

AK,L
(respectively Mφ,Γ,et

BK,L
).

Our main interest in (φ, Γ)-modules is the following result.

Proposition 4.2. There is a tensor-equivalence of categories

D : RepOL
(GK) −→ Mφ,Γ,et

AK,L

which preserves rank in the sense that V ∈ RepOL
(GK) is free over OL of rank d if and 

only if D(V ) is free over AK,L of rank d. Moreover, inverting p leads to an equivalence

D[ 1
p
] : RepL(GK) −→ Mφ,Γ,et

BK,L

Proof. This is essentially Theorem 3.4.3 of [11], augmented to coefficients in OL (or L). 
For more details, see [5], especially Corollary 2.13. �

It remains to determine which objects in Mφ,Γ,et
AK,L

correspond to crystalline represen-
tations.

Definition 4.3. Let k ∈ N. A Wach module over A+
K,L (respectively B+

K,L) with weights at 
most k is a free finite rank A+

K,L-module (respectively B+
K,L-module) N with an action 

of ΓK that is trivial modulo π, together with a commuting action φN of Frobenius on 
N [ 1

π ] such that N is stable by φN and N/φN (N) is killed by (φ(π)/π)k.

Proposition 4.4.

(1) V ∈ RepL(GK) is crystalline with labelled Hodge–Tate weights between 0 and k if and 
only if D[ 1p ](V ) contains a Wach module of rank dimL(V ) with weights at most k. 
This Wach module is unique if it exists, and is denoted N(V ).

(2) For V ∈ RepcrisL (GK), there is a bijection

T �→ N(V ) ∩D(T )

between GK-stable OL-lattices T ⊆ V and A+
K,L-lattices in N(V ) which are Wach 

modules over A+
K,L.

Proof. See [1], Theorem 2 and [5], especially Corollary 2.19. �
The above result gives some hope that Definition 2.1 may be used to define and study 

crystalline representations with Hodge–Tate weights outside the Fontaine–Laffaille range 
by understanding Wach modules with A-structure for A ∈ CkL

.
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4.2.2. An outlook on smooth representability of crystalline framed deformation functors 
outside the Fontaine–Laffaille range

Provided that the departure from the Fontaine–Laffaille range is relatively elementary, 
there are some more concrete results we can give. To approach this, we first establish a 
more general result on smooth representability of framed deformation functors in the sit-
uation where there is no restriction on the extension classes we allow. We then apply this 
to establish a generalisation of the main results of this chapter in the situation where the 
Hodge–Tate weights may fall outside the Fontaine–Laffaille range, but where we never-
theless have an understanding of crystalline extensions by mimicking the “Hodge–Tate” 
case.

Fix representations ρi : GK −→ GLni
(kL) (i = 1, 2) and assume that both pairs 

(ρ1, ρ2) and (ρ1, χp⊗ρ2) have no Jordan–Hölder factors in common. Fix any deformation 
problems D�,Xi

ρi
(i = 1, 2), together with an extension ρ ∈ Ext1(ρ2, ρ1), and define a 

functor FX
ρ : CkL

−→ Set sending A to the set of lifts ρ of ρ to A with the property that

ρ =
(
ρ1 ∗
0 ρ2

)

for ρi ∈ D�,Xi

ρi
(A) (i = 1, 2). We then have the following result.

Proposition 4.5. The natural map FX
ρ −→ D�,X1

ρ1
×D�,X2

ρ2
is smooth of relative dimension 

n1n2(1 + [K : Qp]).

Proof. For A ∈ CkL
and ρi ∈ D�,Xi

ρi
(A) (i = 1, 2), put MA = HomA(ρ2, ρ1). As in 

the proof of Theorem 3.6, it suffices to prove that H1(GK , MA) is free over A of rank 
d = dimkL

(H1(GK , MkL
)), and that d = n1n2[K : Qp] (since HomGK

(ρ2, ρ1) = 0 by 
assumption).

Supposing x1, x2, . . . , xr generate the maximal ideal mA, we get (for an appropriate 
A-module B) an exact sequence

0 −→ B −→ Ar −→ mA −→ 0

of A-modules, where the second map is (a1, a2, . . . , ar) �→
∑

j xjaj . Since A is artinian, B
is finitely generated as an A-module, and so there is a surjection Ae � B of A-modules, 
for appropriate integer e. Putting NA = MA

⊗
A B, we get an exact sequence

0 −→ NA −→ Mr
A −→ mAMA −→ 0

of A[GK ]-modules, as well as a GK-equivariant surjection Me
A � NA, since MA is free, 

and thus flat, over A. Since GK has cohomological dimension 2, the H2 functor is right 
exact and so we see that H2(GK , NA) = 0 (using H2(GK , MA)e = 0, which follows 
from considering the Tate dual of MA and recalling that ρ1 and chip ⊗ ρ2 have no 
Jordan–Hölder factors in common).
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Having established that H2(GK , NA) = 0 it follows by taking cohomology of the 
exact sequence above that H1(GK , mAMA) = mAH

1(GK , MA). Observe further that 
mAMA has Tate dual HomA(mAρ1, χp ⊗ ρ2), which by assumption has trivial H0, and 
so H2(GK , mAMA) = 0 by local Tate duality. We conclude by taking cohomology of the 
exact sequence

0 −→ mAMA −→ MA −→ MkL
−→ 0

that H1(GK , MkL
) = H1(GK , MA)/mA.

By Nakayama’s lemma, we conclude that H1(GK , MA) is generated by d elements. On 
the other hand, from the local Euler characteristic formula together with the fact that 
H0(GK , MA) and H2(GK , MA) both vanish (by local Tate duality and the assumptions 
on ρ1 and ρ2), we see that H1(GK , MA) has size

#H1(GK ,MA) = #
(

OK

#MA

)
= (#A)n1n2[K:Qp]

from which we conclude that d = n1n2[K : Qp] and that H1(GK , MA) is free over A of 
rank d, as required. �
Remark 4.6. The author wishes to thank the reviewers for pointing out that, in the 
general setting, it is not clear what one could hope to prove beyond this.

We now aim to apply the above result to certain kinds of crystalline representations. 
We first make the following definition.

Definition 4.7. Let a be any integer. A representation ρ : GK −→ GLn(A) is crystalline 
with Hodge–Tate weights in the range [a, a +p −2] if ρ 

⊗
χ−a
p ∈ Repcris,≤p−2

A (GK), where 
χp denotes the cyclotomic character. The labelled Hodge–Tate weights of ρ are defined 
to be those of ρ 

⊗
χ−a
p with each weight increased by a (and counted with multiplicity). 

With some abuse of notation we denote the multiset of labelled Hodge–Tate weights for 
a given label σ : K ↪→ Qp as either HTσ(ρ) or as HTσ(U−1

S (ρ)) where convenient.

The situation where the difference between the largest and smallest Hodge–Tate 
weights exceeds p − 2 falls outside of the scope of Fontaine–Laffaille theory. However, we 
can at least make the following definition, inspired by Proposition 2.13.

Definition 4.8. Let A ∈ CkL
, and suppose ρi : GK −→ GLni

(A) (i = 1, 2) are crystalline 
representations with Hodge–Tate weights in the range [ai, ai + p − 2] in the sense of the 
preceding definition. Suppose further that ρ1 � χp

⊗
ρ2 and that for all σ, HTσ(ρ1) >

HTσ(ρ2). Then we put Ext1cris,A(ρ2, ρ1) = Ext1A(ρ2, ρ1).

We then have the following result.
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Theorem 4.9. For i = 1, 2, . . . , r, let ρi : GK −→ GLni
(kL) be pairwise distinct irre-

ducible crystalline representations with Hodge–Tate weights in the range [ai, ai + p − 2]. 
Suppose further that for all pairs of integers j < k, ρj � χp

⊗
ρk and that for all σ, 

HTσ(ρj) > HTσ(ρk). Let Mi be the rank ni Fontaine–Laffaille module associated with 
ρi

⊗
χ−ai
p . Fix a representation ρ which is block upper triangular with ρ1, ρ2, . . . , ρr on 

the diagonal. Then the functor Fρ as defined in Theorem 3.6 is represented by a power 
series ring over OL in ([K : Qp] + 1)(

∑
i,j:i≤j ninj) −

∑r
i=1 dMi

variables.

Proof. This follows from Proposition 4.5 and Theorem 3.2 analogously to the reasoning 
in the proof of Corollary 3.7. �
Remark 4.10. Note that since every extension is crystalline and we are in the Hodge–Tate 
case, we should expect an analog of the statement that dM≤i,Mi

= dMi
for all i in the 

above Theorem, so this result is unsurprising.
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