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We study the previously developed extension of the Engel expansion to the field
of Formal Laurent series. We examine three separate aspects. First we consider the
algorithm in relation to the work of Ramanujan. Second we show how the algo-
rithm can be used to prove expansions such as those found by Euler, Rogers, and
Ramanujan. Finally we remark briefly on its use in acceleration of convergence.
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1. INTRODUCTION

The mysteries surrounding the methods used by Ramanujan to discover
his amazing results have led to numerous speculations. In this paper we
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shall probably throw no real light on what Ramanujan actually thought.
However, we shall demonstrate that a series expansion algorithm intro-
duced by two of us [10], [11], at least provides a plausible path to some
of Ramanujan's hits [3, Chap. 7] and misses [5, p. 130].

We begin by recalling the Engel expansion [10] for the field L=C((q))
of formal Laurent series over the complex numbers, C. If

A= :
�

n=&

Cn qn, (1.1)

we call &=&(A) the order of A and we define the norm of A to be

&A&=2&&(A). (1.2)

In addition, we define the integral part of A by

[A]= :
&EnE0

Cn Qn. (1.3)

Engel (c.f. [13, Sect. 34]) originally defined a series expansion for real
numbers. In [10], this concept was extended to L in the following way:

Extended Engel Expansion Theorem ([10, Theorem 1.4]). Every
A # L has a finite or convergent (relative to the above norm) series
expansion of the form

A=a0+ :
�

n=1

1
a1a2 } } } an

, (1.4)

where an # C[q&1], a0=[A],

&(an)E&n, and &(an+1)E&(an)&1. (1.5)

The series (1.4) is unique for A (up to constants in C), and it is finite if
and only if A # C(q). In addition, if

a0+ :
n

j=1

1
a1 } } } aj

=
pn

qn
, where qn=a1a2 } } } an , (1.6)

then

"A&
pn

qn"E
1

2n+1 &qn&
(1.7)
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and

& \A&
pn

qn+=&&(qn+1)e
(n+1)(n+2)

2
(1.8)

In fact, the an are given by

an=_ 1
An& (1.9)

where A0=A, a0=[A], and

An+1=anAn&1. (1.10)

At the time of preparation of [10] it was noticed that a number of
famous expansions including those of Euler and the Rogers�Ramanujan
identities are, in fact, special cases of the Engel expansion. In Section 2, we
consider the empirical use that Ramanujan might have made of such an
expansion. Section 3 is devoted to showing how the Engel algorithm can be
used to prove such identities. We conclude with comments about possible
further extensions.

2. RAMANUJAN'S FAILED CONJECTURE

In his first Notebook [5, p. 130], Ramanujan wrote down and then
crossed out the following assertion:

`
�

n=1

1
1&q pn

=1+ :
�

j=1

q p1+ p2+ } } } + pj

(1&q)(1&q2) } } } (1&q j)
, (2.1)

where pn is the n th prime. A few moments of reflection will suggest to you
that this is an amazing and probably unbelievable assertion. Indeed the
assertion is false as was shown in [4]; the power series expansions of both
sides disagree at q21. In fact, the study and extension of (2.1) in [4] has led
to numerous further results (cf. [1], [6], [7], [9]).

So if this assertion is false (and, to be fair, Ramanujan crossed it out),
how did he ever think it up in the first place? Suppose he had the extended
Engel expansion. If we take A to be the left-hand side of (2.1), we may
directly calculate (via Mathematica) that
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a1=
1
q2&

1
q

a2=
1
q3&

1
q

a3=
1
q5&

1
q2

a4=&1+
1
q7&

1
q2

a5=1&
1
q8&

1
q7+

1
q

a6=240+
1

q10&
1
q9+

2
q8&

4
q7+

7
q6&

13
q5 +

23
q4&

41
q3 +

74
q2&

134
q

a7=&
78210749274307298759213433872

43436493255668650298783663146561
+

1
433q11

+
347

187489q10+
37273

81182737q9

&
32413493

351552125121q8&
7244501857

15220870177393q7&
6001513330790

659063678611169q6

&
2710837873954506

2853745728689236177q5+
1214546819910349722

1235671900522439264641q4

+
206849587495087652597

535045932926216201589553: q3&
389726942232901898611707

231674888957051615288276449q2

&
3083648270656220844378182337

100315226918403349419823702417q

Note that even the first three calculations are tiresome by hand but that
they confirm the series on the right of (2.1) is valid through j=3. The term
j=4 is just barely wrong. Things start to fall apart at j=5 and 6 and go
completely to pieces at j=7.

Consequently, while (2.1) is wrong, we must at least concede that it is a
natural conjecture for anyone who might possess the extended Engel algo-
rithm for application to a variety of functions such as the product in (2.1).

We are not asserting that Ramanujan possessed the extended Engel
expansion. We only note that knowledge of it and lack of a computer
might well lead to (2.1) as a conjecture.
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3. PROOFS VIA THE EXTENDED ENGEL EXPANSION

The first author of [10] noted during its preparation that the expansion
(1.4) is actually exhibited in a number of famous results. We shall now
show that these results can actually be proved using the algorithm that
constructs (1.4). The hard part of each proof will be the presentation of a
suitably tractable form for the An given in (1.10).

Theorem 1. Suppose |q|<1 with z any fixed complex number and let

F1(q)= `
�

n=1

(1+zqn),

then the Extended Engel Expansion of F1(q) is

1+ :
�

n=1

znqn(n+1)�2

(1&q)(1&q2) } } } (1&qn)
.

Remark. Of course, an immediate corollary of Theorem 1 is the identity
of these two representations of F1(q). I.e.

`
�

n=1

(1+zqn)=1+ :
�

n=1

znqn(n+1)�2

(1&q)(1&q2) } } } (1&qn)
. (3.1)

Proof. It is immediate by mathematical induction that

1+ :
N

n=1

(1+zq)(1+zq2) } } } (1+zqn&1) zqn= `
N

j=1

(1+zq j ). (3.2)

Hence with

A=A0= `
�

n=1

(1+zqn), (3.3)

we see that a0=1 and

A1=a0 A0&1= :
�

m=1

(1+zq)(1+zq2) } } } (1+zqm&1) zqm. (3.4)

Next we prove that

an=z&1(q&n&1) for n>0 (3.5)
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and

An= :
�

m=1

(1+zq)(1+zq2) } } } (1+zqm&1) zqmn, (3.6)

by noting that (1.10) is fulfilled, namely

z&1(q&n&1) :
�

m=1

(1+zq)(1+zq2) } } } (1+zqm&1) zqmn&1

= :
�

m=1

(1+zq)(1+zq2) } } } (1+zqm&1) qm(n&1)

& :
�

m=1

(1+zq)(1+zq2) } } } (1+zqm&1) qmn&1

= :
�

m=2

(1+zq)(1+zq2) } } } (1+zqm&1) qn(m&1)

& :
�

m=1

(1+zq)(1+zq2) } } } (1+zqm&1) qmn

= :
�

m=1

(1+zq)(1+zq2) } } } (1+zqm&1) qmn((1+zqm)&1)

= :
�

m=1

(1+zq)(1+zq2) } } } (1+zqm&1) zqm(n+1), (3.7)

and that

_ 1
An&=_ 1

zqn+(1&q) zq2n+O(q3n)&
=_z&1q&n 1

1+qn+qn+1+O(q2n)&
=[z&1q&n(1&qn&qn+1+O(q2n))]

=z&1q&n&z&1=z&1(q&n&1) as desired.

So (3.3) and (3.7) guarantee that the an and An given by (3.5) and (3.6)
are the sequences arising in the extended Engel expansion. Therefore by
(1.4)
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`
�

n=1

(1+zqn)=A0

=1+ :
�

j=1

1
a1a2 } } } aj

=1+ :
�

j=1

z jq j( j+1)�2

(1&q)(1&q2) } } } (1&q j)
. K (3.8)

The Rogers�Ramanujan identities follow similarly although now the
initial step is made possible by Schur's polynomials [14].

Theorem 2. Suppose |q|<1, and let

F2(q)= `
�

n=1

1
(1&q5n&4)(1&q5n&1 ,

then the Extended Engel Expansion of F2(q) is

1+ :
�

n=1

qn2

(1&q)(1&q2) } } } (1&qn)
.

Remark. These two representations of F2(q) yield immediately the first
Rogers�Ramanujan identity [3, p. 104, Eq. (7.1.6)]:

`
�

n=1

1
(1&q5n&4)(1&q5n&1)

=1+ :
�

n=1

qn2

(1&q)(1&q2) } } } (1&qn)
. (3.9)

Proof. We take as our starting point the fact proved by I. Schur [14]
that if

0 if n<&1

Dn={1 if n=&1 (3.10)

Dn&1+qn Dn&2 otherwise,

then

Dn&1= :
�

j=&�

(&1) j q j(5j+1)�2 _
n

&q

, (3.11)

\n&5j
2 �
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where

_:
;&={

0 if ;<0 or ;>:

(1&q:)(1&q:&1) } } } (1&q:&;+1)
(1&q;)(1&q;&1) } } } (1&q)

, 0E;E:

(3.12)

As Schur [14] noted,

D�=
��

j=&� (&1) j q j(5j+1)�2

>�
n=1 (1&qn)

=
>�

n=0 (1&q5n+2)(1&q5n+3)(1&q5n+5)
>�

n=1 (1&qn)

(by Jacobi's triple product [3, p. 21, Eq. (2.2.10)])

= `
�

n=0

1
(1&q5n+1)(1&q5n+4)

:=A.

Now note, by (3.10)

:
N

j=0

q j D j&2= :
N

j=0

(Dj&Dj&1)=DN&1. (3.14)

So in the limit

A1=A0&1=A&1= `
�

n=1

1
(1&q5n&4)(1&q5n&1)

&1= :
�

j=0

q j Dj&2

(3.15)

It is now possible to prove that the relevant an and An for the extended
Engel expansion are given by

an={1
q&2n+1&q&n+1

if n=0
if n>0,

(3.16)

and

An= :
�

j=0

qnj+(n&1) D j&2 . (3.17)

These assertions follow immediately from the initial condition (3.15) and
the following two facts. First, again by (3.10)
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(q&2n+1&q&n+1) :
�

j=0

qnj+(n+1) D j&2&1

= :
�

j=1

qn( j&2)+n Dj&2& :
�

j=1

qn( j&1)+n D j&2&1

= :
�

j=0

qn( j&1)+n Dj&1& :
�

j=1

qn( j&1)+n D j&2&1

= :
�

j=1

qn( j&1)+n(Dj&1&Dj&2)

= :
�

j=1

qn( j&1)+n+ j&1 Dj&3

= :
�

j=2

q(n+1)( j&1)+n D j&3

= :
�

j=0

q(n+1) j+n Dj&2 . (3.18)

Finally, by (3.17)

_ 1
An &=_ 1

q2n&1+q3n&1+O(q4n)&
=_q1&2n 1

1+qn+O(q2n+1)&
=[q1&2n(1&qn+O(q2n))]

=q1&2n&q1&n, (3.19)

as required.
Thus the extended Engel expansion for A of (3.13) is established. So

`
�

n=0

1
(1&q5n+1)(1&q5n+4)

=A

=1+ :
�

n=1

1
a1 a2 } } } an

=1+ :
�

n=1

1
(q&1&1)(q&3&q&1) } } } (q1&2n&q1&n)

=1+ :
�

n=1

qn2

(1&q)(1&q2) } } } (1&qn)
. K (3.20)
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Theorem 3. Suppose |q|<1, and let

F3(q)= `
�

n=1

1
(1&q5n&3)(1&q5n&2)

,

then the Extended Engel Expansion of F3(q) is

1+ :
�

n=1

qn2+n

(1&q)(1&q2) } } } (1&qn)
.

Remark. This result giving two different representations of F3(q)
immediately yields

`
�

n=1

1
(1&q5n&3)(1&q5n&2)

=1+ :
�

n=1

qn2+n

(1&q)(1&q2) } } } (1&qn)
. (3.21)

Proof. The proof here is completely parallel to that of Theorem 2; so
we present the essentials and allow the reader to fill in the details.

This time Schur [14] tells us that if

0 if n<0

En={1 if n=0 (3.22)

En&1+qnEn&2 for n>0,

then

En&1= :
�

j=&�

(&1) j q j(5j&3)�2 _
n

&q

. (3.23)

\n&5j+2
2 �

Consequently by Jacobi's triple product identity [3, p. 21, Eq. (2.2.10)]:

E�= `
�

n=0

1
(1&q5n+2)(1&q5n+3)

=A=A0 . (3.24)

As before

A1=A0&1=A&1= `
�

n=0

1
(1&q5n+2)(1&q5n+2)

&1= :
�

j=0

q jEj&2&1

(3.25)
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In this case, we prove that

an={1
q&2n&q&n

if n=0
for n>0,

(3.26)

and

An= :
�

j=0

qnjEj&2 . (3.27)

This follows from a perfect analog of (3.18) and the fact that for ne1

_ 1
An&=_ 1

q2n+q3n+q4n+O(q4n+2)&
=_q&2n 1

1+qn+q2n+O(q2n+2)&
=[q&2n(1&(qn+q2n+O(q2n+2))+(qn+q2n+O(q2n+2))2+O(q3n))]

=[q&2n(1&qn&q2n+q2n+O(q2n+2))]

=q&2n&q&n. (3.28)

Thus the extended Engel expansion for the A of (3.24) is established. So

`
�

n=0

1
(1&q5n+2)(1&q5n+3)

=A

=1+ :
�

n=1

1
a1a2 } } } an

=1+ :
�

n=1

qn2+n

(1&q)(1&q2) } } } (1&qn)
. K (3.29)

We now turn to what ought to be the most straight forward example of
all, the generating function for p(n), the total number of partitions of n
[3, p. 4]. Now

A := :
�

n=0

p(n) qn= `
�

n=1

1
1&qn . (3.30)
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Direct computation of the relevant an reveals these first few values:

a1=&2+
1
q

a2=2&
1
q2+

1
q

a3=&
1

2q3+
1

2q2+
3

4q

a4=&
51388
16807

&
4

7q4+
48

49q3&
184

343q2+
4560

2401q

a5=
3691861441380616643811569037
3241403657587869974929000000

+
16807

76940q5+
14470827

1479940900q4

&
44936558936787

113866652846000q3&
338838765638461333

547556266873202500q2

+
8422361685271397700067

168515916692896801400000q

However, if we instead apply the variant of the Engel algorithm given in
[11; p. 251] with sn=an and rn=q&1, we may then prove the familiar
[3; p. 21, Eq. (2.2.9)].

Theorem 4. Suppose |q|<1, and let

F4(q)= `
�

n=1

1
1&qn ,

then the variant of the Extended Engel Expansion [11; p. 251; with sn=an ,
rn=q&1] of F4(q) is

1+ :
�

n=1

qn2

(1&q)2 (1&q2)2 } } } (1&qn)2

Remark. Theorem 4 has the following familiar identity for the partition
generating function as a corollary

`
�

n=1

1
1&qn=1+ :

�

n=1

qn2

(1&q)2(1&q2)2 } } } (1&qn)2 . (3.31)
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Proof. It is immediate by mathematical induction that

1+ :
N

j=1

q j

(1&q)(1&q2) } } } (1&q j)
=

1
(1&q)(1&q2) } } } (1&qn)

. (3.32)

Hence with

A=A0= `
�

n=1

1
1&qn=1+ :

�

j=1

q j

(1&q)(1&q2) } } } (1&q j)
(3.33)

we see that a0=[A]=1 and (following the variant of the Engel expansion
mentioned just before the statement of this theorem)

A1=q(a0A0&1)

= :
�

j=1

q j+1

(1&q)(1&q2) } } } (1&q j)
(3.34)

Next we prove that

an=q&2n(1&qn)2 for n>0 (3.35)

and

An=q2n :
�

j=0

qnj

(1&qn)(1&qn+1) } } } (1&qn+ j)
(3.36)

(noting that (3.36) coincides with (3.34) when n=1).
The proof resembles what has gone before; namely

q \q&2n(1&qn)2 :
�

j=0

qnj+2n

(1&qn)(1&qn+1) } } } (1&qn+ j)
&1+

=q \ :
�

j=0

qnj (1&qn)
(1&qn+1) } } } (1&qn+ j)

&1+
=q \ :

�

j=1

qnj

(1&qn+1) } } } (1&qn+ j)
& :

�

j=0

qn( j+1)

(1&qn+1) } } } (1&qn+ j)+
=q \ :

�

j=1

qnj

(1&qn+1) } } } (1&qn+ j)
& :

�

j=1

qnj (1&qn+ j)
(1&qn+1) } } } (1&qn+ j)+

=q \ :
�

j=1

q j(n+1)+n

(1&qn+1) } } } (1&qn+ j)+
=q2n+2 :

�

j=0

q j(n+1)

(1&qn+1) } } } (1&qn+1+ j)
, (3.37)
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thus confirming An+1=q(anAn&1), and

_ 1
An&=_q&2n 1

1+qn+q2n+qn+q2n+1+2q2n+O(q3n)
]

=[q&2n(1&(2qn+3q2n+q2n+1+O(q3n))

+(2qn+ } } } )2+O(q3n))]

=[q&2n(1&2qn+q2n+O(q2n+1))]

=q&2n(1&qn)2, as desired. (3.38)

Hence, we see that by Prop. 2 of [11; p. 251] with sn=an and rn=q&1

`
�

n=1

1
1&qn=A=1+q&1A1

=1+q&1 :
�

n=1

q1&n

a1a2 } } } an

=1+ :
�

n=1

q1+3+ } } } +(2n&1)

(1&q)2 (1&q2)2 } } } (1&qn)2

=1+ :
�

n=1

qn2

(1&q)2 (1&q2)2 } } } (1&qn)2 . K (3.39)

It should be pointed out that the Engel algorithm need not be restricted
to identities relating infinite series to infinite products. To this end we close
this section by proving a formula of N. J. Fine [8, p. 55, Eq. (26.22)] for
one of Ramanujan's third order mock theta functions.

Theorem 5. Suppose |q|<1, and let

F5(q)=1+ :
�

n=1

(&1)n&1 qn

(1+q)(1+q2) } } } (1+qn)
,

then the variant of the Extended Engel Expansion [11; p. 251, with sn=an ,
rn=q&1] of F5(q) is

1+ :
�

n=1

qn2

(1+q)2 (1+q2)2 } } } (1+qn)2 .
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Remark. As before, we deduce directly here that

1+ :
�

n=1

(&1)n&1 qn

(1+q)(1+q2) } } } (1+qn)

=1+ :
�

n=1

qn2

(1+q)2 (1+q2)2 } } } (1+qn)2 . (3.40)

Proof. This proof is very similar to that of Theorem 4. Indeed it is
possible to prove a common generalization of Theorems 4 and 5; however
for simplicity we restrict ourselves to (3.40).

In contrast with (3.33) we now have

A=A0=1+ :
�

n=1

(&1)n&1 qn

(1+q)(1+q2) } } } (1+qn)
, (3.41)

A1=q(A0&1)= :
�

n=1

(&1)n&1 qn+1

(1+q)(1+q2) } } } (1+qn)
, (3.42)

and in general

an=q&2n(1+qn)2, (3.43)

An= :
�

j=1

(&1) j&1 qn( j+1)

(1+qn)(1+qn+1) } } } (1+qn+ j&1)
. (3.44)

In exactly the way (3.37) was proved, one may show that

An+1=q(an An&1), (3.45)

and

_ 1
An&=_q&2n 1

1&2qn+3q2n+O(q2n+1)&
=[q&2n[1+(2qn&3q2n+O(q2n+1))

+(2qn+O(q2n))2+O(q2n+1)]]

=q&2n(1+2qn+q2n)

=q&2n(1+qn)2. (3.46)
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Finally exactly parallel to (3.39) we see that

1+ :
�

n=1

(&1)n&1 qn

(1+q)(1+q2) } } } (1+qn)

=1+q&1A1

=1+q&1 :
�

n=1

q1&n

a1a2 } } } an

=1+ :
�

n=1

q1+3+ } } } +(2n&1)

(1+q)2 (1+q2)2 } } } (1+qn)2

=1+ :
�

n=1

qn2

(1+q)2 (1+q2)2 } } } s(1+qn)2 . K (3.47)

Our five theorems in this section are just a sampling of applications of
Engel expansions. A variety of other identities are Engel expansions such
as two more theorems of L. J. Rogers:

1+ :
�

n=1

qn(3n&1)�2

(1&q)(1&q2) } } } (1&qn)(1&q)(1&q3) } } } (1&q2n&1)

= `
�

n=1

(1&q10n&6)(1&q10n&4)(1&q10n)
(1&qn)

, (3.48)

and [15, p. 156, Eq. (46)]

:
�

n=1

q3n(n&1)�2

(1&q)(1&q2) } } } (1&qn&1)(1&q)(1&q3) } } } (1&q2n&1)

= `
�

n=1

(1&q10n&8)(1&q10n&2)(1&q10n)
(1&qn)

(3.49)

[15, p. 156, Eq. (44)] as well as Gauss's familiar theorem

:
�

n=0

qn(n+1)�2= `
�

n=1

(1&q2n)
(1&q2n&1)

(3.50)

[3, p. 23, Eq. (2.2.13)]
In addition to these results from q-series, we note that there are other

applications of the Engel expansion that are in quite a different direction;
indeed [12] considers Engel expansion related to certain algebraic
functions. The an in this case turn out to be instances of Lucas polynomials.
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4. CONCLUSION

We should note that in fact the extended Engel expansion may be viewed
as an algorithm for the acceleration of convergence. In each of our five
theorems, A0=A1&1 was given as a series whose nth term went to 0 like
qn. The expansion

A=a0+ :
�

n=1

1
a1a2 } } } an

(4.1)

in each of our five theorems possesses an nth term going to 0 like qcn2
.

The possibilities for deriving further such algorithms are numerous.
Indeed in earlier papers [10], [11], a number of such other algorithms are
considered. Furthermore our near miss and retrieval of Theorem 4 suggests
that only slight variations in the algorithm greatly alter the outcome.

Finally the existence of multiple series generalizations of the Rogers�
Ramanujan identities [2] such as

`
�

n=1
n�0, \3(mod7)

1
1&qn

= :
�

n, m=0

q(n+m)2+m2

(1&q)(1&q2) } } } (1&qn)(1&q)(1&q2) } } } (1&qm)

suggests the possibility of multidimensional analogs of the extended Engel
expansion.

Note added in proof. We have subsequently provided complete accounts of the extended
Engel expansions for (3.48)�(3.50). These will appear in An Algorithmic Approach to
Discovering and Proving q-Series Identities, Algorithmica (to appear).
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