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Abstract

It is shown that counting certain differences of overpartition functions is equivalent to

counting elements of a given norm in appropriate real quadratic fields.
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1. Introduction

In 1988, Andrews et al. [2] studied the coefficient of qm in

XN
n¼0

qnðnþ1Þ=2

ð1þ qÞð1þ q2Þ?ð1þ qnÞ; ð1:1Þ

a q-series that had appeared in Ramanujan’s ‘‘lost’’ notebook [1]. They found that
these coefficients have multiplicative properties determined by a certain Hecke

character associated to the real quadratic field Qð
ffiffiffi
6

p
Þ (cf. [4]). Although predicted to

exist by Dyson [7], no other examples of q-series determined by such characters had
been observed until recent work of Corson et al. [5], who showed that the coefficient
of qm in the series

X
nX0

ð1� qÞð1� q2Þ?ð1� qnÞð�1Þn
qnðnþ1Þ=2

ð1þ qÞð1þ q2Þ?ð1þ qnÞ ð1:2Þ
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is equal to ð�1Þm times the number of ideals of norm 8m þ 1 in Zð
ffiffiffi
2

p
Þ:

One pleasant surprise in their work is that (1.2) is also the generating function for
certain overpartitions. Recall that an overpartition of n is a partition of n in which
the first occurrence of a number may be overlined. Specifically, let f ðmÞ denote the
number of overpartitions of m into distinct parts such that %1 does not occur and

consecutive parts differ by at least two if the larger is overlined. If f 7ðmÞ denotes the
number of overpartitions counted by f ðmÞ with largest part even (odd), then

f þðmÞ � f �ðmÞ is the coefficient of qm in (1.2). Using some basic arithmetic in Zð
ffiffiffi
2

p
Þ;

it is then possible to give an exact formula for f þðmÞ � f �ðmÞ in terms of the
factorization of m [5, Section 6].
As observed in [5], series (1.2) is closely related to the series in the left-hand side of

the Rogers–Ramanujan type identity,

X
nX0

ð1þ qÞð1þ q2Þ?ð1þ qnÞqnðnþ1Þ=2

ð1� qÞð1� q2Þ?ð1� qnÞ ¼
YN
n¼1

ð1þ qnÞð1� q2nÞ: ð1:3Þ

In fact, this series is the generating function for f ðmÞ [10,12]. Recent works have
embedded this identity in a family of overpartition theorems [10, Theorem 1.2], and
uncovered three other families of overpartition theorems which are analogues of
some classical and celebrated results in the theory of partitions [10,11]. We shall
demonstrate here that the objects in the base cases of these three other families are
also connected in a precise way to real quadratic fields. In view of the rarity of such
connections, this is both surprising and satisfying. It will allow us to give exact
formulas for the relevant overpartition functions, and further demonstrates that the
combinatorics of overpartitions is an excellent guide to finding q-series with
interesting behavior. The three main theorems follow.

Theorem 1.1. Let m have the prime factorization m ¼ 2ape1
1 ?p

ej

j q
f1
1 ?q

fk

k ; where the pi

are congruent to 71 modulo 8 and the qi are congruent to 73 modulo 8: Let aðmÞ
denote the number of overpartitions of m into distinct parts which differ by at least two

if the smaller part is overlined. Let a7ðmÞ denote the number of overpartitions counted

by aðmÞ with largest part even (odd). Then aþðmÞ � a�ðmÞ is equal to 0; if some fi is

odd, and �2im2�mðe1 þ 1Þ?ðej þ 1Þ otherwise.

Theorem 1.2. Let m have the prime factorization m ¼ 2a3bpe1
1 ?p

ej

j q
f1
1 ?q

fk

k r
g1
1 ?r

gc
c ;

where the pi are congruent to 1 modulo 12; the qi are congruent to 75 modulo 12;
and the ri are congruent to 11 modulo 12: Let bðmÞ denote the number of over-

partitions b1 þ b2 þ?þ b2n of m such that bi can be overlined only if i is odd and

such that

b2j � b2jþ1X
1; b2jþ1 non-overlined;

2; b2jþ1 overlined:

�
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Let b7ðmÞ denote the number of overpartitions counted by bðmÞ with largest part even

(odd). Then bþðmÞ � b�ðmÞ is equal to 0; if some fi is odd or a þ b þ
P

gi is even, and

2ð�1Þmþ1ðe1 þ 1Þ?ðej þ 1Þðg1 þ 1Þ?ðgc þ 1Þ otherwise.

Theorem 1.3. Let m have the prime factorization m ¼ 2a3bpe1
1 ?p

ej

j q
f1
1 ?q

fk

k r
g1
1 ?r

gc
c ;

where the pi are congruent to 77 or 711 modulo 24; the qi are congruent to 1 or 19
modulo 24; and the ri are congruent to 5 or 23 modulo 24: Let cðmÞ denote the number

of overpartitions c1 þ c2 þ?þ cn of m such that

cj � cjþ1X

1; cjþ1 even;

2; cjþ1 odd and overlined;

3; cjþ1 even and overlined :

8><
>:

Let c7ðmÞ denote the number of overpartitions counted by cðmÞ with largest part even

(odd). Then c�ðmÞ � cþðmÞ is equal to 0; if some ei is odd or a þ
P

gi is odd, and

�2im2þmð f1 þ 1Þ?ð fk þ 1Þðg1 þ 1Þ?ðgc þ 1Þ otherwise.

The generating functions for aðmÞ; bðmÞ; and cðmÞ are the series in the Rogers–
Ramanujan type identities

XN
n¼0

ð�1Þnqnðnþ1Þ=2

ðqÞn

¼ ð�q; q2Þ
N

ðq; q2Þ
N

; ð1:4Þ

X
nX0

ð�1; q2Þnqn2þn

ðqÞ2n

¼ ð�q2; q2Þ
N
ð�q3; q6; q6Þ

N

ðq2; q2Þ
N
ðq3;�q6; q6Þ

N

ð1:5Þ

and

X
nX0

ð�1Þ2nqn

ðq2; q2Þn

¼ ð�qÞ
N
ðq3; q3Þ

N

ðqÞ
N
ð�q3; q3Þ

N

: ð1:6Þ

As usual, we have employed the notation

ðaÞn :¼ ða; qÞn :¼
Yn�1
j¼0

ð1� aq jÞ: ð1:7Þ

The difference functions occurring in Theorems 1.1–1.3 correspond to the related
series

XN
n¼1

ðqÞn�1ð�1Þ
n
qnðnþ1Þ=2

ð�qÞn

; ð1:8Þ
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XN
n¼1

ðq2; q2Þn�1ð�1Þ
n
qn2þn

ð�qÞ2n

ð1:9Þ

and

XN
n¼1

ðqÞ2n�1q
n

ð�q2; q2Þn

; ð1:10Þ

which we shall link to Zð
ffiffiffi
2

p
Þ; Zð

ffiffiffi
3

p
Þ; and Zð

ffiffiffi
6

p
Þ; respectively.

2. Proofs of the main theorems

We require some background on Bailey pairs. Two sequences ðan; bnÞ are said to
form a Bailey pair with respect to a if for all nX0 we have

bn ¼
Xn

r¼0

an

ðqÞn�rðaqÞnþr

: ð2:1Þ

The following weakened form of the Bailey lemma allows us to prove identities using
Bailey pairs:

Lemma 2.1 (Andrews and Hickerson [5, Corollary 2.1]). If ðan; bnÞ is a Bailey pair

with respect to a; then

XN
n¼0

ðr1Þnðr2Þnðaq=r1r2Þ
nbn ¼ ðaq=r1ÞNðaq=r2ÞN

ðaqÞ
N
ðaq=r1r2ÞN

XN
n¼0

ðr1Þnðr2Þnðaq=r1r2Þ
nan

ðaq=r1Þnðaq=r2Þn

; ð2:2Þ

provided both sides converge absolutely.

Essential to creating Bailey pairs linked to quadratic forms will be the following
corollary of a lattice structure of Bailey pairs described in [9]:

Lemma 2.2. If ðan; bnÞ is a Bailey pair with respect to 1; then ða�n; b�nÞ is a Bailey pair

with respect to q; where a�0 ¼ b�0 ¼ 0; and for nX1;

b�n ¼ �1
ð1� qnÞ bn ð2:3Þ

and

a�n ¼ ð�1Þn
qnðn�1Þ=2ð1� q2nþ1Þ

ð1� qÞ n þ
Xn

r¼1

ð�1Þrþ1
q�rðr�1Þ=2ar

ð1� qrÞ þ 2
Xn

r¼1

qr

ð1� qrÞ

 !
: ð2:4Þ
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Proof. In [9] it is observed that if ðan; bnÞ is a Bailey with respect to a=q; then ða�n; b
�
nÞ

is a Bailey pair with respect to a; where

a�n ¼ ða=bÞnð�bÞn
qnðn�1Þ=2ð1� aq2nÞ

ðbqÞnð1� aÞ
Xn

r¼0

ðbÞrð�bÞ�rar

ða=bÞrq
rðr�1Þ=2 ð2:5Þ

and

b�n ¼ ðbÞnbn

ðbqÞn

: ð2:6Þ

Let a ¼ q; differentiate with respect to b; and set b ¼ 1 to obtain the desired
statement. &

Proof of Theorem 1.1. We begin by recalling a Bailey pair with respect to 1 from [3],

an ¼
qnð3nþ1Þ=2 Pn

j¼�n

ð�1Þ j
q�j2 � qnð3n�1Þ=2 Pn�1

j¼�nþ1
ð�1Þ j

q�j2 ; nX1;

1; n ¼ 0

8><
>: ð2:7Þ

and

bn ¼ 1

ð�qÞn

: ð2:8Þ

Inserting this pair into Lemma 2.2 and simplifying yields the Bailey pair with respect
to q;

an ¼ ð�1Þn
qnðn�1Þ=2ð1� q2nþ1Þ

ð1� qÞ
Xn

r¼1

Xr

j¼�rþ1
ð�1Þrþj

qr2�j2 ð2:9Þ

and

bn ¼ �1
ð�qÞnð1� qnÞ: ð2:10Þ

Although it appears that we will end up with a ternary quadratic form in our sum,
there is some collapsing that takes place. Namely, if we insert this new pair into
Lemma 2.1 with r1 ¼ q and r2-N; the result is

2
XN
n¼1

ðqÞn�1ð�1Þ
n
qnðnþ1Þ=2

ð�qÞn

¼ 2
XN
n¼1

Xn

j¼�nþ1
ð�1Þnþjþ1

q2n2�j2 : ð2:11Þ

The next step is to interpret the left-hand side of the above equation as a
generating function. From [6], the term 2ðqÞn�1=ð�qÞn in the sum generates an

overpartition into n non-negative parts, weighted by �1 raised to the largest part.
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Then the term qnðnþ1Þ=2 adds one to the smallest part, two to the next smallest, and so
on, resulting in the claimed difference conditions. The term ð�1Þn keeps the weight
�1 raised to the largest part.

Now we relate the right-hand side of (2.11) to Zð
ffiffiffi
2

p
Þ: To this end, recall (by

Andrews et al. [2, Lemma 3], for example) that for each equivalence class of elements

of negative norm in Zð
ffiffiffi
2

p
Þ there is a unique representative j þ n

ffiffiffi
2

p
having n40 and

�nojpn: It is easy to check that ð�1Þnþjþ1 is �1 if 2n2 � j2 is 0 or 1 modulo 4; and

þ1 otherwise. Hence the coefficient of qm in (2.11) is equal to �2im2�m times the

number of elements of norm �m: Since Zð
ffiffiffi
2

p
Þ has a unit of norm �1; the number of

elements of norm �m is the same as the number with norm m:
To finish the proof, we shall count the number of such elements. By unique

factorization, the number of elements with norm mn is equal to the number of
elements with norm m times the number of elements with norm m: It suffices, then, to
consider powers of primes. We recall (from [8, p. 190], for example) that primes p

equivalent to 71 modulo 8 split in Zð
ffiffiffi
2

p
Þ; while those equivalent to 73 modulo 8

are inert. Hence, in the first case there are ðe þ 1Þ elements of norm pe and in the
second case there is one element of norm pe if e is even and none otherwise. Finally,
the prime 2 ramifies so there is one element of norm 2a for every a: Putting
everything together gives the desired formula. &

Proof of Theorem 1.2. We recall another Bailey pair with respect to 1 from [3],

an ¼
qnð2nþ1Þ Pn

j¼�n

ð�1Þ j
q�j2 � qnð2n�1Þ Pn�1

j¼�nþ1
ð�1Þ j

q�j2 ; nX1;

1; n ¼ 0

8><
>: ð2:12Þ

and

bn ¼ 1

ð�qÞ2n

: ð2:13Þ

Here q has been replaced by q2 in the definition of a Bailey pair. Inserting this pair

into Lemma 2.2 (remembering to replace q by q2) and simplifying gives the Bailey

pair with respect to q2;

an ¼ ð�1Þn
qn2�nð1� q4nþ2Þ
ð1� q2Þ

Xn

r¼1

Xr

j¼�rþ1
ð�1Þrþj

qr2�j2 ð2:14Þ

and

bn ¼ �1
ð�qÞ2nð1� q2nÞ: ð2:15Þ
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Inserting this new pair into Lemma 2.1 (with q-q2) and setting r1 ¼ q2; r2-N

yields the identity

2
XN
n¼1

ðq2; q2Þn�1ð�1Þ
n
qn2þn

ð�qÞ2n

¼ 2
XN
n¼1

Xn

j¼�nþ1
ð�1Þnþjþ1

q3n2�j2 : ð2:16Þ

To determine the overpartitions generated by the left-hand side, we begin with the
term 1=ð�qÞ2n; which generates a partition l into exactly 2n non-negative parts,

weighted by �1 raised to the largest part. Next, the term ð�1Þn
qn2þn adds n to the

first two parts, n � 1 to the next two, and so on, the weight still being �1 raised to the
largest part. Then, ðq2; q2Þn�1 generates a partition m into distinct even parts less than
2n: For each of these parts 2k; beginning with the largest, we add 1 to the first 2k

parts of l and overline the 2k þ 1st part. The factor of 2 allows the largest part to
possibly be overlined. One easily checks that the difference conditions in the theorem
are satisfied and that the weight is still �1 raised to the largest part.
For the right-hand side, we again invoke [2, Lemma 3] to see that the inequalities

in the double sum guarantee that we are choosing exactly one element from each

equivalence class of numbers with a given negative norm in Zð
ffiffiffi
3

p
Þ: It easy to check

that ð�1Þnþjþ1 is ð�1Þmþ1 if 3n2 � j2 ¼ m; so that the coefficient of qm in (2.16) is

2ð�1Þm times the number of elements with norm �m in Zð
ffiffiffi
3

p
Þ:

We count the number of such elements as in the proof of Theorem 1.1 above,

except we need to pay attention to the signs, since Zð
ffiffiffi
3

p
Þ does not contain a unit with

norm �1: To do this correctly, we replace primes that are 2; 3; or 11 modulo 12 by

their negatives. In Zð
ffiffiffi
3

p
Þ; the primes q equivalent to 75 modulo 12 are inert, the

primes p equivalent to 71 modulo 12 split, and the primes 2 and 3 ramify. For the
inert primes, there is one element of norm qe if e is even, and none otherwise. In the
case of primes that split, the number of elements of norm pe is e þ 1 for primes p that

are 1 modulo 12 and the number of elements of norm ð�rÞe is ðe þ 1Þ for primes r

that are 11 modulo 12: As 2 and 3 ramify, there is one element of norm ð�2Þa and

one of norm ð�3Þb: Remembering that we want elements of negative norm, we use
multiplicativity to assemble the desired formula. &

Proof of Theorem 1.3. Here we return to the Bailey pair in (2.9) and (2.10). Replace q

by q2 and substitute the pair into Lemma 2.1 with r1 ¼ q and r2 ¼ q2 to get

2
XN
n¼1

ðqÞ2n�1q
n

ð�q2; q2Þn

¼ 2
XN
n¼1

Xn

j¼�nþ1
ð�1Þ jþ1

q3n2�2j2 : ð2:17Þ

It turns out that the sum on the right-hand side is also equal to

XN
x¼1

X
�xo3ypx

ð�1Þxþyþ1
qx2�6y2 : ð2:18Þ

ARTICLE IN PRESS
J. Lovejoy / Journal of Number Theory 106 (2004) 178–186184



To see this, rewrite the above asXN
x¼1

ð�1Þxþ1
qx2 �

XN
x¼1

q3x2 þ 2
X

xX3yX1

ð�1Þxþyþ1
qx2�6y2 ð2:19Þ

and rewrite the right-hand side of (2.17) asXN
n¼1

ð�1Þnþ1
qn2 �

XN
n¼1

q3n2 þ 2
X

n�1XjX1

ð�1Þ jþ1
q3n2�2j2 : ð2:20Þ

The rightmost sums in the above two expressions can be equated by using the
transformation n ¼ x � 2y and j ¼ x � 3y:

On the left-hand side of (2.17), 2qnðq2; q2Þn�1=ð�q2; q2Þn generates an overpartition

l into n positive odd parts, weighted by the negative of ð�1Þ raised to the largest

part. Also, ðq; q2Þn generates a partition n into distinct odd parts less than 2n þ 1;

weighted by ð�1Þ raised to the number of parts. Given two such objects, write the
parts of m in non-increasing order. Remove the largest part of n; say 2k � 1; then add
2 to the first k � 1 parts of m and add 1 to the kth part. Repeat this process until n is
empty. The result is easily seen to be an overpartition which satisfies the difference
conditions in the theorem, and the weight is still the negative of ð�1Þ raised to the
largest part. The location of the even parts indicates clearly how to reverse the
process.
Now we appeal one more time to [2, Lemma 3] to see that in (2.18) we are counting

exactly one element from each equivalence class of numbers of a given positive norm

m in Zð
ffiffiffi
6

p
Þ: It is easily verified that the sign is 1; for those m that are 1 or 2 modulo 4;

and �1 otherwise. Hence, the coefficient of qm in (2.18) is �2im2þm times the number

of elements with norm m in Zð
ffiffiffi
6

p
Þ:

To count the number of such elements, we note that in Zð
ffiffiffi
6

p
Þ; the primes p that

are77 or711 modulo 24 are inert, the primes q that are71 or75 modulo 24 split,
and the primes 2 and 3 ramify. To correctly keep track of the sign in this case, we
replace the primes that are 2; 5; or 23 modulo 24 by their negatives. Now, as above,
there are no elements of norm pe if e is odd and one element of norm pe if e is even.

There are ð f þ 1Þ elements of norm qf if q is 1 or 19 modulo 24; and there are ðg þ 1Þ
elements of norm ð�rÞg if r is 5 or 23 modulo 24: Finally there is one element of the

norm ð�2Þa and one of norm 2b: Using multiplicativity and keeping in mind that we
want elements of positive norm, one assembles the desired formula. &

3. Concluding remarks

It is worth pointing out that, with the formulas in Theorems 1.1–1.3 in hand, one
concludes that the corresponding difference functions are almost always 0 and are
infinitely often equal to any given 2kAZ: It is also worth asking, though a positive
response seems unlikely, whether there is any way to approach the main theorems
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using combinatorial arguments. Finally, we observe that while there is an extensive
literature on finding q-series expansions for modular forms, the interaction between
q-series and other number-theoretic objects is relatively unexplored. It would be nice
to see some systematic results like those here and/or in [2,4,5].
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