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1. Introduction

The notion of strongly perfect lattices has been introduced in the fundamental work 
[25] by Boris Venkov based on lecture series Venkov gave in Aachen, Bordeaux and 
Dortmund. Strongly perfect lattices are particularly nice examples of locally densest 
lattices, they even realize a local maximum of the sphere packing density on the space 
of all periodic packings (see [22]). Together with Boris Venkov the second author started 
a long term project to classify low dimensional strongly perfect lattices. The strongly 
perfect lattices up to dimension 9 and in dimension 11 are already classified in [25]. These 
are all root lattices and their duals. In dimension 10 there are two strongly perfect lattices, 
the lattice K ′

10 and its dual (see [16]) and in dimension 12 the Coxeter-Todd lattice K12
is the unique strongly perfect lattice ([17]). For all known strongly perfect lattices, with 
one exception in dimension 21, also the dual lattice is strongly perfect. Such lattices are 
called dual strongly perfect (see Section 5). They are classified in dimensions 13-15 ([18], 
[14]). The present paper continues the classification of low-dimensional (dual) strongly 
perfect lattices by treating the very interesting 16-dimensional case. In dimension 16 
there are (up to similarity) six dual strongly perfect lattices (see Theorem 5.1), the 
famous Barnes-Wall lattice Λ16 realizing the maximal known sphere packing density, 
the odd Barnes-Wall lattice O16 and its dual, the unique extremal 5-modular lattice 
named N16 in [25] and two new lattices, Γ16 and its dual, first described in [10]. An 
updated table of all known strongly perfect lattices up to dimension 26 is available in 
the catalogue of lattices [15].

The overall strategy for the classification of dual strongly perfect lattices in a given 
dimension is already described in the introduction to [18]. Let Λ be a strongly perfect 
lattice of dimension n and put s := s(Λ) = 1

2 |Min(Λ)| ∈ Z to denote half of the kissing 
number of Λ and

r := r(Λ) = r(Λ∗) = min(Λ) min(Λ∗) ∈ Q

the Bergé-Martinet invariant of Λ. As Λ is perfect, we obtain s(Λ) ≥ n(n+1)
2 (see [12, 

Proposition 3.2.3 (2)]). Upper bounds on the kissing number are given for instance in 
[13] leading to finitely many possibilities of the integer s.

By [25, Théorème 10.4] (see Lemma 3.2) we have r(Λ) ≥ n+2
3 . As r(Λ) is the product 

of the Hermite function evaluated at Λ and its dual Λ∗, we obtain r ≤ γ2
n, where γn is the 

Hermite constant (see Section 2). The best known upper bounds on γn are given in [4]
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so we obtain upper and lower bounds for the rational number r. To obtain a finite list of 
possible pairs (r, s) we apply the equations (2) to a minimal vector α ∈ Λ∗. For instance 
(D2) and (D4) yield that sr/n and 3sr/(n(n + 2)) are integers and from 1

12 (D4 −D2)
we obtain that sr

12n ( 3r
n+2 − 1) is an integer, giving only finitely many possibilities for r. 

Using the general lemmas from Section 3 additionally narrows down the possibilities. In 
particular for n = 16 the possible values are listed in Theorem 3.11. So far we only used 
the fact that Λ is strongly perfect.

The fact that also the dual lattice is strongly perfect is then used to obtain bounds 
on the level of Λ: For each value of r = r(Λ) = r(Λ∗) we now factor r = m · d such that 
the equations (2) allow to show that rescaled to minimum min(Λ∗) = m, the lattice Λ∗

is even and in particular contained in its dual lattice Λ (which is then of minimum d). 
For dual strongly perfect lattices we can use a similar argumentation to obtain a finite 
list of possibilities (s′, r) for s′ = s(Λ∗) and in each case a factorization r = m′ · d′ such 
that Λ is even if rescaled to min(Λ) = m′. But this allows to obtain the exponent (in the 
latter scaling)

exp(Λ∗/Λ) divides m

d′

which either allows a direct classification of all such lattices Λ or at least the classification 
of all genera of such lattices and then the use of modular forms to exclude the existence 
of a theta series θΛ of level md′ and weight n2 starting with 1 + 2sqm′ + . . . , such that its 
image under the Fricke involution starts with 1 +2s′qm+ . . . and both q-expansions have 
nonnegative integral coefficients. This computational technique using modular forms is 
described in more detail in Section 7.

Acknowledgments. Sihuang Hu is supported by a fellowship of the Alexander von Hum-
boldt Foundation.

2. Some basic facts on lattices

For a good introduction to the theory of lattices in Euclidean spaces in our context 
we refer to the book [12] by Jacques Martinet.

A lattice Λ is the integral span of a basis B := (b1, . . . , bn) of Euclidean n-space 
(Rn, (, )), i.e.

Λ = {
n∑

i=1
aibi | ai ∈ Z}.

The dual lattice of Λ is

Λ∗ := {v ∈ Rn | (v, λ) ∈ Z for all λ ∈ Λ},
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the Z-span of the dual basis of B. The two most important invariants of a lattice are its 
minimum

min(Λ) := min{(λ, λ) | 0 �= λ ∈ Λ}

and its determinant

det(Λ) := det((bi, bj)1≤i,j≤n).

We clearly have det(Λ) det(Λ∗) = 1 and det(aΛ) = a2n det(Λ) for all a ∈ R>0.
A lattice Λ is called integral, if (λ, λ′) ∈ Z for all λ, λ′ ∈ Λ, i.e. Λ ⊆ Λ∗. The lattice Λ

is called even, if (λ, λ) ∈ 2Z for all λ ∈ Λ. Clearly even lattices are integral. For an even 
lattice Λ the minimal natural number � such that 

√
�Λ∗ is even is called the even level

of Λ.
Two n-dimensional lattices Λ and Γ are called similar, if there is a similarity g ∈

GLn(R), (gx, gy) = a(x, y) (some a ∈ R>0) with gΛ = Γ. Similarities of norm a = 1
are called isometries. For a similarity of norm a we have det(gΛ) = an det(Λ) and 
min(gΛ) = a min(Λ), so the Hermite function

γ : Ln → R

[Λ] 	→ γ(Λ) := min(Λ)
det(Λ)1/n

is well defined on the set of similarity classes Ln of all n-dimensional lattices. The density 
of a lattice is a strictly monotonous function of the Hermite function, so in particular the 
(local) maxima of γ provide the (locally) densest lattice sphere packings. It is well known 
([12, Theorem 3.5.4]) that there are only finitely many local maxima of the Hermite 
function on Ln, all of them are represented by rational lattices ([12, Proposition 3.2.11]), 
i.e. (λ, λ′) ∈ Q for all λ, λ′ ∈ Λ. In particular the Hermite constant. γn = sup{γ(Λ) |
Λ ∈ Ln} is attained at some integral lattice. The densest lattices (and hence γn) are 
known in dimension ≤ 8 and in dimension 24 ([5]). The best known upper bounds on 
the Hermite constant are given in [4]. These also yield the best known upper bounds for 
the Bergé-Martinet invariant r(Λ), where

r(Λ) := γ(Λ)γ(Λ∗) = min(Λ) min(Λ∗)

as r(Λ) ≤ γ2
n. By the definition of the Hermite constant, we obtain the following inequal-

ities.

Lemma 2.1. ([18, Lemma 2.1]) Let Λ be an n-dimensional lattice. Then
(

γn
min(Λ∗)

)n

≥ det(Λ) ≥
(

min(Λ)
γn

)n

.
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Lemma 2.2. ([19, Lemma 2.1.12]) Let Λ be an integral lattice in dimension n. If there 
exists some rational number c such that 

√
cΛ∗ is integral, then c is an integer.

Proof. As det(Λ) · det(
√
cΛ∗) = cn is an integer, the number c is an integer. �

3. Strongly perfect lattices

For a lattice Λ and some a ∈ R we put

Λa := {λ ∈ Λ | (λ, λ) = a}.

This is always a finite set invariant under multiplication by −1. Of particular interest is 
the set Λm =: Min(Λ) of minimal vectors in Λ, where m = min(Λ).

Definition 3.1. A lattice Λ is called strongly perfect, if Min(Λ) forms a spherical 4-design.

It is well known ([25, Théorème 6.4], [12, Theorem 16.2.2]) that strongly perfect 
lattices are extreme, i.e. they realize a local maximum of the Hermite function on the 
space of similarity classes of n-dimensional lattices. In particular strongly perfect lattices 
are always similar to rational lattices.

We usually write Min(Λ) = S(Λ) 
 −S(Λ) as a disjoint union and call s := s(Λ) :=
|S(Λ)| the half kissing number of Λ. By [25, Théorème 3.2, Equation (5.2b)] the lattice 
Λ is strongly perfect, if and only if

(D4)(α) :
∑

x∈S(Λ)

(x, α)4 = 3s(Λ)
n(n + 2) min(Λ)2(α, α)2 (1)

for all α ∈ Rn.
From (D4)(α) we obtain the following equations (Di) = (Di)(α) and (Dij) =

(Dij)(α, β) for all α, β ∈ Rn:

(D2)(α) :
∑

x∈S(Λ)(x, α)2 = sm
n (α, α)

(D11)(α, β) :
∑

x∈S(Λ)(x, α)(x, β) = sm
n (α, β)

(D22)(α, β) :
∑

x∈S(Λ)(x, α)2(x, β)2 = sm2

n(n+2) (2(α, β)2 + (α, α)(β, β))

(D13)(α, β) :
∑

x∈S(Λ)(x, α)(x, β)3 = 3sm2

n(n+2) (α, β)(β, β)
1
12 (D4 −D2)(α) : 1

12
∑

x∈S(Λ)(x, α)4 − (x, α)2 = sm
12n (α, α)( 3m

n+2 (α, α) − 1)

(2)

Note that (D2)(α), (D22)(α, β), (D4)(α), 1
12 (D4 −D2)(α) are non negative integers 

for all α, β ∈ Λ∗. In particular for α ∈ Min(Λ∗) we obtain

1 (D4 −D2)(α) = s(Λ)
r(Λ)( 3

r(Λ) − 1) ∈ Z≥0
12 12n n + 2
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whence

Lemma 3.2. ([25, Théorème 10.4]) Let Λ be a strongly perfect lattice of dimension n. 
Then the Bergé-Martinet invariant

r(Λ) ≥ n + 2
3 .

A strongly perfect lattice Λ is called of minimal type if the above equality holds, 
and of general type otherwise. Let Λ be a strongly perfect lattice of dimension n. Set 
m = min(Λ) and s = s(Λ) = |S(Λ)|.

Lemma 3.3. Let α ∈ Rn be such that (x, α) ∈ Z for all x ∈ S(Λ). Denote � = max{(x, α) :
x ∈ Min(Λ)}. Let Ni(α) = {x ∈ Min(Λ) | (x, α) = i} for i = 1, . . . , �, and let

c = sm

6n

(
3m
n + 2(α, α) − 1

)
.

Then

�∑
i=2

∑
x∈Ni(α)

i(i2 − 1)
6 x = cα (3)

and

�∑
i=2

i2(i2 − 1)
6 |Ni(α)| = c(α, α). (4)

Proof. By (2) we obtain

1
6(D13 −D11)(β, α) : 1

6
∑

x∈S(Λ)

((x, α)3(x, β) − (x, α)(x, β)) = c(α, β) (5)

where c and α are as in the lemma and β ∈ Rn is an arbitrary vector. Equation (5) is 
easily seen to be the inner product of Equation (3) with β. As β is arbitrary, we obtain 
Equation (3). Equation (4) is obtained by taking the inner product of Equation (3)
with α. �
Corollary 3.4. ([16, Lemma 2.1]) Let α ∈ Rn be such that (x, α) ∈ {0, ±1, ±2} for all 
x ∈ Min(Λ). Let N2(α) = {x ∈ Min(Λ) | (x, α) = 2} and put

c = sm

6n

(
3m
n + 2(α, α) − 1

)
.

Then |N2(α)| = c(α, α)/2 and
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∑
x∈N2(α)

x = cα.

Lemma 3.5. ([17, Lemma 2.6]) Let Λ be a strongly perfect lattice and choose α ∈ Min(Λ∗)
that satisfies the conditions of Corollary 3.4. If n ≥ 11 then |N2(α)| �= 1.

Lemma 3.6. ([17, Lemma 2.4], [19, Lemma 2.7.18]) Suppose α ∈ Min(Λ∗). If r(Λ) < 8, 
then

|N2(α)| ≤ min
{

r(Λ)
8 − r(Λ) , n

}
.

The equality |N2(α)| = r(Λ)
8−r(Λ) holds if and only if N2(α) spans a rescaled root lattice 

A|N2(α)|.

Definition 3.7. Let A be a subset of the interval [−1, 1). A spherical A-code is a non-empty 
subset X of the unit sphere in Rn, satisfying that (x, y) ∈ A, for all x �= y ∈ X.

Lemma 3.8. ([8, Example 4.6]) For a given number a, with 0 ≤ a < n−1/2, let A be any 
subset of [−1, a], and let X be a spherical A-code in Rn. Then

|X| ≤ n(1 − a)(2 + (n + 1)a)
1 − na2 .

Lemma 3.9. Let Λ be a strongly perfect lattice of dimension n with r(Λ) ≥ 8. Let α ∈
Min(Λ∗), and N2(α) = {x ∈ Min(Λ) | (x, α) = 2}. Denote a = (r(Λ) − 8)/(2r(Λ) − 8). 
If a < (n − 1)−1/2, then

|N2(α)| ≤ (n− 1)(1 − a)(2 + na)
1 − (n− 1)a2 .

Proof. Without loss of generality, we rescale Λ such that min(Λ) = 1, and min(Λ∗) =
r(Λ) =: r. Define

N2(α) = {
√

r

r − 4(x− 2
r
α) | x ∈ N2(α)}.

Then |N2(α)| = |N2(α)|, and for any two elements x̄, ȳ ∈ N2(α), we have (x̄, α) = 0, and

(x̄, ȳ) = r

r − 4(x− 2
r
α, y − 2

r
α)

⎧⎨
⎩

= 1 if x̄ = ȳ

≤ r−8
2r−8 if x̄ �= ȳ.

Hence N2(α) is a spherical [−1, r−8
2r−8 ]-code in Rn−1, now the assertion follows from 

Lemma 3.8 directly. �
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Corollary 3.10. ([18, Lemma 2.8]) If r(Λ) = 8 and α ∈ Min(Λ) then

|N2(α)| ≤ 2(n− 1).

If equality holds then the sublattice of Λ generated by N2(α) is similar to the root lat-
tice Dn.

We now apply the above equations to obtain a finite list of pairs (r(Λ), s(Λ)) for 
dimension n = 16.

Theorem 3.11. Let Λ be a strongly perfect lattice of dimension 16. Then for r(Λ) and 
s(Λ) only the values in the following table occur or Λ is of minimal type, i.e. r(Λ) = 6.

r 192/31 144/23 32/5 72/11 192/29 20/3 48/7 7
s 961 · a 2116 450 · a 968 841 1296 196 · a 1152
a 2, 3 – 2, 3, 4 – – – 2, . . . , 6 –
r 64/9 36/5 22/3 96/13 15/2 144/19 192/25 54/7
s 729 400 · a 1296 338 · a 512 · a 1444 625 · a 784
a – 1, 2, 3 – 1, . . . , 4 1, 2, 3 – 1, 2 –
r 8 384/47 90/11 33/4 192/23 42/5 144/17 128/15
s 72 · a 2209 968 · a 2048 529 · a 400 · a 1156 · a 2025
a 2, . . . , 30 – 1, 2 – 1, . . . , 4 1, . . . , 5 1, 2 –
r 60/7 26/3 96/11 150/17 384/43 9 64/7
s 784 · a 648 · a 242 · a 2312 1849 128 · a 441 · a
a 1, 2 1, 2, 3 1, . . . , 9 – – 2, . . . , 26 1, . . . , 8

Proof. In [13] Mittelmann and Vallentin computed that the kissing number in dimension 
16 is upper bounded by 7355, so s(Λ) ≤ 3677. On the other hand, by the lower bound 
on the cardinality of spherical-5 designs [8, Theorem 5.12], we have s(Λ) ≥ 136. The 
Cohn–Elkies bound (see [4, Table 3]) implies that the Hermite constant γ16 ≤ 3.027, 
hence

6 ≤ r(Λ) = min(Λ) min(Λ∗) ≤ γ2
16 ≤ 9.162729.

Now we compute all solutions of

6|N3(α)| + |N2(α)| = s(Λ)r(Λ)
12 · 16

(
r(Λ)

6 − 1
)

where 6|N3(α)| + |N2(α)| is integral and r(Λ) is rational. The table lists all solutions 
that satisfy Lemma 3.5, Lemma 3.6, Lemma 3.9 and Lemma 3.10. �
4. Maximal even lattices

During the classification of strongly perfect lattices we often know that a strongly 
perfect lattice Γ is even of a bounded even level �, and that min(Γ∗) ≥ d. Then Γ is 
contained in a maximal even lattice M ,
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Γ ⊆ M ⊆ M∗ ⊆ Γ∗

such that the even level of M divides � and min(M∗) ≥ min(Γ∗) ≥ d. Therefore it is 
helpfull to know all such maximal even lattices M . Then we may construct the lattice Γ
as a sublattice of M .

The set of all maximal lattices can be partitioned into genera, where two lattices 
belong to the same genus, if they are isometric locally everywhere. Any genus consists 
of finitely many isometry classes the number of which is called the class number of the 
genus. To find all maximal lattices of a given determinant we first list all possible genera 
and then construct all lattices in the genus using the Kneser neighbouring method [11]
(see also [20]). To check completeness we additionally compute the mass of the genus 
and use the mass formula.

Proposition 4.1. The following table lists all genera of maximal even lattices M such that 
detM = 2a3b for some nonnegative integers a and b. The first column gives the genus 
symbol as explained in [6, Chapter 15], followed by the class number h. Then we give 
one representative of the genus which is usually a root lattice, in which ⊥ denotes the 
orthogonal sum. The last column gives the mass of the genus.

genus level h repr. mass
II16 1 2 E8 ⊥ E8 691/(2303105472 · 11 · 13)
II16(2−1

3 41
1) 8 14 E7 ⊥ D9 691 · 24611/(227395372 · 11 · 13)

II16(2−2
2 3−1) 12 17 A2 ⊥ D14 691 · 1801/(227395372)

II16(22
23

1) 12 19 E6 ⊥ D10 691 · 1801/(227395372)
II16(2−1

3 41
73

−1) 24 60 A2 ⊥ E7 ⊥ D7 73 · 193 · 691 · 1103/(227385372 · 11 · 13)
II16(2−1

3 4−1
3 31) 24 57 E6 ⊥ E7 ⊥ D3 73 · 193 · 691 · 1103/(227385372 · 11 · 13)

II16(2−2
II 32) 6 45 A2 ⊥ A2 ⊥ D12 17 · 41 · 127 · 691 · 1093/(2283105272 · 11 · 13)

II16(2−1
3 4−1

5 32) 24 294 A2 ⊥ A2 ⊥ E7 ⊥ D5 17 · 193 · 547 · 691 · 14611/(227395372 · 11 · 13)

Proof. Let M be a maximal even lattice. Then

q : M∗/M → Q/Z, q(x + M) := 1
2(x, x) + Z

defines an anisotropic quadratic form on the discriminant group. Clearly (M∗/M, q)
is the orthogonal sum of its Sylow p-subgroups. For p > 2 the Sylow p-subgroup is 
elementary abelian of order 1, p, or p2 (see [21, Section 5.1]). For p = 2 [16, Lemma 2.5]
lists the orthogonal summands of anisotropic 2-groups, from which we conclude that the 
order of the Sylow 2-subgroup of M∗/M is bounded by 8. So we are left to enumerate 
all genus symbols of 16-dimensional even lattices of determinant dividing 72, construct 
one lattice in each genus, check maximality and then compute representatives for all 
isometry classes in the genus with the Kneser neighbouring method. �
Lemma 4.2. Let Λ be a strongly perfect even lattice of dimension 16. If det(Λ) = 2a3b for 
some nonnegative integers a, b and min(Λ∗) ≥ 3/2, then Λ is similar to one of Λ16, Γ16, 
or O∗

16 as given in Theorem 5.1.
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Proof. Starting with the lattices M from Proposition 4.1 we successively construct sub-
lattices L of index 2 and 3 such that min(L∗) ≥ 3/2. The total number of isometry 
classes of such lattices is 63, only three of them are strongly perfect. �
Lemma 4.3. Let Λ be a strongly perfect even lattice of dimension 16. If the even level of 
Λ divides 6 and min(Λ∗) ≥ 1, then Λ ∼= Λ16.

Proof. As in the proof of Lemma 4.2 we start with the maximal even lattices and suc-
cessively compute sublattices L of even level dividing 6 with min(L∗) ≥ 1. There are 
in total 49552 isometry classes of such lattices. Among those lattices there is only one 
strongly perfect lattice Λ16. �
5. Dual strongly perfect lattices

A lattice Λ ⊂ Rn is called dual strongly perfect if both Λ and its dual Λ∗ are strongly 
perfect. As both lattices Λ and Λ∗ are extreme and the characterization of dual extreme 
lattices in [12, Section 10.5] allows to deduce that dual strongly perfect lattices realize a 
local maximum of the Bergé-Martinet invariant r(Λ) = min(Λ) min(Λ∗) on the space of 
similarity classes of n-dimensional lattices.

The aim of the rest of this paper is to prove the following main result.

Theorem 5.1. Let (Λ, Λ∗) be a pair of dual strongly perfect lattices in dimension 16. Then, 
up to similarity and interchanging Λ and Λ∗, the lattices are as given in the following 
table.

name m d s t Smith
Λ16 4 2 2160 2160 28

N16 6 6/5 1200 1200 58

O16 3 2 256 1008 26

Γ16 4 3/2 432 768 2842

The first column gives the name of the lattice Λ, rescaled such that Λ is integral and 
primitive. The lattices in the first three rows are already in [25, Table 19.1]. The lattice 
Γ16 is a sublattice of Λ16 and described as Γ{2} in [10, Section 9]. The other columns 
give m = min(Λ), d = min(Λ∗), s = s(Λ) and t = s(Λ∗). The last column displays the 
Smith invariant of the finite abelian group Λ∗/Λ.

Let Λ be a dual strongly perfect lattice. Clearly r(Λ) = r(Λ∗) and for both lattices 
we are hence in the same of the 32 cases listed in Theorem 3.11.

A purely computational argument allowing to exclude quite a few cases from Theo-
rem 3.11 is provided by the following result proved in the thesis of Elisabeth Nossek.

Lemma 5.2. ([19, Lemma 2.7.20]) Let Λ be a dual strongly perfect lattice of dimension n. 
Put r = r(Λ) = r(Λ∗), s = s(Λ), and t = s(Λ∗). Then
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s · t · r
(6n)2

(
3r

n + 2 − 1
)2

∈ Z.

Proof. Rescale Λ such that min(Λ) = 1 and min(Λ∗) = r. Denote l = max{(x, α) :
x ∈ Min(Λ), α ∈ Min(Λ∗)}. Let x ∈ Min(Λ) and α ∈ Min(Λ∗). For i = 1, . . . , l, set 
Ni,Λ(α) = {y ∈ Min(Λ) | (y, α) = i}, and Ni,Λ∗(x) = {β ∈ Min(Λ∗) | (x, β) = i}. Let

c = s

6n

(
3r

n + 2 − 1
)
,

c′ = tr

6n

(
3r

n + 2 − 1
)
.

By Lemma 3.3,

l∑
i=2

∑
y∈Ni,Λ(α)

i(i2 − 1)
6 y = cα,

l∑
i=2

∑
β∈Ni,Λ∗ (x)

i(i2 − 1)
6 β = c′x.

Hence

cc′α =
l∑

i=2

∑
y∈Ni,Λ(α)

i(i2 − 1)
6 c′y =

l∑
i=2

∑
y∈Ni,Λ(α)

i(i2 − 1)
6

l∑
j=2

∑
β∈Nj,Λ∗ (y)

j(j2 − 1)
6 β

Write cc′ = �cc′� + {cc′} where 0 ≤ {cc′} < 1 is the fractional part of cc′. If cc′ is not an 
integer, then 0 �= {cc′}α ∈ Λ∗, which contradicts the minimality of α. Therefore

cc′ = s · t · r
(6n)2

(
3r

n + 2 − 1
)2

∈ Z. �
Remark 5.3. Applying Lemma 5.2 to the values provided in Theorem 3.11 we obtain 
that the triple (r(Λ), s(Λ), s(Λ∗)) of a dual strongly perfect lattice in dimension 16 that 
is not of minimal type is as listed in the following table.

r 32/5 (5.6) 20/3 (5.5) 48/7 (5.7) 7 (5.10) 36/5 (8) 22/3 (5.8) 96/13 (5.7)
s 900 · a 1296 196 · a 1152 400 · a 1296 676 · a
a 1, 2 – 2, 3, 4, 6 – 1, 2, 3 – 1, 2

cond 2 | ab – 12 | ab – – – 2 | ab
r 15/2 (5.7) 54/7 (5.8) 8 (10) 90/11 (5.8) 33/4 (5.7) 192/23 (5.7) 42/5 (5.7)
s 512 · a 784 72 · a 968 · a 2048 2116 400 · a
a 1, 2, 3 – 2, . . . , 30 1, 2 – – 1, . . . , 5

cond 3 | ab – 2 | ab – – – 3 | ab
r 144/17 (5.9) 60/7 (5.7) 26/3 (5.8) 96/11 (7.5) 9 (9.6) 64/7 (7.6)
s 2312 784 · a 648 · a 242 · a 128 · a 882 · a
a – 1, 2 1, 2, 3 3, 4, 6, 8, 9 2, . . . , 26 1, . . . , 4

cond – – – 24 | ab – 4 | ab
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Here the line s lists the possibilities for s(Λ) = number · a and s(Λ∗) = number · b, 
where the possibilities for a and b are given in the line headed by a with respect to 
certain divisibility conditions deduced from Lemma 5.2 as given in the line headed cond. 
In brackets behind the value of r(Λ) we give the reference to where this case is dealt 
with in this paper. Applying the next lemma, allows to exclude the first two values for 
r(Λ) using an easy computation.

Lemma 5.4. [14, Theorem 2.9] Let Λ be a dual strongly perfect lattice of dimension n with 
r(Λ) = r(Λ∗) = r. Assume that (α, x) ∈ {0, ±1, ±2} for all α ∈ Min(Λ∗), x ∈ Min(Λ). 
Put ni = |{〈α, x〉 ∈ S(Λ∗) × S(Λ) | (α, x) = ±i}| for i = 0, 1, 2. Then

n2 = tsr

12n

(
3r

n + 2 − 1
)
,

n1 = tsr

n
− 4n2,

n0 = st− n1 − n2

are non-negative integers satisfying ni/s ∈ Z and ni/t ∈ Z for i = 0, 1, 2. Moreover the 
quadratic polynomial,

P (b) =(s + t)2
(

15
n(n + 2)(n + 4) + 24b− 3

4n(n + 2) + 2b2 − b

2n − b2

4

)

− 2
(
n1

(
1
r
− 1

4

)(
1
r

+ b

)2

+ n2

(
4
r
− 1

4

)(
4
r

+ b

)2

− n0
b2

4

)

− 3
4(s + t)(1 + b)2 ≤ 0

is non positive for all b ∈ R.

Corollary 5.5. There is no dual strongly perfect lattice Λ ∈ R16 with r(Λ) = 20/3.

Proof. By Theorem 3.11 we have s(Λ) = s(Λ∗) = 1296. The polynomial P (b) from 
Lemma 5.4 with s = t = 1296 and n = 16 is P (b) = −631800(b + 7/325)(b + 1/25) and 
satisfies P (−8/325) > 0, a contradiction. �
Lemma 5.6. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 32/5.

Proof. By Remark 5.3 there are a, b ∈ {1, 2} such that s(Λ) = 900 ·a, and s(Λ∗) = 900 ·b
such that ab is even. These cases yield a contradiction to Lemma 5.4. �

We now apply Lemma 2.2 to exclude the following cases.
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Lemma 5.7. There is no dual strongly perfect lattice Λ ⊂ R16 with

r(Λ) ∈ {48/7, 96/13, 15/2, 33/4, 192/23, 42/5, 60/7}

Proof. Here we only present a proof for the case r(Λ) = 15/2, as all the other cases 
can be excluded similarly. By Theorem 3.11 there is some a ∈ {1, . . . , 3} such that 
s(Λ) = 512 · a. We scale Λ such that min(Λ) = 1. Let α ∈ Λ∗, and write (α, α) = p

q with 
coprime integers p and q. Then

(D4)(α) = a · 24 · p2

3 · q2 ∈ Z ⇒ q | 22,

1
12(D4 −D2)(α) = a · 22 · p (p− 6 q)

32 · q2 ∈ Z ⇒ q | 2, 3 | p.

Let Γ =
√

22

3 Λ∗. Then Γ is an even lattice with min(Γ) = 10, min(Γ∗) = 3
22 . Similarly √

10·22

3 Γ∗ is also even, which is impossible by Lemma 2.2. �
Next, we can exclude the following cases.

Lemma 5.8. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) ∈ {22/3, 54/7,
90/11, 26/3}.

Proof. Here we give a proof for the case r(Λ) = 22/3, as all other cases can be excluded 
similarly. Let Λ be a dual strongly perfect lattice with r(Λ) = 22/3. By Theorem 3.11
we have s(Λ) = s(Λ∗) = 1296. We scale Λ such that min(Λ) = 2/3, and put Γ = Λ∗. 
Then min(Γ) = 11, and for all α, β ∈ Γ holds

(D4)(α) = 3(α, α)2 ∈ Z,

1
6(D13 −D11)(α, β) = (α, β)((β, β) − 1) ∈ Z.

So (α, α) ∈ Z for all α ∈ Γ, and if (β, β) is even, then (α, β) ∈ Z. Let Γ(e) = {α ∈
Γ | (α, α) ∈ 2Z}. By 1

6 (D13 − D11)(α, β) we see that (α, β) ∈ Z for all β ∈ Γ(e), 
α ∈ Γ. In particular Γ(e) is an even sublattice of Γ with |Γ : Γ(e)| = 2c, c ∈ {1, 2}
(see for instance [17, Lemma 2.8]). So det(Γ) = 2−2c det Γ(e) and det Γ(e) is an integer. 
Similarly L =

√
33
2 Γ∗ has an even sublattice L(e) = {α ∈ L | (α, α) ∈ 2Z} with 

|L : L(e)| = 2d, d ∈ {1, 2}. Therefore

detL(e) = 22d detL = 22(c+d) · 3316

216 · det Γ(e) /∈ Z,

which is impossible. �
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Next we employ the k-point semidefinite programming (SDP) bound for spherical 
codes provided by de Laat et al. [7] to exclude the following case.

Lemma 5.9. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 144/17.

Proof. By Remark 5.3 we get s := s(Λ) = s(Λ∗) = 2312 and put r := r(Λ) = 144/17. 
Now fix some α ∈ Min(Λ∗) and let N2(α) = {x ∈ Min(Λ) | (x, α) = 2}. Then

|N2(α)| = sr

12 · 16(r6 − 1) = 42.

As in Lemma 3.9 put

N2(α) =
{√

r

r − 4

(
x− 2

r
α

)
| x ∈ N2(α)

}
.

Then |N2(α)| = |N2(α)| = 42, and for any two distinct elements x̄, ȳ ∈ N2(α), we have 
(x̄, α) = 0, (x̄, ̄x) = 1, and

(x̄, ȳ) = r

r − 4

(
x− 2

r
α, y − 2

r
α

)
= r

r − 4

(
(x, y) − 4

r

)
≤ 1/19.

Now using the 3-point SDP bound for spherical codes [7], we can compute that the car-
dinality of a spherical [−1, 1/19]-code in S14 is upper bounded by 34, which contradicts 
the fact that |N2(α)| = 42. This concludes our proof. �

Now we use a different method to deal with the following case.

Lemma 5.10. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 7.

Proof. Let Λ be a dual strongly perfect lattice in dimension 16 with r(Λ) = 7. By 
Theorem 3.11 we have s(Λ) = s(Λ∗) = 1152. We scale Λ such that min(Λ) = 1/2 and 
min(Λ∗) = 14. Put Γ := Λ∗. Then for all α ∈ Γ,

1
12(D4 −D2)(α) = 1

4(α, α)((α, α) − 12) ∈ Z.

Thus (α, α) is an even number, and Γ is an even lattice; similarly 
√

28Γ∗ is also even. 
For any α ∈ Min(Γ) and any x ∈ Min(Λ), define

N2(α) := {x ∈ Min(Λ) | (x, α) = 2}, and

N2(x) := {α ∈ Min(Γ) | (x, α) = 2}

respectively. Now fix α1 ∈ Min(Γ) and assume that
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N2(α1) = {x1, x2, x3, x4, x5, x6, x7},
N2(x1) = {α1, α2, α3, α4, α5, α6, α7}.

By Corollary 3.4, we have 
∑7

j=1 αj = 28x1 and 
∑7

j=1 xj = α1. A simple calculation 
shows that (xi, xj) = 1/4 for 1 ≤ i, j ≤ 7 and i �= j, and (αi, αj) = 7 for 1 ≤ i, j ≤ 7 and 
i �= j.

We claim that |N2(α1) ∩N2(α2)| ≤ 1. If not then there were two different vectors x
and y in N2(α1) ∩N2(α2). The Gram matrix formed by x, y, α1, α2 is⎛

⎜⎝
1/2 1/4 2 2
1/4 1/2 2 2
2 2 14 7
2 2 7 14

⎞
⎟⎠ ,

whose determinant is −7/16; but this is impossible as the Gram matrix should be 
positive-semidefinite.

Since |N2(α1) ∩ N2(αj)| = 1, we have (xi, αj) ∈ {−2, −1, 0, 1} for 2 ≤ i, j ≤ 7. 
So 7 = (xi, 28x1) =

∑7
j=1(xi, αj) = 2 +

∑7
j=2(x2, αj) ≤ 8. Therefore, without loss 

of generality, we can assume that (xi, αi) = 0 for 2 ≤ i ≤ 7, and (xi, αj) = 1 for 
2 ≤ i, j ≤ 7 and i �= j. Because (α2, x1) = (α2, x1 − x2) = 2, we can assume that 
N2(α2) = {x1, x1 − x2, y3, y4, y5, y6, y7}. Hence (x1, yi) = 1/4 and (x2, yi) = 0 where 
3 ≤ i ≤ 7. Similarly, assume that N2(x2) = {α1, α1 − α2, β3, β4, β5, β6, β7}. Hence 
(α1, βi) = 7 and (α2, βi) = 0 where 3 ≤ i ≤ 7. By the above argument used for (xi, αj), 
we can without loss of generality assume that (xi, βi) = (yi, αi) = 0 for 3 ≤ i ≤ 7, and 
(xi, βj) = (yi, αj) = 1 for 3 ≤ i, j ≤ 7 with i �= j. For 3 ≤ i, j ≤ 7 put aij = (xi, yj), bij =
(αi, βj), and cij = (yi, βj). Also we readily check that aij ∈ {a/28 | a is an integer and −
7 ≤ a ≤ 7}, bij ∈ {−7, . . . , 7}, and cij ∈ {−2, . . . , 2}. Since every shortest vector 
α in Min(Γ) is equal to the sum of vectors in N2(α), the lattice generated by vectors 
x1, . . . , x6, α1, . . . , α6, y3, . . . , y6, β3, . . . , β6 is a sublattice of Γ∗; obviously it has minimum 
1/2. The Gram matrix formed by vectors x1, . . . , x6, α1, . . . , α6, y3, . . . , y6, β3, . . . , β6 can 
be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6 α1 α2 α3 α4 α5 α6 y3 y4 y5 y6 β3 β4 β5 β6

x1 1/2 1/4 1/4 1/4 1/4 1/4 2 2 2 2 2 2 1/4 1/4 1/4 1/4 1 1 1 1
x2 1/4 1/2 1/4 1/4 1/4 1/4 2 0 1 1 1 1 0 0 0 0 2 2 2 2
x3 1/4 1/4 1/2 1/4 1/4 1/4 2 1 0 1 1 1 a33 a34 a35 a36 0 1 1 1
x4 1/4 1/4 1/4 1/2 1/4 1/4 2 1 1 0 1 1 a43 a44 a45 a46 1 0 1 1
x5 1/4 1/4 1/4 1/4 1/2 1/4 2 1 1 1 0 1 a53 a54 a55 a56 1 1 0 1
x6 1/4 1/4 1/4 1/4 1/4 1/2 2 1 1 1 1 0 a63 a64 a65 a66 1 1 1 0
α1 2 2 2 2 2 2 14 7 7 7 7 7 1 1 1 1 7 7 7 7
α2 2 0 1 1 1 1 7 14 7 7 7 7 2 2 2 2 0 0 0 0
α3 2 1 0 1 1 1 7 7 14 7 7 7 0 1 1 1 b33 b34 b35 b36
α4 2 1 1 0 1 1 7 7 7 14 7 7 1 0 1 1 b43 b44 b45 b46
α5 2 1 1 1 0 1 7 7 7 7 14 7 1 1 0 1 b53 b54 b55 b56
α6 2 1 1 1 1 0 7 7 7 7 7 14 1 1 1 0 b63 b64 b65 b66
y3 1/4 0 a33 a43 a53 a63 1 2 0 1 1 1 1/2 1/4 1/4 1/4 c33 c34 c35 c36
y4 1/4 0 a34 a44 a54 a64 1 2 1 0 1 1 1/4 1/2 1/4 1/4 c43 c44 c45 c46
y5 1/4 0 a35 a45 a55 a65 1 2 1 1 0 1 1/4 1/4 1/2 1/4 c53 c54 c55 c56
y6 1/4 0 a36 a46 a56 a66 1 2 1 1 1 0 1/4 1/4 1/4 1/2 c63 c64 c65 c66
β3 1 2 0 1 1 1 7 0 b33 b43 b53 b63 c33 c43 c53 c63 14 7 7 7
β4 1 2 1 0 1 1 7 0 b34 b44 b54 b64 c34 c44 c54 c64 7 14 7 7
β5 1 2 1 1 0 1 7 0 b35 b45 b55 b65 c35 c45 c55 c65 7 7 14 7

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

β6 1 2 1 1 1 0 7 0 b36 b46 b56 b66 c36 c46 c56 c66 7 7 7 14
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We attempt to complete this Gram matrix by adding the vectors y3, . . . , y6, β3, . . . , β6
each in turn. For each vector, we should check that the Gram matrix of the completed 
vectors is positive-semidefinite with rank ≤ 16, and the lattice with this Gram matrix 
has minimum 1/2. A brute-force search shows that there is no such Gram matrix. This 
finishes our proof. �

Combining Theorem 3.11, Lemma 5.2, Corollary 5.5, and Lemmas 5.6-5.10, we obtain 
the following.

Theorem 5.11. Let Λ be a dual strongly perfect lattice in dimension 16. Then

r(Λ) ∈
{

6, 36
5 , 8, 96

11 , 9,
64
7

}
.

6. Dual strongly perfect lattices of minimal type

Let Λ be some dual strongly perfect lattice of minimal type in dimension 16, so

Λ ⊂ R16, min(Λ) min(Λ∗) = 6.

Put m := min(Λ) and d := min(Λ∗) = 6/m. Let s := s(Λ) and t := s(Λ∗). The following 
arguments are only formulated to give restrictions on (s, t). The same conditions of course 
also apply if we interchange s and t.

By the bounds on the kissing numbers we get 8 ·17 ≤ s ≤ 3678. Moreover by equation 
(D2) we have smd/n = 3s/8 ∈ Z so

Lemma 6.1. 8 | s.

Lemma 6.2. Write s = 2aA with A odd. If A is squarefree then a ≥ 7.

Proof. Rescale Λ such that m = 3 and d = 2. Write s = 2aA and assume that A is odd, 
squarefree, and a < 7. For α ∈ Λ∗ write (α, α) = p

q with gcd(p, q) = 1. Then 1
12 (D4 −D2)

implies that

sp

27q2 (p− 2q) = Ap

27−aq2 (p− 2q) ∈ Z.

As p and q are coprime and A is squarefree this implies that q = 1 and p is even. So Λ∗

is an even lattice with minimum 2 so that its dual lattice Λ has minimum 3. As 3 > 2
and Λ∗ ⊆ Λ this is a contradiction. �
Lemma 6.3. Assume that s = 23b2A with A odd and squarefree, b odd. The 29 divides t
and b ≥ 7.
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Proof. Assume that s = 23b2A with A odd and squarefree, b odd. Rescale Λ such that 
m = 6/b and d = b. For α ∈ Λ∗ equation 1

12 (D4 −D2) implies that

A

4 (α, α)((α, α) − b) ∈ Z.

As A is odd and squarefree this implies that (α, α) ∈ Z and (α, α) ≡ 0 or b (mod 4).
If α, β ∈ Min(Λ∗) then

(α± β, α± β) = 2b± 2(α, β)

are both either b or 0 modulo 4. If (α, β) ∈ 1
2 + Z then these are both odd and hence 

b (mod 4) so their difference 4(α, β) is 0 (mod 4) hence (α, β) ∈ Z and 2b + 2(α, β) is 
even, and hence 0 (mod 4) implying that

(α, β) is odd for all α, β ∈ Min(Λ∗).

As Λ∗ is also strongly perfect and the fourth power of an odd integer is 1 (mod 16) we 
compute, for any fixed α ∈ Min(Λ∗)

t ≡16
∑

β∈Min(Λ∗)/±1

(α, β)4 = 3tb4

16 · 18 ≡16
t

253 .

So 325t ≡ t (mod 25+4) which implies that 29 divides t.
Moreover if b ≤ 5 then (α, β) = ±1 for all α �= ±β ∈ Min(Λ∗) and D2 gives us

∑
β∈Min(Λ∗)/±1

(α, β)2 = b2 + (t− 1) = b2

16 t

which yields contradiction for b = 3, 5. �
Lemma 6.4. If 32 � | s then 32 | t.

Proof. Assume that both s and t are not divisible by 32. Rescale Λ such that m = 1. 
For α ∈ Λ∗ put (α, α) = p

q , gcd(p, q) = 1. Then 1
12 (D4 −D2)(α) yields that

sp

2732q2 (p− 6q) ∈ Z

implying that 3 | p. So there is some a ∈ N with 3 � | a such that 
√

a
3Λ∗ is even. Inter-

changing the role of Λ and Λ∗ we see that there is some b ∈ N with 3 � | b such that 
√
bΛ

is an even lattice. Put Γ :=
√
bΛ. Then Γ is an even lattice such that√
ab

3 Γ∗ =
√

ab

3
1√
b
Λ∗ =

√
a

3Λ∗

is again even. This is a contradiction as ab/3 is not an integer. �
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Similarly we find

Lemma 6.5. If 25 � | s then 25 | t.

Proof. Assume that both s and t are not divisible by 25. Rescale Λ such that m = 1. 
For α ∈ Λ∗ put (α, α) = p

q , gcd(p, q) = 1. Then 1
12 (D4 −D2)(α) yields that

sp

2732q2 (p− 6q) ∈ Z

implying that p is even. So there is some odd a ∈ N such that Γ :=
√
aΛ∗ is even. 

Moreover 1
6 (D13 −D11)(α, β) shows that

s

2632 (α, β)((α, α) − 6) ∈ Z

for all α, β ∈ Λ∗. In particular

Γ(e) := {α ∈ Γ | (α, α) ∈ 4Z}

is a sublattice of Γ of index 1, 2, or 4 (see [17, Lemma 2.8]) and 
√

1/2Γ(e) is even. So 212

divides the determinant of the even lattice Γ =
√
aΛ∗.

Interchanging the role of Λ and Λ∗ we find that there is some odd b ∈ N such that √
6bΛ is even and 212 divides det(

√
6bΛ). All together

224 divides det(
√
aΛ∗) det(

√
6bΛ) = (6ab)16

which contradicts the fact that ab is odd. �
Lemma 6.6. If s = 2aA with A odd and squarefree and a ≤ 8, then Λ∗ rescaled to 
minimum 4 is even and 36 divides t.

Proof. Rescale Λ so that m = 3/2 and d = 4. Then for all α ∈ Λ∗

3s
27 (α, α)2 ∈ Z and s

29 ((α, α)((α, α) − 4)) ∈ Z

so (α, α) ∈ 2Z. Moreover for any α ∈ Min(Λ∗) the set N2(α) := {β ∈ Min(Λ∗) | (α, β) =
2} has cardinality

5t
36 − 20

which implies that 36 | t. �
Lemma 6.7. s �= 648 = 23 · 34.
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Proof. Assume that s = 2334 and rescale Λ so that m = 2/3 and d = 9. Then for all 
α ∈ Λ∗ we get

1
12(D4 −D2)(α) = 1

4(α, α)((α, α) − 9) ∈ Z.

In particular for all α, β ∈ Min(Γ)

(α± β, α± β) = 18 ± 2(α, β) ≡ 0 or 1 (mod 4)

which implies that (α, β) is an odd integer for all α, β ∈ Min(Γ). As |(α, β)| ≤ 9
2 = 4.5

we find that

(α, β) ∈ {±3,±1}.

As also Min(Γ) is a 4-design, for any fixed α ∈ Min(Γ) the integers t = |Min(Γ)|/2, 
ni := |{β ∈ Min(Γ) | (α, β) = i}| satisfy

1 + n1 + n3 = t

92 + n1 + 32n3 = 92

16 t

94 + n1 + 34n3 = 3·94

16·18 t

This equation has a unique solution (n1, n3, t) = 1
19 (2187, 1890, 4096) which is of course 

absurd. �
Now an application of the above lemmas leads to the following list of 118 possible 

pair (s, t) of a dual strongly perfect lattice Λ ⊂ R16 of minimal type. (WLOG we assume 
that s ≤ t.)

(1) s = 144, t = 128 · i, 2 ≤ i ≤ 26.
(2) s = 144, t = 288 · i, 1 ≤ i ≤ 11.
(3) s = 144, t = 800 · i, 1 ≤ i ≤ 3.
(4) s = 144, t = 1568 · i, 1 ≤ i ≤ 2.
(5) s = 256, t = 144 · i, 2 ≤ i ≤ 16.
(6) s = 288, t = 128 · i, 3 ≤ i ≤ 16.
(7) s = 288, t = 144 · i, 2 ≤ i ≤ 14.
(8) s = 288, t = 400 · i, 1 ≤ i ≤ 5.
(9) s = 288, t = 784 · i, 1 ≤ i ≤ 2.

(10) s = 288, t = 1936.
(11) s = 384, t = 144 · i, 3 ≤ i ≤ 10.
(12) s = 400, t = 288 · i, 2 ≤ i ≤ 4.
(13) s = 432, t ∈ {512, 576, 640, 768, 800, 864, 896, 1024, 1152}.
(14) s = 512, t ∈ {576, 720, 864}.
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(15) s = 576, t ∈ {576, 640, 720, 768, 784, 800}.
(16) s = 640, t = 720.

Among those 118 possible pairs of values,

1. there are 54 possible pairs of values with the property that either Λ or Λ∗ rescaled 
to minimum 4 is even and the even level of Λ (or Λ∗) divides 24. So one of Λ or Λ∗ is 
an even lattice whose dual has minimum ≥ 3/2. Then by Lemma 4.2 we know that 
Λ or Λ∗ are similar to one of Γ16 and O16;

2. there are 23 possible pairs of values with the following property: if we rescale Λ with 
minimum 6 then Λ is even and the even level of Λ divides 6. Then by Lemma 4.3 we 
know that there is no such Λ;

3. for the remaining 41 cases, a direct application of the modular form approach de-
scribed in the next section shows that there is no such pair (Λ, Λ∗).

In summary we have proved the following.

Theorem 6.8. Let Λ be a dual strongly perfect lattice in dimension 16 and of minimal 
type. Then Λ is isomorphic to one of Γ16, Γ∗

16, O16 or O∗
16.

7. Modular forms and ϑ-series

Let Λ ≤ Rn be an even lattice. Throughout this section we will assume that n =
2k, k ∈ Z>0 for simplicity. We associate to Λ a holomorphic function on the upper half 
plane H = {τ ∈ C | Im τ > 0} ⊂ C. For τ ∈ H let q = e2πiτ . The theta series of Λ is 
the function

ϑΛ(τ) =
∑
x∈Λ

q
1
2 (x,x) for τ ∈ H.

A nice introduction to the relevant theory is the book [9], from which we also borrow 
the notation. In particular we need the following theta transformation formula relating 
the theta series of a lattice and its dual lattice.

Lemma 7.1. [9, Proposition 2.1]

ϑΛ

(
−1
τ

)
=
(τ
i

)k √
detΛ∗ ϑΛ∗(τ).

Theorem 7.2. ([9, Theorem 3.2]) Let Λ be an even lattice of even level �. Then the theta 
series of Λ is in the space of modular forms of weight k for the subgroup Γ0(�) to some 
character χΛ only depending on det(Λ)

ϑΛ(τ) ∈ Mk(Γ0(�), χΛ), where χΛ(·) =
(

(−1)k det(Λ)
)
.
·
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The matrix

W� =
(

0 1/
√
�

−
√
� 0

)
∈ SL2(R)

is called the �-th Atkin-Lehner operator. The well-known action of the Atkin-Lehner 
operator on the theta series of an even lattice Λ of even level � and dimension n = 2k is 
directly obtained from Lemma 7.1.

Proposition 7.3.

ϑΛ(τ) |k W� =
(
−
√
�

i

)k√
det(Λ∗)ϑ√

�Λ∗(τ).

Theorem 7.4. [23, p. 376], [26] Let Λ be an even lattice of even level � and dimension 
2k. If lattices Λ and Λ′ are in the same genus, then

ϑΛ(τ) − ϑΛ′(τ) ∈ Sk(Γ0(�), χΛ)

where, as usual, Sk denotes the cuspidal subspace of the space of modular forms Mk.

Now we describe how to employ the theory of modular forms to exclude the existence 
of a dual strongly perfect lattice. Let Λ be a dual strongly perfect lattice. Let s =
s(Λ) = 1

2 |Min(Λ)| be half of the kissing number of Λ, let s′ = s(Λ∗) = 1
2 |Min(Λ∗)|

and r(Λ) = min(Λ) min(Λ∗) = r(Λ∗) be the Bergé-Martinet invariant of Λ. We write 
r(Λ) = m · d such that when rescaled to minimum min(Λ∗) = m the lattice Λ∗ is even 
and in particular contained in its dual lattice Λ (which is then of minimum d). We then 
interchange the roles of Λ and Λ∗ to obtain a factorization r(Λ) = m′ · d′ such that Λ is 
even if rescaled to min(Λ) = m′. In the latter scaling the even level of Λ divides m/d′

and in particular

exp(Λ∗/Λ) divides m

d′
.

We also obtain a finite list of possible determinants of Λ from the upper bound on the 
Hermite constant γn, more precisely a finite list of possible invariants of the finite abelian 
group Λ∗/Λ. For each invariant it is easy to read off all possible genera of lattices, given 
by the p-adic genus symbols for all primes p dividing 2 det(Λ) (see [6, Chapter 15]). As 
each genus only contains finitely many isometry classes of lattices, one might in principle 
enumerate all of them. But usually there are far too many classes.

Here the theory of modular forms comes into play. Rescale Λ with min(Λ) = m′ such 
that Λ is even and denote � = m/d′. Then we know that
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ϑΛ(τ) = 1 + 2sqm
′
+ . . . ,

ϑ√
�Λ∗(τ) = 1 + 2s′qm + . . . .

(6)

By Theorem 7.2 both ϑΛ(τ) and ϑ√
�Λ∗(τ) lie in the finite dimensional vector space 

Mk(Γ0(�), χΛ), of which one can explicitly compute a basis (for instance with Magma

[3]). One can decompose ϑΛ(τ) as

ϑΛ(τ) = E(τ) + C(τ)

where E(τ) =
∑∞

j=0 aE(j)qj is an Eisenstein series, and C(τ) =
∑∞

j=1 aC(j)qj is a cusp 
form.

Now for each genus, we can either find a representative lattice in this genus or com-
pute the genus theta series, i.e., the weighted average over all theta series in the genus. 
The genus theta series is an Eisenstein series, and its Fourier coefficients aE(j) can be 
computed as a product

aE(j) =
∏
p≤∞

βp(j)

of local densities βp(j). We use the formulas of Yang [27] to compute these local densities 
and then use the Sage computeralgebrasystem [24] to compute the Fourier coefficients 
aE(j).

Assume that the cusp forms subspace Sk(Γ0(�), χΛ) is of dimension h and it has a 
basis {Bi(τ)}hi=1, where Bi(τ) =

∑∞
j=0 aBi

(j)qj . As C(τ) ∈ Sk(Γ0(�), χΛ), we can write 
that

C(τ) =
h∑

i=1
ciBi(τ) =

∞∑
j=0

h∑
i=1

ciaBi
(j)qj

as a linear combination of the basis {Bi(τ)}hi=1. Hence

ϑΛ(τ) = E(τ) + C(τ) =
∞∑
j=0

(aE(j) +
h∑

i=1
ciaBi

(j))qj .

We write E(τ) |k Wl =
∑∞

j=0 aEW (j)qj and Bi(τ) |k Wl =
∑∞

j=0 aBW
i

(j)qj . Then

ϑΛ(τ) |k Wl = E(τ) |k Wl +
h∑

i=1
ciBi(τ) |k Wl =

∞∑
j=0

(aEW (j) +
h∑

i=1
ciaBW

i
(j))qj .

Note that these coefficients aEW (j) and aBW
i

(j) can be very easily computed from those 
coefficients aE(j) and aBi

(j).

Set const =
(
−

√
�
i

)k√
det(Λ∗). Now by Proposition 7.3 and the above discussion, we 

get the following linear restrictions on those variables ci:



JID:YJNTH AID:6359 /FLA [m1L; v1.261; Prn:1/10/2019; 13:39] P.23 (1-33)
S. Hu, G. Nebe / Journal of Number Theory ••• (••••) •••–••• 23
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

aE(0) +
∑h

i=1 ciaBi
(0) = 1,

aE(j) +
∑h

i=1 ciaBi
(j) = 0, for 1 ≤ j ≤ m′ − 1,

aE(m′) +
∑h

i=1 ciaBi
(m′) = 2s,

aE(j) +
∑h

i=1 ciaBi
(j) ≥ 0, for j ≥ m′ + 1,

aEW (0) +
∑h

i=1 ciaBW
i

(0) = 1 · const,

aEW (j) +
∑h

i=1 ciaBW
i

(j) = 0, for 1 ≤ j ≤ m− 1

aEW (m) +
∑h

i=1 ciaBW
i

(m) = 2s′ · const,

aEW (j) +
∑h

i=1 ciaBW
i

(j) ≥ 0, for j ≥ m + 1.

(7)

Now we employ the lrs Version 7.0 [1] to check whether there is any feasible solution 
for those variables ci. (In practice we will only use the coefficients up to degree 100.) If 
there is no feasible solution, then we conclude that there is no such lattice Λ with the 
corresponding genus symbol.

To illustrate the modular forms technique we will prove that there is no dual strongly 
perfect lattice Λ ⊂ R16 with r(Λ) ∈ {96/11, 64/7} in the following.

Lemma 7.5. There is no dual strongly perfect lattice Λ with r(Λ) = 96/11.

Proof. By Remark 5.3 there are a, b ∈ {3, 4, 6, 8, 9} with 24 | ab such that s(Λ) = 242 · a
and s(Λ∗) = 242 · b. We scale Λ such that min(Λ) = 1. Let α ∈ Λ∗, and write (α, α) = p

q

with coprime integers p and q. Then

(D4)(α) = a · 112 · p2

24 · 3 · q2 ∈ Z,

1
12(D4 −D2)(α) = a · 112 · p (p− 6 q)

26 · 32 · q2 ∈ Z.

Hence we have:

(i) If a = 9, then 25 | p, q | 11, whence 
√

11
24 Λ∗ is even with minimum 6.

(ii) If a ∈ {4, 8}, then 6 | p, q | 11, whence 
√

11
3 Λ∗ is even with minimum 32.

(iii) If a /∈ {4, 8, 9}, then 243 | p, q | 11, whence 
√

11
23·3Λ∗ is even with minimum 4.

We first treat the case where a �= 9 and b �= 9. Then Γ =
√

11
3 Λ∗ is even with min(Γ) =

32. Similarly, 
√

32 · 11
3 Γ∗ is also even, which is impossible by Lemma 2.2. This leaves us 

only two cases a = 8, b = 9 or a = 9, b = 8. By symmetry we assume that a = 8 and 

b = 9. Then Γ =
√

11
3 Λ∗ is even with min(Γ) = 32. Similarly, 

√
22Γ∗ is also even with 

minimum 6.
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Denote L =
√

22Γ∗ =
√

6Λ. Then detL = 2a11b, where a, b ∈ {0 . . . 16}. By 
Lemma 2.1, we get detL ∈ {22114, 23114, 26113, 29112, 21311, 216}. If detL = 216

then 1√
2L is a unimodular lattice, and the minimum of it cannot exceed 2, therefore 

min(L) ≤ 4, which contradicts the fact that min(L) = 6. Now by reading off all possible 
genera of L with detL ∈ {22114, 23114, 26113, 29112, 21311}, we find only two possible 
genera g1 = II16,0(2+211+4) and g2 = II16,0(2−211−4). We calculate the genus theta 
series of gi, 1 ≤ i ≤ 2 and get

Eg1(τ) = 1 + 14999208
7591877 q + 1950015144

7591877 q2 + 32818267104
7591877 q3 + 249632054952

7591877 q4 + O(q5),

Eg2(τ) = 1 + 1248806
622285 q + 157378598

622285 q2 + 2732387528
622285 q3 + 20141991974

622285 q4 + O(q5).

Then Ci(τ) = ϑL(τ) − Egi(τ) ∈ S8(Γ0(22), χ) if the genus symbol of L is gi, where χ is 
the trivial character. The subspace S8(Γ0(22), χ) is of 19 dimension. We also know that

ϑL = 1 + 2 · 242 · 8q3 + O(q4),

ϑ√
22L∗ = 1 + 2 · 242 · 9 q16 + O(q17).

Now we use lrs to solve the linear restrictions (7), and find that there does not exist cusp 
forms Ci(τ) which satisfies those restrictions (7). This concludes our proof. �
Lemma 7.6. There is no dual strongly perfect lattice Λ with r(Λ) = 64/7.

Proof. By Remark 5.3 there is some a ∈ {1, . . . , 4} such that s(Λ) = 882 · a. We scale Λ
such that min(Λ) = 1/7 and min(Λ∗) = 64. For every α ∈ Γ = Λ∗,

(D4)(α) = 3a
24 (α, α)2 ∈ Z =⇒ (α, α) ∈ 2Z.

Hence Γ is even. Now rescale Λ such that min(Λ) = 1 and min(Λ∗) = 64/7. Then 
√

64Λ
is even, and hence for x, y ∈ Min(Λ) with x �= ±y,

(x, y) ∈ {a/64 : a ∈ Z,−32 ≤ a ≤ 32}.

Now fix α ∈ Min(Λ∗), and let Ni(α) = {x ∈ Min(Λ) | (x, α) = i} for i ∈ {2, 3}. Note 
that

6|N3(α)| + |N2(α)| = 22 · a. (8)

We first prove that N3(α) = ∅. Assume that there is α ∈ Min(Λ∗) with N3(α) �= ∅

and choose x ∈ N3(α). Assume that there is y ∈ N2(α) ∪N3(α) \ {x}. Write the Gram 
matrix formed by those three vectors x, y, α as
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Ge =
( 1 (x, y) 3

(x, y) 1 e
3 e 64/7

)

where e = 2 or e = 3. We compute

det(G3) = −64/7((x, y) − 1)((x, y) − 31/32) and

det(G2) = −64/7((x, y) − 3/4)((x, y) − 9/16)

So det(G3) ≥ 0 only if (x, y) ∈ [1, 31/32] contradicting the fact that x, y are distinct 
minimal vectors. Similarly det(G2) ≥ 0 only if (x, y) ∈ [9/16, 3/4] yields again a contra-
diction. Therefore 6|N3(α)| + |N2(α)| = 6, but this contradicts Equation (8).

As N3(α) = ∅, by Lemma 3.9 we have |N2(α)| ≤ 61.9, so a ≤ 2. Similarly b ≤ 2 and 
by Remark 5.3 we have a = b = 2.

Recall that we scaled Λ such that min(Λ) = 1. For α ∈ Λ∗ write (α, α) = p
q ∈ Q. 

Then equation (D4)(α) and 1
12 (D4 −D2)(α) yield

3 · 72

23
p2

q2 ∈ Z and 72

25
p

q
(p
q
− 6) ∈ Z

whence 24 | p and q | 7. In particular Γ :=
√

7
23 Λ∗ is an even lattice with minimum 

23. Similarly, the lattice 
√

7Γ∗ is also even. By Lemma 2.1, we have det Γ = 78. As the 
even level of Γ is 7 the lattice Γ is in the genus of even 7-modular lattices represented 
by L = E8 ⊥

√
7E8. The ϑ-series of L is

ϑL = 1 + 240q + 2160q2 + 6720q3 + 17520q4 + 30240q5 + 60480q6 + 82800q7 + O(q8).

Because of Theorem 7.2 we see that ϑL ∈ M8(Γ0(7), χ) where χ is trivial. With The-
orem 7.4 it follows that S = ϑL − ϑΓ ∈ S8(Γ0(7), χ). The subspace S8(Γ0(7), χ) is of 
dimension 3. We know that

ϑΓ = 1 + 2 · 882 · 2q4 + O(q5),

ϑ√
7Γ∗ = 1 + 2 · 882 · 2q4 + O(q5),

S |8 W7 = ϑL |8 W7 − ϑΓ |8 W7 = (ϑ√
7L∗ − ϑ√

7Γ∗).

Then we get 8 relations on the coefficients of S. The MAGMA computation shows that 
there is no solution for these 8 relations. �
8. r(Λ) = 36

5

Let Λ be some dual strongly perfect lattice of dimension 16 with r(Λ) = 36/5. By 
Theorem 3.11 s(Λ), s(Λ∗) ∈ {400, 800, 1200}. WLOG we assume that s(Λ) ≤ s(Λ∗). We 
first apply the modular form approach and obtain the following.



JID:YJNTH AID:6359 /FLA [m1L; v1.261; Prn:1/10/2019; 13:39] P.26 (1-33)
26 S. Hu, G. Nebe / Journal of Number Theory ••• (••••) •••–•••
Lemma 8.1. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 36/5 and

1. s(Λ) = 400, s(Λ∗) ∈ {400, 800}.
2. s(Λ) = 800, s(Λ∗) = 1200.

Next we apply the technique from Lemma 5.10 to exclude two more pairs of values.

Lemma 8.2. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 36/5 and 
(s(Λ), s(Λ∗)) ∈ {(400, 1200), (800, 800)}.

Proof. Here we only give the proof for the case that s(Λ) = s(Λ∗) = 800, as the other 
case can be proved similarly. We scale Λ such that min(Λ) = 3/5, min(Λ∗) = 12. Then 
Λ∗ is an even lattice; similarly 

√
20Λ is even. Thus for x, y ∈ Λ we have (x, y) ∈ 1

20Z. 
Choose α1 ∈ Λ and put N2(α1) = {x1, x2, x3, x4, x5, x6}. We know that 

∑6
i=1 xi = α1, 

so 3/5 +
∑6

i=2(x1, xi) = 2. Combining this with (x1, xi) ∈ 1
20Z, we readily check there 

are only two possibilities for the multiset {(x1, xi) : i ∈ {2 . . . 6}}: {1/5, (3/10)4} and 
{(1/4)2, (3/10)3}, where the exponents indicate multiplicities. Using this observation, we 
easily find that there are totally four possible Gram matrix formed by vectors x1, . . . , x6
up to the permutation equivalence:

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6

x1 3/5 1/5 3/10 3/10 3/10 3/10
x2 1/5 3/5 3/10 3/10 3/10 3/10
x3 3/10 3/10 3/5 1/5 3/10 3/10
x4 3/10 3/10 1/5 3/5 3/10 3/10
x5 3/10 3/10 3/10 3/10 3/5 1/5
x6 3/10 3/10 3/10 3/10 1/5 3/5

⎤
⎥⎥⎥⎥⎦,

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6

x1 3/5 1/5 3/10 3/10 3/10 3/10
x2 1/5 3/5 3/10 3/10 3/10 3/10
x3 3/10 3/10 3/5 1/4 1/4 3/10
x4 3/10 3/10 1/4 3/5 3/10 1/4
x5 3/10 3/10 1/4 3/10 3/5 1/4
x6 3/10 3/10 3/10 1/4 1/4 3/5

⎤
⎥⎥⎥⎥⎦,

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6

x1 3/5 1/4 1/4 3/10 3/10 3/10
x2 1/4 3/5 1/4 3/10 3/10 3/10
x3 1/4 1/4 3/5 3/10 3/10 3/10
x4 3/10 3/10 3/10 3/5 1/4 1/4
x5 3/10 3/10 3/10 1/4 3/5 1/4
x6 3/10 3/10 3/10 1/4 1/4 3/5

⎤
⎥⎥⎥⎥⎦,

⎡
⎢⎢⎢⎢⎣

x1 x2 x3 x4 x5 x6

x1 3/5 1/4 1/4 3/10 3/10 3/10
x2 1/4 3/5 3/10 1/4 3/10 3/10
x3 1/4 3/10 3/5 3/10 1/4 3/10
x4 3/10 1/4 3/10 3/5 3/10 1/4
x5 3/10 3/10 1/4 3/10 3/5 1/4
x6 3/10 3/10 3/10 1/4 1/4 3/5

⎤
⎥⎥⎥⎥⎦.

Put N2(x1) = {α1, . . . , α6}. We also have four possible Gram matrix 20A1, . . . , 20A4
up to permutation equivalence. Considering the Gram matrix formed by vectors 
x1, . . . , x6, α1, . . . , α6, we find totally 20 possible such matrix up to relabelling of 
vectors x2, . . . , x6 and α2, . . . , α6, by checking whether it is positive-semidefinite 
and the lattice with this Gram matrix has minimum norm not less than 3/5. Put 
N2(α2) = {x1, y2, . . . , y6}. We continue to investigate the Gram matrix formed by vectors 
x1, . . . , x6, α1, . . . , α6, x1, y2, . . . , y6. Direct computation shows none of these 20 matrices 
can be completed to such a Gram matrix. This finishes our proof. �

The only remaining situation is s(Λ) = s(Λ∗) = 1200. Here the proof of [2, Theorem 
8.1] applies almost literally to obtain:

Lemma 8.3. If Λ is a dual strongly perfect lattice of dimension 16 with r(Λ) = 36/5 and 
s(Λ) = s(Λ∗) = 1200, then Λ ∼= N16.
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9. The case r(Λ) = 9

Let Λ be some dual strongly perfect lattice so that Λ ≤ R16, min(Λ) min(Λ∗) = 9. 
Rescale the situation so that

m := min(Λ) = 3/2 and r := min(Λ∗) = 6

and put Γ := Λ∗. Then there are a, b ∈ {2, . . . , 28} such that

s := |Min(Λ)|/2 = 27a and t := |Min(Γ)| = 27b.

Then for all γ, γ′ ∈ Γ the following numbers are integers:

(D4)(γ) : 3a(γ, γ)2,

(D22)(γ, γ′) : a(2(γ, γ′)2 + (γ, γ)(γ′, γ′),
1
12(D4 −D2)(γ) : a

4 (γ, γ)((γ, γ) − 4),

1
6(D13 −D11)(γ′, γ) : a

2 (γ, γ′)((γ, γ) − 4).

Lemma 9.1. If there is α ∈ Min(Γ) and x ∈ Min(Λ) such that (α, x) = 3, then α = 2x, 
N3(α) = {x}, N2(α) = ∅ and a = 2.

Proof. Clearly α = 2x, so x is uniquely determined by α. Assume that there is y ∈
Min(Λ) with (y, α) = 2. Then (y, x) = 1

2 (y, α) = 1 and x −y ∈ Λ has norm (x −y, x −y) =
3 − 2 = 1 < 3/2 a contradiction to the fact that min(Λ) = 3/2. Therefore N2(α) = ∅, 
|N3(α)| = 1 and hence

1
12(D4 −D2)(α) = 6 = 12a

4

implying a = 2. �
Lemma 9.2. Assume that N3(α) = ∅. Then a ≤ 19.

Proof. Then |N2(α)| = 3a and the set N2(α) := {x := x −α/3 | x ∈ N2(α)} ⊆ α⊥ ∼= R15

satisfies

(x, x′) = (x− α/3, x′ − α/3) = (x, x′) − 2/3
{

= 5/6 x = x′

≤ 1/12 x �= x′

so 
√

6/5N2(α) is a [−1, 1/10]-spherical code in S14. By Lemma 3.8 the cardinality of 
such a code is upper bounded by 57 = 3 · 19. �
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Lemma 9.3. If a is squarefree then Γ is an even lattice of level involving only the primes 
2 and 3.

Proof. 1
12 (D4 − D2) shows that (γ, γ) ∈ 2Z for all γ ∈ Γ. For the level, need to go 

through the possibilities for b. But p2 does not divide b for p ≥ 5 so this is easy. �
Corollary 9.4. a is not squarefree.

Proof. By Lemma 9.3 det(Γ) = 2a3b for some nonnegative integers a, b and min(Γ∗) =
3/2. So by Lemma 4.2 Γ is isomorphic to one of Λ16, Γ16, or O∗

16, but none of them has 
Berge-Martinet invariant equal to 9. This concludes our proof. �

So we are left with the cases a ∈ {4, 8, 9, 12, 16, 18}. By symmetry we also conclude 
that b ∈ {4, 8, 9, 12, 16, 18}. By the modular form approach we can prove that

Lemma 9.5. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 9 and s(Λ) =
27a and s(Λ∗) = 27b for some a, b ∈ {4, 8, 9, 12, 16, 18}.

In summary we have the following.

Theorem 9.6. There is no dual strongly perfect lattice Λ ⊂ R16 with r(Λ) = 9.

10. The case r(Λ) = 8

Throughout this section we assume that Λ is a dual strongly perfect lattice of dimen-
sion 16 with r(Λ) = 8. Rescale Λ so that min(Λ) = 2 and min(Λ∗) = 4. Put Γ := Λ∗. 
By Theorem 3.11 there are a, b ∈ {2, . . . , 30} such that

s := |Min(Λ)|/2 = 2332a and t := |Min(Γ)|/2 = 2332b.

Then for all γ, γ′ ∈ Γ the following numbers are integers:

(D4)(γ) : 3a(γ, γ)2,

(D22)(γ, γ′) : a(2(γ, γ′)2 + (γ, γ)(γ′, γ′)),
1
12(D4 −D2)(γ) : a

4 (γ, γ)((γ, γ) − 3),

1
6(D13 −D11)(γ′, γ) : a

2 (γ, γ′)((γ, γ) − 3).

Lemma 10.1. If a is squarefree then (γ, γ) ∈ Z for all γ ∈ Γ and

Γ(e) := {γ ∈ Γ | (γ, γ) ∈ 2Z} ⊂ Γ∗ ∩ Γ

is a sublattice of Γ with |Γ : Γ(e)| ∈ {1, 2, 4}.



JID:YJNTH AID:6359 /FLA [m1L; v1.261; Prn:1/10/2019; 13:39] P.29 (1-33)
S. Hu, G. Nebe / Journal of Number Theory ••• (••••) •••–••• 29
Proof. 1
12 (D4 −D2)(γ) shows that (γ, γ) ∈ Z for all γ ∈ Γ. If (γ, γ) ∈ 2Z, then 1

6 (D13 −
D11) implies that (γ, γ′) ∈ Z for all γ′ ∈ Γ, so Γ(e) ⊂ Γ∗ ∩ Γ is a sublattice of Γ. �
Lemma 10.2. If a is odd then a ∈ {9, 25}.

Proof. If a is odd and squarefree then for α ∈ Min(Γ) equation 1
6 (D13 − D11) shows 

that a2 (α, γ′) ∈ Z for all γ′ ∈ Γ. This shows that α2 ∈ Γ∗ = Λ contradicting the fact that 
min(Λ) = 2 > 1 = (α2 , 

α
2 ). �

Corollary 10.3. The argument above shows that a2α ∈ Γ∗ for all α ∈ Min(Γ).

We now fix α ∈ Min(Γ) and consider the set

N2(α) := {x ∈ Min(Λ) | (α, x) = 2}

Then |N2(α)| = a and by [17, Lemma 2.10] we may write

N2(α) = E1 ∪ . . . ∪ Ek

where Ei is minimal so that 
∑

x∈Ei
x = |Ei|

2 α and k is maximal. Then

dim〈N2(α)〉 = 1 + |N2(α)| − k and |Ei| ≥ 2 for all i.

Lemma 10.4. a �= 25.

Proof. If a = 25 then by the above 1 +25 − k ≤ 16 implies that k ≥ 10 ≥ 25/3. So there 
is some i such that |Ei| = 2 which shows that α ∈ Γ∗. By Corollary 10.3 we also have 
25
2 α ∈ Γ∗ so in total α2 ∈ Γ∗ contradicting the fact that min(Γ∗) = 2. �

So now we are left with the following cases:

a, b ∈ {2, 4, 6, 8, 9, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28, 30}.

Lemma 10.5.

(i) If a ∈ {2, 4, 6, 8, 10, 12, 14, 20, 22, 24, 26, 28, 30} then rescaling Γ yields an even lat-
tice of minimum 8 (with dual minimum 1).

(ii) If a ∈ {9, 18} then rescaling Γ yields an even lattice of minimum 24 (with dual 
minimum 1/3).

(iii) If a = 16 then rescaling Γ yields an even lattice of minimum 16 (with dual minimum 
1/2).

Lemma 10.6. If a = 30 then Γ ∼= Λ16.
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Proof. Assume that a = 30. Then 16 ≥ 1 + 30 − k and k ≤ 15 implies that k = 15 and 
|Ei| = 2 for all i. So N2(α) = {x1, . . . , x15} ∪ {α− x1, . . . , α− x15} and (xi, xj) = 1 for 
all i �= j. Hence the lattice L := 〈N2(α)〉 ⊆ Λ. On the other hand, from Lemma 10.5 we 
know that |Λ/L| has only the prime divisors 2 and 3. A complete search of the strongly 
perfect overlattices of L with minimum 2 and whose determinant only have the prime 
divisors 2 and 3 shows that Λ ∼= Λ∗

16 and hence Γ = Λ∗ ∼= Λ16. �
By the modular form approach, we can prove the following.

Theorem 10.7. There is no dual strongly perfect lattice with

1. a, b ∈ {2, 4, 6, 8, 10, 12, 14, 16, 20, 22, 24, 26, 28} except for a = b = 28;
2. a ∈ {9, 18} and b ∈ {2, 4, 6, 8, 10, 12, 14, 20, 22, 24, 26, 28}

and vice versa.

Lemma 10.8. There is no dual strongly perfect lattice with a = b = 28.

Proof. By Lemma 10.5 we see that the level of Λ divides 8. Then by the modular form 
approach we find that only the case det(Λ) = 2−8 is possible. By the above 1 +28 −k ≤ 16
implies that k ≥ 13. WLOG we have the following three possible cases:

(i) k = 13, |Ei| = 2 for 1 ≤ i ≤ 11 and |E12| = |E13| = 3;
(ii) k = 13, |Ei| = 2 for 1 ≤ i ≤ 12 and |E13| = 4;
(iii) k = 14, |Ei| = 2 for 1 ≤ i ≤ 14.

Case (i) can be easily excluded as the condition |E12| = 3 implies that α/2 ∈ Γ∗, which 
contradicts the fact that min(Γ∗) = 2.

For Case (ii) we assume that Ei = {xi, α − xi} for 1 ≤ i ≤ 12, and E13 =
{x13, x14, x15, x16}. So (xi, xi) = 2 for 1 ≤ i ≤ 16 and (xi, xj) = 1 for 1 ≤ i ≤ 12, 
1 ≤ j ≤ 16 and i �= j. On the other hand, we know that 2Λ is even and E13 is minimal 
so that 

∑
x∈E13

= 2α, hence (xi, xj) ∈ {0, ±1/4, ±1/2, ±3/4, −1} for 13 ≤ i �= j ≤ 16. 
A simple calculation shows that there is up to isomorphism only one possibility for the 
Gram matrix formed by vectors x13, x14, x15, x16:

G =

⎛
⎜⎝

2 3/4 3/4 1/2
3/4 2 1/2 3/4
3/4 1/2 2 3/4
1/2 3/4 3/4 2

⎞
⎟⎠ .

But the norm of the vector (α − x14 − x15) is equal to 1, contradicting the fact that 
min(Γ∗) = 2. This excludes Case (ii).

For Case (iii) we assume that Ei = {xi, α − xi} for 1 ≤ i ≤ 14. So (xi, xj) = 1 for 
1 ≤ i �= j ≤ 14. Write N2(x1) = {β ∈ Min(Γ) | (x1, β) = 2}. Similarly we can prove that
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N2(x1) = F1 ∪ · · · ∪ F14

where Fi is minimal so that 
∑

β∈Fi
= 2x1. Set that Fi = {αi, 2x1 − αi} for 1 ≤ i ≤ 14

where α1 = α. A computer search by MAGMA shows that there is up to isomorphism 
only one possibility for the lattice L := 〈x1, . . . , x14, α1, . . . , α14〉, and its determinant 
is equal to 4. Then a complete search of the overlattices of L with minimum 2 and 
determinant 2−8 shows that up to isomorphism there is only one such lattice and it is 
isometric to Λ∗

16. This shows that Case (iii) is impossible. �
Lemma 10.9. There is no dual strongly perfect lattice with a ∈ {9, 18}, b = 16 or a =
16, b ∈ {9, 18}.

Proof. By symmetry we may assume that a ∈ {9, 18} and b = 16. If a = 9 and b = 16
then by the modular form approach we can prove that there is no such dual strongly 
perfect lattice. Now we assume that a = 18 and b = 16. We rescale Λ such that min(Λ) =
1
3 and min(Λ∗) = 24. Set Γ := Λ∗. In particular Γ is even by Lemma 10.5. Let α ∈ Γ, 
and write (α, α) = p

q with coprime integers p and q. Then

(D4)(α) = 3p2

2q2 ∈ Z,

1
6(D13 −D11)(α, β) = 1

23 (α, β)((β, β) − 18).

Hence Γ(e) := {α ∈ Γ | (α, α) ∈ 4Z} is a sublattice of Γ with |Γ : Γ(e)| ∈ {1, 2, 4}. We 
apply the modular form approach to Γ and Γ(e), and find that only the case detΓ = 24632

and |Γ : Γ(e)| = 2 is possible. Now from the linear restrictions (7) we find that Γ contains 
at most 2426 vectors of norm 36. On the other hand, as Λ ⊂ (Γ(e))∗, we know that 
(Γ(e))∗ contains at least 2 · 72 · 18 vectors of norm 1

3 . Also as Min(Γ) = Min(Γ(e)), Γ(e)

is also strongly perfect, so min((Γ(e))∗) ≥ 1/4. Now from the linear restrictions (7) and 
the condition that (Γ(e))∗ contains at least 2 ·72 ·18 vectors of norm 1

3 , we compute that 
Γ(e) contains at least 6172 vectors of norm 36, which is a contradiction. This concludes 
our proof. �
Lemma 10.10. There is no dual strongly perfect lattice with a, b ∈ {9, 18}.

Proof. By Remark 5.3 we see that the case a = b = 9 is impossible. By symmetry we 
may assume that a = 18 and b ∈ {9, 18}. We rescale Λ such that min(Λ) = 1

3 and 
min(Λ∗) = 24. Set Γ := Λ∗. As in Lemma 10.9 we see that Γ is an even lattice and 
Γ(e) := {α ∈ Γ | (α, α) ∈ 4Z} is a sublattice of Γ with |Γ : Γ(e)| ∈ {1, 2, 4} (see [17, 
Lemma 2.8]). Similarly we can prove that L :=

√
72Λ is even and hence the even level 

of Γ divides 72. If the even level of Γ divides 36 or 24, then we apply the modular 
form technique to the lattice Γ, and the computation shows that there does not exist 
such a lattice. So in the following we assume that the level of Γ is equal to 72. Then 
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Γ(e) is a proper sublattice of Γ. As Min(Γ) = Min(Γ(e)), Γ(e) is also strongly perfect, 
so min((Γ(e))∗) ≥ 1/4. In total we find 1508 possible genus symbols for the lattice Γ. 
We apply the modular form technique to Γ if det(Γ) /∈ {218320, 230312, 224316} and to 
its even sublattice Γ(e) otherwise. It turns out that none of the 1508 genus symbols is 
possible. This concludes our proof. �
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