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This article establishes new explicit zero-free regions for 
the Dedekind zeta-function. Two key elements of our proof 
are a non-negative, even, trigonometric polynomial and 
explicit upper bounds for the explicit formula of the so-
called differenced logarithmic derivative of the Dedekind zeta-
function. The improvements we establish over the last result of 
this kind come from two sources. First, our computations use a 
polynomial which has been optimised by simulated annealing 
for a similar problem. Second, we establish sharper upper 
bounds for the aforementioned explicit formula.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

Let K be an algebraic number field and L be a normal extension of K with Galois 
group G = Gal(L/K). Suppose dL, dK denote the absolute values of the respective 
discriminant, nL = [L : Q] and nK = [K : Q]. The Dedekind zeta-function of L is 
denoted and defined for Re(s) > 1 by

E-mail address: ethan.s.lee@student.adfa.edu.au.
https://doi.org/10.1016/j.jnt.2020.12.015
0022-314X/© 2021 Elsevier Inc. All rights reserved.

https://doi.org/10.1016/j.jnt.2020.12.015
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jnt
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jnt.2020.12.015&domain=pdf
mailto:ethan.s.lee@student.adfa.edu.au
https://doi.org/10.1016/j.jnt.2020.12.015


308 E.S. Lee / Journal of Number Theory 224 (2021) 307–322
ζL(s) =
∑
P

1
N(P)s ,

where P ranges over the non-zero ideals of OL. If nL = a + b, then one can also consider 
the completed zeta-function

ξL(s) = s(s− 1)dL
s
2 γL(s)ζL(s) such that

γL(s) = π− as
2 Γ

(s
2

)a

π− b(s+1)
2 Γ

(
s + 1

2

)b

.

Here, ξL is an entire function satisfying the functional equation ξL(s) = ξL(1 − s). It 
can be seen that ζL is meromorphic on the complex plane with exactly one simple pole 
at s = 1. Let P denote a prime ideal of K and P denote a prime ideal of L. If P is 
unramified in L, then the Artin symbol,

[
L/K

P

]
,

denotes the conjugacy class of Frobenius automorphisms corresponding to prime ideals 
P |P. For each conjugacy class C ⊂ G, the prime ideal counting function is

πC(x, L/K) = #
{
P : P unramified in L,

[
L/K

P

]
= C,NK(P) ≤ x

}
.

In 1926, Chebotarëv [2] proved the Chebotarëv density theorem, which states that

πC(x, L/K) ∼ #C

#G
Li(x) = #C

#G

x∫
2

dt

log t as x → ∞.

For example, if L = K = Q, then the Chebotarëv density theorem restates the prime 
number theorem. Moreover, if ω� = e

2πi
� is the �th root of unity, K = Q and L = Q(ω�), 

then the Chebotarëv density theorem identifies with the Dirichlet theorem for primes in 
arithmetic progressions.

In 1977, Lagarias–Odlyzko [9] provided explicit estimates for the error term of the 
Chebotarëv density theorem. There are two results contained therein; one version as-
sumes the generalised Riemann hypothesis (GRH) for ζL and the other does not. Their 
error term is effectively computable, dependent only on x, nL, dL and #C

#G .
Under the GRH for ζL, one can obtain the best possible effective results. Without 

assuming the GRH for ζL, the better the zero-free region for ζL one has, the better the 
effective result one can achieve. Therefore, the objective of this paper is to improve the 
best known, explicit zero-free region for ζL, given by Kadiri [6] in 2012. We recall two 
famous forms of zero-free regions for the Riemann zeta-function.
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Classical zero-free region. In 1899, de la Vallée Poussin [3] famously proved that there 
exists a positive constant R such that ζ is non-zero in the region s = σ + it such that 
t ≥ T and

σ ≥ 1 − 1
R log t . (1)

The best known zero-free region for ζ of this kind is attributed to Mossinghoff–Trudgian 
[12], who verified (1) for R ≈ 5.573 and T = 2.

Koborov–Vinogradov zero-free region. In 1958, Koborov [8] and Vinogradov [15] indepen-
dently demonstrated that there exists a positive constant R1 such that ζ is non-zero in 
the region s = σ + it such that t ≥ T and

σ ≥ 1 − 1
R1(log t) 2

3 (log log t) 1
3
. (2)

The best known zero-free region for ζ of this kind is attributed to Ford [4], who has 
verified (2) for R1 = 57.54 and T = 3. Ford [4] also establishes the zero-free region (2)
for large t with R1 = 49.13.

Naturally, the closest form of the zero-free region for ζL will also depend on the extra 
variables dL and nL. However, the method we adopt is based on de la Vallée Poussin’s 
method for determining the classical zero-free region for ζ. One complication is that a 
so-called exceptional zero could exist inside a zero-free region for ζL. If this exceptional 
zero exists, then it must be simple and real.

Kadiri [6, Theorem 1.1] was the last to re-purpose de la Vallée Poussin’s proof (using 
Stečkin’s [14] so-called differencing trick) to obtain a zero-free region for ζL. In this 
paper, we will establish Theorem 1, a new zero-free region for ζL which builds upon 
Kadiri’s zero-free region for ζL. We will also establish Theorem 2, which will reveal more 
information pertaining to the exceptional zero.

Theorem 1. Suppose (C1, C2, C3, C4) = (12.2411, 9.5347, 0.05017, 2.2692), then ζL(σ+it)
is non-zero for

σ ≥ 1 − 1
C1 log dL + C2 · nL log |t| + C3 · nL + C4

and |t| ≥ 1. (3)

Theorem 2. For asymptotically large dL and R = 12.43436, ζL(σ + it) has at most one 
zero in the region

σ ≥ 1 − 1
R log dL

and |t| < 1. (4)

If this exceptional zero exists, then it is simple and real.
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Kadiri [6] established (3) with (C1, C2, C3, C4) = (12.55, 9.69, 3.03, 58.63). To yield 
Theorem 1, we will follow a similar process to Kadiri, but observe some improvements. 
An important step in the proof of Theorem 1 is to choose a polynomial pn(ϕ) from the 
so-called the class of non-negative, trigonometric polynomials of degree n; denoted and 
defined by

Pn :=
{
pn(ϕ) =

n∑
k=0

ak cos(kϕ) : pn(ϕ) ≥ 0 for all ϕ, ak ≥ 0 and a0 < a1

}
.

Whereas Kadiri worked with polynomials from P4, we will use the same polynomial from 
P16 as Mossinghoff–Trudgian [12]. This polynomial has been optimised by simulated 
annealing for computations pertaining to their computations for the zero-free region for 
ζ. This amendment contributed all of the improvements that can be seen for C1 and C2. 
In fact, if one re-runs Kadiri’s computations, only updating the polynomial, then this 
establishes (3) with (C1, C2, C3, C4) = (12.2411, 9.5347, 3.3492, 57.7027).

Another improvement follows from improvements we have made to [11, Lemma 2]
from McCurley. In particular, we improve explicit values for S(k), a computable constant 
dependent on k ∈ N. These improvements will contribute almost all of the improvement 
one observes for C3.

Kadiri [6] also established (4) with R = 12.7305. To yield Theorem 2, we will recycle 
bounds from [6, §3] and apply the same higher degree polynomial from P16. A corollary 
of the method we use to establish Theorem 2 is an improvement to a well-known region 
by Stark [13]. However, because we only update the polynomial for this method, we 
cannot improve Stark’s result further than [6, Corollary 1.2] already does.

Finally, if an exceptional zero β1 exists, then one can enlarge the zero-free region in 
Theorem 2 using the Deuring-Heilbronn phenomenon [10]. This was one of the key ingre-
dients in work by Ahn–Kwon [1], Zaman [16] and Kadiri–Ng–Wong [7], which pertains 
to the least prime ideal in the Chebotarëv density theorem.

Remark. The method of proof which we follow does not use Heath-Brown’s version of 
Jensen’s formula [5, Lemma 3.2], although this might yield better zero-free regions than 
those we can obtain using this method. This is partially because there does not exist 
a general sub-convexity bound for general number fields, so it is difficult to apply his 
approach in the number field setting — see Kadiri [6] for an excellent explanation of 
this.

2. Proof of Theorem 1

The set-up of our proof for Theorem 1 is the same as that which Kadiri uses in her 
proof of [6, Theorem 1.1], which has a similar shape to Stečkin’s argument [14] for ζ. 
Suppose t ≥ 1. We introduce some definitions, which will hold for the remainder of this 
paper:
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• κ = 1√
5 ;

• sk = σ + ikt such that k ∈ N, 1 < σ < 1 + ε for some 0 < ε ≤ 0.15;
• s′k = σ1 + ikt such that σ1 = 1+

√
1+4σ2

2 .

Note that σ1 depends on σ, so for convenience we will write σ1(a) to denote the value of 
σ1 at σ = a. To prove Theorem 1, we will isolate a non-trivial zero ρ = β + it of ζL such 
that β > 1 − ε ≥ 0.85, choose a polynomial pn(ϕ) from Pn, and consider the function

S(σ, t) =
n∑

k=0

akfL(σ, kt),

such that

fL(σ, kt) = −Re

(
ζ ′L
ζL

(sk) − κ
ζ ′L
ζL

(s′k)
)

=
∑

0�=P⊂OL

Λ(P)(N(P)−σ − κN(P)−σ1) cos(kt log(N(P)).

It follows that

S(σ, t) =
∑

0�=P⊂OL

Λ(P)(N(P)−σ − κN(P)−σ1)pn(t log(N(P)) ≥ 0.

On the other hand, we can utilise the explicit formula [9, (8.3)],

−ζ ′L
ζL

(sk) = log dL
2 + 1

sk
+ 1

sk − 1 + γ′
L

γL
(sk) −

1
2

∑
�∈Z(ζL)

(
1

sk − �
+ 1

sk − �

)
. (5)

Here, Z(ζL) denotes the set of non-trivial zeros of ζL. One can use (5) to show

0 ≤ S(σ, t) ≤ S1 + S2 + S3 + S4, (6)

where F (s, z) = Re

(
1

s−z + 1
s−1+z̄

)
such that

S1 = −
n∑

k=0

ak
∑

�∈Z(ζL)

Re

(
1

sk − �
− κ

s′k − �

)
,

S2 = 1 − κ

2

(
n∑

k=0

ak

)
log dL,

S3 =
n∑

k=0

ak (F (sk, 1) − κF (s′k, 1)) , and

S4 =
n∑

akRe

(
γ′
L(sk)

γL(sk)
− κ

γ′
L(s′k)

γL(s′ )

)
.

k=0 k
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We will choose n = 16, so we can apply Mossinghoff–Trudgian’s polynomial p16(ϕ) ∈ P16

from [12]. Taking n = 16, S2 is directly computable, and we find upper bounds for S1, 
S3, and S4 in Sections 2.1, 2.2, and 2.3. The resulting upper bound for S1 +S2 +S3 +S4

will depend on β, σ, t, the coefficients of p16(ϕ) and ε, therefore we may use (6) and 
rearrange the inequality to obtain Theorem 1 in Section 2.4.

2.1. Upper bound for S1

Lemma 3 (Stečkin [14]). Suppose s = σ+it with 1 < σ ≤ 1.25, z ∈ C, and 0 < Re(z) < 1, 
then

F (s, z) − κF (s′1, z) ≥ 0. (7)

Moreover, if Im(z) = Im(s) = t and 1
2 ≤ Re(z) < 1, then

Re

(
1

s− 1 + z̄

)
− κF (s′1, z) ≥ 0.

Note that κ is the largest value such that (7) holds. This subsection is not an im-
provement on [6, Lemma 2.3], rather a repeat for the purpose of clarity. By the positivity 
condition (7) in Lemma 3, we have

�(sk) :=
∑

�∈Z(ζL)

Re

(
1

sk − �
− κ

s′k − �

)
≤ κF (s′k, ρ) − F (sk, ρ). (8)

If k = 1, then (8) implies that

�(s1) ≤ − 1
σ − β

− 1
σ − 1 + β

+ κ

σ1 − β
+ κ

σ1 − 1 + β
= − 1

σ − β
+ g(σ, β).

We see that g(σ, β) < g(1, 1) and g(1, 1) is small and negative, so �(s1) ≤ − 1
σ−β . More-

over, if k 
= 1, then (8) implies that �(sk) ≤ 0 by (7). One can package the preceding 
observations into the following lemma.

Lemma 4. Isolate a zero ρ = β + it ∈ Z(ζL) such that β ≥ 1 − ε ≥ 0.85, then

�(σ + ikt) ≤
{
− 1

σ−β if k = 1,
0 if k 
= 1.

Therefore, S1 ≤ − a1 .
σ−β
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Table 1
Admissible values for B0.15(k).

k B0.15(k) k B0.15(k)
1 0.23445352 9 0.00235718
2 0.06869804 10 0.00188669
3 0.02783858 11 0.00154513
4 0.01427867 12 0.00128917
5 0.0085573 13 0.0010924
6 0.00568194 14 0.00093759
7 0.00404715 15 0.00081374
8 0.00303134 16 0.00071303

2.2. Upper bound for S3

Suppose that

Σk(σ, t) := F (σ + ikt, 1) − κF (σ1 + ikt, 1)

= σ

σ2 + k2t2
+ σ − 1

(σ − 1)2 + k2t2
− κ

σ1

σ12 + k2t2
− κ

σ1 − 1
(σ1 − 1)2 + k2t2

.

Case I. If k = 0, then Σk is only dependent on σ, with a singularity occurring at σ = 1. 
In fact,

Σ0(σ, t) = 1
σ

+ 1
σ − 1 − κ

σ1
− κ

σ1 − 1 := 1
σ − 1 + h(σ).

We observe that h(σ) increases as σ increases, so for αε = h(1 + ε) < 0.021467, we have

Σ0(σ, t) ≤
1

σ − 1 + αε.

Case II. Suppose 1 ≤ k ≤ 16, then Σk(σ, t) depends on σ and t. For each σ, Σk(σ, t)
decreases as t increases, because the derivative of Σk(σ, t) with respect to t is negative 
for all t ≥ 1. Therefore, Σk(σ, t) ≤ Σk(σ, 1), which increases as σ increases, because the 
derivative of Σk(σ, 1) with respect to σ is positive for all 1 ≤ σ ≤ 1.15. It follows that

Σk(σ, t) ≤ Σk(1 + ε, 1) < Bε(k),

where admissible values for Bε(k) are easily computed using a computer. To further verify 
this bound, the Maximize command in Maple confirms that the maximum of Σk(σ, t)
occurs at σ = 1 + ε and t = 1. For example, if ε = 0.15 or ε = 0.01, then admissible 
values of B0.15(k) and B0.01(k) are given in Table 1 and Table 2 respectively. Note that 
we round up at 8 decimal places, to account for any possible rounding errors.

Now, we can collect the preceding observations to yield Lemma 5.
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Table 2
Admissible values for B0.01(k).

k B0.01(k) k B0.01(k)
1 0.10919579 9 0.00029396
2 0.03040152 10 0.00021655
3 0.00958566 11 0.00016557
4 0.00384196 12 0.00013046
5 0.00185609 13 0.00010535
6 0.00102853 14 0.00008684
7 0.00063099 15 0.00007282
8 0.00041809 16 0.00006196

Lemma 5. For 0 ≤ k ≤ 16, we have that

Σk(σ, t) ≤
{

1
σ−1 + αε if k = 0,
Bε(k) if k 
= 0.

Under a choice of polynomial from P16, it follows that

S3 ≤ a0

(
1

σ − 1 + αε

)
+

16∑
k=1

akBε(k).

Remark. The benefits of Lemma 5 over [6, Lemma 2.4] lie in the computed constants 
Bε(k). That is, Kadiri established Σk(σ, t) ≤ 1.6666 for 1 ≤ k ≤ 4.

2.3. Upper bound for S4

We bring forward an observation from Kadiri [6, §2.4],

Re

(
γ′
L(sk)

γL(sk)
− κ

γ′
L(s′k)

γL(s′k)

)
≤ −1 − κ

2 · log π · nL

+ nL

2 max
δ∈{0,1}

{
Re

(
Γ′

Γ

(
sk + δ

2

)
− κ

Γ′

Γ

(
s′k + δ

2

))}
.

Case I. If k = 0, then we directly compute that

1
2 max

δ∈{0,1}

{
Re

(
Γ′

Γ

(
σ + δ

2

)
− κ

Γ′

Γ

(
σ1 + δ

2

))}
≤ dε(0), (9)

where dε(0) is the maximum of the functions such that σ = 1 + ε. To see this, one can 
observe that the left-hand side of (9) is maximised at σ = 1 + ε visually or use the 
Maximize command in Maple. For example, if ε = 0.01, then

d0.01(0) = −0.2500763736.



E.S. Lee / Journal of Number Theory 224 (2021) 307–322 315
Case II. Suppose 1 ≤ k ≤ 16. McCurley [11, Lemma 2] establishes that

1
2Re

(
Γ′

Γ

(
sk + δ

2

)
− κ

Γ′

Γ

(
s′k + δ

2

))
= 1 − κ

2 log kt

2 + Ξ(σ, k, t, δ)

+ θ1

2k

(
π

2 − arctan
(

1 + δ

k

))
+ κ

θ2

2k

(
π

2 − arctan
(
σ1(1) + δ

k

))
, (10)

where |θi| ≤ 1 and

Ξ(σ, k, t, δ) = 1
4 log

[
1 +

(
σ + δ

kt

)2
]
− κ

4 log
[
1 +

(
σ1 + δ

kt

)2
]

− σ + δ

2((σ + δ)2 + k2t2) + κ
σ1 + δ

2((σ1 + δ)2 + k2t2) .

Next, we will bound Ξ(σ, k, t, δ) using two different methods, then choose the best bound 
for each k.

Method I. For any t > 0, we have

Ξ1(σ, k, t, δ) := − σ + δ

2((σ + δ)2 + k2t2) + κ
σ1 + δ

2((σ1 + δ)2 + k2t2)

≤ κ(σ1 + δ) − σ − δ

2((σ1 + δ)2 + k2t2) ≤ 0,

because σ < σ1 and κ(σ1 + δ) − σ − δ ≤ 0. Moreover, for fixed σ, observe that

Ξ2(σ, k, t, δ) := 1
4 log

[
1 +

(
σ + δ

kt

)2
]
− κ

4 log
[
1 +

(
σ1 + δ

kt

)2
]

is positive for t ≥ 1 and decreases as t increases, because the derivative of Ξ2(σ, k, t, δ)
with respect to t is negative for all t ≥ 1. Therefore,

Ξ2(σ, k, t, δ) ≤ Ξ2(σ, k, 1, δ)

for t ≥ 1, which increases as σ increases in the range 1 ≤ σ ≤ 1.15, because the derivative 
of Ξ2(σ, k, 1, δ) with respect to σ is positive for 1 ≤ σ ≤ 1.15. Hence, for each k,

Ξ2(σ, k, t, δ) ≤ Ξ2(1 + ε, k, 1, δ).

To verify the preceding bound, the Maximize command in Maple confirms that the 
maximum of Ξ2(σ, k, t, δ) occurs at σ = 1 + ε and t = 1. It follows that Ξ(σ, k, t, δ) ≤
Ξ2(1 + ε, k, 1, δ) for each k and
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1
2 max

δ∈{0,1}

{
Re

(
Γ′

Γ

(
sk + δ

2

)
− κ

Γ′

Γ

(
s′k + δ

2

))}
≤ 1 − κ

2 log t + S1(k, ε),

where S1(k, ε) = maxδ∈{0,1} {C1(k, δ, ε)} such that

C1(k, δ, ε) :=1 − κ

2 log k

2 + Ξ2(1 + ε, k, 1, δ)

+ 1
2k

(
π

2 − arctan
(

1 + δ

k

))
+ κ

2k

(
π

2 − arctan
(
σ1(1) + δ

k

))
.

Method II. We will verify that for 0 < ε ≤ 0.15,

Ξ(σ, k, t, δ) ≤ A(k, δ, ε) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 if δ = 0,
0 if δ = 1 and k /∈ {1, 2},
Ξ(1 + ε, k, 1, 1) if δ = 1 and k = 1.
Ξ(1.15, k, 1, 1) if δ = 1 and k = 2.

(11)

First, for fixed σ and δ = 0, the derivative of Ξ(σ, k, t, δ) with respect to t is positive for 
t ≥ 1, so Ξ(σ, k, t, 0) is increasing as t → ∞. Therefore, for each σ ∈ [1, 1.15],

Ξ(σ, k, t, 0) ≤ lim
t→∞

Ξ(σ, k, t, 0) = 0.

Next, for fixed σ and δ = 1, the derivative of Ξ(σ, k, t, δ) with respect to t is positive 
for t ≥ 1 whenever k /∈ {1, 2, 3}, so Ξ(σ, k, t, 1) is increasing as t → ∞ for k /∈ {1, 2, 3}. 
Therefore, for each k /∈ {1, 2, 3} and 1 ≤ σ ≤ 1.15,

Ξ(σ, k, t, 1) ≤ lim
t→∞

Ξ(σ, k, t, 1) = 0.

To completely verify (11), we now establish bounds for the special cases δ = 1 and 
k ∈ {1, 2, 3}. Observe that for each t ≥ 1, the derivative of Ξ(σ, k, t, 1) with respect to σ
is positive for 1 ≤ σ ≤ 1.15 whenever k ∈ {1, 2, 3}, so

Ξ(σ, k, t, 1) ≤ Ξ(1 + ε, k, t, 1). (12)

Suppose that k ∈ {1, 2, 3} and observe that in the range t ≥ 1, Ξ(1 + ε, k, t, 1) either
has one minimum point at t = tk(ε) or increases as t → ∞. Here, tk(ε) equals the only 
root of the derivative of Ξ(1 + ε, k, t, 1) with respect to t in the range t ≥ 1. If this root 
does not exist, then set tk(ε) = 1 for convenience. For example, t1(0.15) = 3.2308 . . ., 
t2(0.15) = 1.6154 . . ., t3(0.15) = 1.0769 . . . and t3(0.01) = 1. It follows that Ξ(1 +ε, k, t, 1)
decreases for 1 ≤ t ≤ tk(ε) and Ξ(1 + ε, k, t, 1) increases for t > tk(ε), so

Ξ(1 + ε, k, t, 1) ≤
{

Ξ(1 + ε, k, 1, 1) if 1 ≤ t ≤ tk(ε),
limt→∞ Ξ(1 + ε, k, t, 1) if t > tk(ε),
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in which limt→∞ Ξ(1 + ε, k, t, 1) = 0 for each k. If k = 1, then for t ≥ 1, we have

Ξ(1 + ε, 1, t, 1) ≤ max {Ξ(1 + ε, 1, 1, 1), 0} = Ξ(1 + ε, 1, 1, 1). (13)

Observe that Ξ(1 + ε, 2, 1, 1) increases as 0 < ε ≤ 0.15 increases. So, if k = 2, then for 
t ≥ 1, we have

Ξ(1 + ε, 2, t, 1) ≤ max {Ξ(1 + ε, 2, 1, 1), 0} ≤ max {Ξ(1.15, 2, 1, 1), 0}
≤ Ξ(1.15, 2, 1, 1). (14)

In this case, the final bound is convenient and not too wasteful, because Ξ(1.15, 2, 1, 1)
is small. Finally, if k = 3, then for t ≥ 1, we have

Ξ(1 + ε, 3, t, 1) ≤ max {Ξ(1 + ε, 3, 1, 1), 0} = 0. (15)

Combining the observation (12) with (13), (14), and (15) implies (11). For each k, it 
follows from (10) and (11) that

1
2 max

δ∈{0,1}

{
Re

(
Γ′

Γ

(
sk + δ

2

)
− κ

Γ′

Γ

(
s′k + δ

2

))}
≤ 1 − κ

2 log t + S2(k, ε),

where S2(k, ε) = maxδ∈{0,1} {C2(k, δ, ε)} such that

C2(k, δ, ε) :=1 − κ

2 log k

2 + A(k, δ, ε)

+ 1
2k

(
π

2 − arctan
(

1 + δ

k

))
+ κ

2k

(
π

2 − arctan
(
σ1(1) + δ

k

))
.

Combination. We say that S(k, ε) = min(S1(k, ε), S2(k, ε)) and (for 1 ≤ k ≤ 16) present 
the quantities S1(k, 0.15), S2(k, 0.15) and S(k, 0.15) alongside each other in Table 3. It 
turns out that S2(k, 0.15) yields a better bound for cases k = 1, 2, 3, 4 and S1(k, 0.15)
yields the better bound otherwise. Finally, we package our observations into a useful 
lemma (Lemma 6).

Lemma 6. For 0 ≤ k ≤ 16, we have shown that

Re

(
γ′
L(sk)

γL(sk)
− κ

γ′
L(s′k)

γL(s′k)

)
≤

{
nL

(
dε(0) − 1−κ

2 · log π
)

if k = 0,
nL

( 1−κ
2

(
log t + log

(
k
π

))
+ S(k, ε)

)
if k 
= 0.

Under a choice of polynomial from P16, it follows that

S4 ≤ a0nL

(
dε(0) − 1 − κ

2 · log π
)

+
16∑

aknL

(
1 − κ

2

(
log t + log

(
k

π

))
+ S(k, ε)

)
.

k=1
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Table 3
Computed values for S1(k, 0.15), S2(k, 0.15) and S(k, 0.15).
k S1(k, 0.15) S2(k, 0.15) S(k, 0.15)
1 0.3784516540 0.3249009026 0.3249009026
2 0.3839873212 0.3763572015 0.3763572015
3 0.4018562060 0.4004551145 0.4004551145
4 0.4238223974 0.4236306767 0.4236306767
5 0.4467597648 0.4468482525 0.4467597648
6 0.4693610537 0.4695098183 0.4693610537
7 0.4910902618 0.4912403488 0.4910902618
8 0.5117562107 0.5118920810 0.5117562107
9 0.5313238925 0.5314428586 0.5313238925
10 0.5498280118 0.5499312088 0.5498280118
11 0.5673323540 0.5674218683 0.5673323540
12 0.5839104248 0.5839883668 0.5839104248
13 0.5996362678 0.5997044990 0.5996362678
14 0.6145802698 0.6146403531 0.6145802698
15 0.6288074426 0.6288606647 0.6288074426
16 0.6423769295 0.6424243440 0.6423769295

Table 4
Table of coefficients for Mossinghoff–
Trudgian’s polynomial p16(ϕ) ∈ P16.

a0 1
a1 1.74126664022806
a2 1.128282822804652
a3 0.5065272432186642
a4 0.1253566902628852
a5 2.372710620 · 10−26

a6 2.818732841 · 10−22

a7 0.01201214561729989
a8 0.006875849760911001
a9 2.064157910 · 10−23

a10 6.601587090 · 10−11

a11 0.001608306592372963
a12 0.001017994683287104
a13 6.728831293 · 10−11

a14 3.682448595 · 10−11

a15 2.949853019 · 10−6

a16 0.00003713656497

Remark. The benefits of Lemma 6 over [6, Lemma 2.5] lie in the computed constants 
dε(0) and S(k, ε). Kadiri imports results from McCurley [11, Lemma 2] for her bound, 
so the improvements we see follow from our observations pertaining to McCurley’s work.

2.4. Computations

As declared in the introduction, we will choose the polynomial p16(ϕ) ∈ P16 from 
[12], whose coefficients are given in Table 4. Suppose r > 0 and σ is chosen such that 
σ− 1 = r(1 −β) where ρ = β+ it ∈ Z(ζL) is an isolated zero such that β ≥ 1 − ε ≥ 0.85. 
Applying the upper bounds for each Si, which can be found in Lemmas 4, 5 and 6, then 
rearranging inequality (6) will yield
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Table 5
Constants for the explicit zero-free region 
in Theorem 1 given ε = 0.15 or ε = 0.01.

ε = 0.15 ε = 0.01
M 0.1021253857 0.1021253857
c1
M 12.24106100 12.24106100
c2
M 9.534650638 9.534650638
c3
M 0.444485082 0.050168175
c4
M 5.123026304 2.269182727

β ≤ 1 −
a1

1+r − a0
r

c1 log dL + c2nL log t + c3nL + c4
, (16)

where

c1 = 1 − κ

2

16∑
k=0

ak,

c2 = 1 − κ

2

16∑
k=1

ak,

c3 = a0

(
dε(0) − 1 − κ

2 log π
)

+
16∑
k=1

ak

(
1 − κ

2 log
(
k

π

)
+ S(k, ε)

)
and

c4 = αεa0 +
16∑
k=1

akBε(k).

For the remainder of this proof, we replicate the process which Kadiri [6] followed. The 
maximum value of a1

1+r − a0
r occurs at r =

√
a0√

a1−
√
a0

. Therefore, dividing the numerator 
and denominator of (16) by

M = a1

1 +
√
a0√

a1−
√
a0

− a0√
a0√

a1−
√
a0

,

we see that

β ≤ 1 − 1
c1
M log dL + c2

M nL log t + c3
M nL + c4

M

. (17)

In Table 5, we present the constants for two choices of ε. Observing the values for 
ε = 0.01, inequality (17) will yield the explicit zero-free region (3) for t ≥ 1, which 
completes the proof of Theorem 1.
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3. Proof of Theorem 2

Theorem 2 is an improvement of part of [6, Theorem 1.2]. We will recycle Kadiri’s 
proof, except we use the polynomial p16(ϕ) in place of a polynomial from P4. Suppose 
log dL is asymptotically large and consider three regions,

IA =
(

0, d1

log dL

]
, IB =

(
d1

log dL
,

d2

log dL

]
, IC =

(
d2

log dL
, 1
)
,

where d1, d2 are constants to be chosen. Suppose further, that

σ − 1 = r

log dL
and 1 − β = c

log dL
.

In the regions IB and IC , we impose further restrictions. Suppose 0 < c, r < 1 such that

a0

a1 − a0
c < r and d2 >

√
r(r + c)

2 .

Combining analogous arguments to those results in [6, §3.2, §3.3, §3.4], one can easily 
establish that

0 ≤ 1
r
− 2 r + c

(r + c)2 + d1
2 + 1 − κ

2 (18)

in the region IA,

0 ≤EB(d1, d2, r, c)

:= a0

r
− a1

r + c
+ a1r

r2 + d1
2 − a0(r + c)

(r + c)2 + d1
2

− a0(r + c)
(r + c)2 + d2

2 − a1(r + c)
(r + c)2 + 4d2

2 + 1 − κ

2

16∑
k=0

ak (19)

+
16∑
k=2

ak

(
r

r2 + k2d1
2 − r + c

(r + c)2 + (k − 1)2d2
2 − r + c

(r + c)2 + (k + 1)2d2
2

)

in the region IB and

0 ≤ EC(d2, r, c)

:= a0

r
− a1

r + c
+ a1r

r2 + d2
2 − a0(r + c)

(r + c)2 + d2
2 + 1 − κ

2

16∑
k=0

ak (20)

in the region IC . Suppose d1 and r are fixed. The admissible values of c which one can 
input into (18) are those c such that
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c ≥

√
r2 − d1

2 (1 + 1−κ
2 r

)2 − 1−κ
2 r2

1 + 1−κ
2 r

. (21)

Denote the smallest value for c in (21) by cA. Next, let cB denote the root of 
EB(d1, d2, r, c), where r is chosen such that the root cB is as small as possible. Sim-
ilarly, let cC denote the smallest root of EC(d2, r, c) for some optimally chosen r. It 
follows that ζL has at most one zero in the region s = σ + it such that t < 1 and

σ ≥ 1 − 1
R log dL

such that R = max (1/cA, 1/cB , 1/cC). Moreover, if an exceptional zero exists then it is 
real and simple by [6, §3.5]. To complete our proof of Theorem 2, it will suffice to show 
that R = 12.43436 is an admissible value.

First, suppose that we choose the same values that Kadiri chose; d1 = 1.021 and 
d2 = 2.374. One can establish that 1/cA = 12.5494 when r = 2.1426. Moreover, using 
our higher degree polynomial, we can compute the roots of EB(1.021, 2.374, r, c) and 
EC(2.374, r, c) over a selection of r. The results of these computations are presented 
below.

Root of r 1/c
EB(1.021, 2.374, r, c) 0.2366 12.43922
EC(2.374, r, c) 0.2477 12.42548

Therefore, these choices of d1 and d2 would yield Theorem 2 with

R = max (12.5494, 12.43922, 12.42548) = 12.5494.

Above, the limiting factor appears to be the value for 1/cA. We can reduce the value 
of 1/cA by decreasing the value of d1, however, we are also limited by the sizes of 1/cB
and 1/cC which we can obtain. Therefore, we only need to choose d1 such that 1/cA is 
small enough. The cost of choosing d1 too small is a larger interval IB, which might not 
be ideal.

Given d1, to find a good enough choice for d2, we have tested many values for d2

and computed the optimal outcomes in each case. If one chooses d1 = 1.0015, then 
we found (to 3 decimal places) that d2 = 2.318 yielded the best results. For this d1, 
one can determine that 1/cA = 9.7946 when r = 2.1163. The results of the remaining 
computations for 1/cB and 1/cC are presented below.

Root of r 1
c

EB(1.0015, 2.318, r, c) 0.2363 12.43355
EC(2.318, r, c) 0.2473 12.43436
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Therefore — as required — these choices of d1 and d2 will yield Theorem 2 with

R = max (9.7946, 12.43355, 12.43436) = 12.43436.
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