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1. Introduction

In the theory of mathematical constants, it is very important to construct new se-
quences which converge to these fundamental constants with increasingly higher speed.
To the best of our knowledge, one of the most useful convergent sequences in mathematics
is

2

- n? n 1 n
= kln(k) - | =—+=+— |1 — 1.1
o = S kinh) — (7 g ) o) + (1)

which converges towards the well-known Glaisher—Kinkelin’s constant In(A) and A ~
1.282427130. . .. This constant appeared in Barnes [1], and is also related to the Riemann
zeta function ¢, or the Euler’s constant v = 0.577215664 . . ..

Related to Glaisher—Kinkelin’s constant, the following sequences are defined,

n 3 2 3
=SBk - (T T no_n 1.2
s ; n(k) <3+2+6 n(n)+9 1 (1.2)
and
n 4 3 2 1 ntop?
th=S Kk - (L +2 4+ 2 ) noon 1.
kzzl n(k) <4+2+4 120 ) M+ 36~ 1 (13)

which converge towards the well-known Bendersky—Adamchik’s constant In(B) and
In(C), where B ~ 1.03091675... and C ~ 0.97955746.... These two constants were
considered by Choi and Srivastava in [3,4,2] in the theory of multiple gamma functions.

These convergent sequences and constants play a key role in many areas of mathe-
matics and science in general, as theory of probability, applied statistics, physics, special
functions, number theory, or analysis.

Up until now, many researchers made great efforts in the area of concerning the
rate of convergence of these sequences, and establishing faster sequences to converge
to Glaisher—Kinkelin’s and Bendersky—Adamchik’s constants. For example, Mortici [12]
provided some new inequalities for these constants as follows:

1 1 1 1 1
_ _ In(A S 1.4
Wn = o0z T 50d0nd ~ T00s0m < A <n — s g (W)
1 1 1
" _ ~__ < In(B n+ —, 1.5
snt 350 ~ Tg0me < MB) < st g0n (1.5)
1 1 ]
tn — 1 tn _— 1.
+ S0a0n2 ~ 33600m1 < MO <t e (1.6)

It is their work that motivate our study. In this paper, we provide some quicker
convergent sequences for Glaisher—Kinkelin’s and Bendersky—Adamchik’s constants as
follows:
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Theorem 1.1. For Glaisher—Kinkelin’s constant, we have
ln(A)Ni:k:ln(k:)— R Y O L SO P
T 2 2 12 nd " ndond 4’ '

where

1 1 29

33600 T 73600 T 151200

For Bendersky—Adamchik’s constants, we have

" 3 p? bs by b
Mszymmw(ﬂ+l+3m@+§+ﬁ+£+m)

s 372 "6
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t5 T (1.8)
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3 120’ 1TR0 >~ 710080
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Next, using Theorem 1.1, we provide some inequalities for Glaisher—Kinkelin’s and
Bendersky—Adamchik’s constants

Theorem 1.2. For all natural numbers n > 1, we have

oM < In(A) < @', (1.10)
52 <In(B) < 3V, (1.11)
i® < m(C) < iV, (1.12)

where
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Finally, to show that the three new approximations convergence faster, combining

9 12’

Theorems 1.1 and 1.2, we provide the rates of convergence of these three sequences as
follows:

Theorem 1.3. For all natural numbers n > 2, we have

29 ~(2) . 29

. A— In(A) < ——— . 1.13
5020017 = O~ < e mn T (1.13)
143 143
(B) — 5@ 143 1.14
3020000 117 = B =57 < sinapm 1y (1.14)
1 ) 1
) <In(C) —i® < ) (1.15)

33600(n + 1)* " 33600(n — 1)1

To obtain Theorem 1.1, we need the following lemma which was used in [7-11] and
very useful for constructing asymptotic expansions.

Lemma 1.1. If (z,,)n>1 is convergent to zero and there exists the limit
lim n°(x, — zpy1) =1 € [—00, +00], (1.16)
n— oo

with s > 1, then

_ l
lim n® tz, = .
n—o0 s—1

(1.17)

Lemma 1.1 was first proved by Mortici in [10]. From Lemma 1.1, we can see that
the speed of convergence of the sequence (x,,),>1 increases together with the value s
satisfying (1.16).



344 D. Lu, C. Mortici / Journal of Number Theory 144 (2014) 340-352

The rest of this paper is arranged as follows: In Section 2, we provide the proof of
Theorem 1.1. In Section 3, the proof of Theorem 1.2 is given. In Section 4, we complete
the proof of Theorem 1.3. In Section 5, we give some numerical computations which
demonstrate the superiority of our new convergent sequences over the classical sequences.

2. Proof of Theorem 1.1
First, we deal with (1.7). Based on the argument of Theorem 2.1 in [11] or Theorem 5

in [13], we need to find the value a3 € R which produces the most accurate approximation
of the form

n 2 2
5 — (o1 as)
s ;kln(k) <2 +5+ 12) ln<n+ =)t (2.1)

To measure the accuracy of this approximation, a method is to say that an approximation
(2.1) is better if it — In(A) converges to zero faster. Using (2.1) and developing the
power series in 1/n, we have

71}(1) ~ (1) 1-— 360&3 1 140&3 +1 ( 1 )

no

_ _ _ 2.9
no T Wntt T Tee008 T T 2400t T 21008 (2.2)

From Lemma 1.1, we know that the speed of convergence of the sequence (71)7(11) —In(A))n>1
is even higher as the value s satisfying (1.16). Thus, using Lemma 1.1, we have:

(i) If az # 1/360, then the rate of convergence of the sequence (11;7(11) —In(A))p>1 is n72,
since

1—-360
lim n? (12)7(11) —In(A)) = SO0

n—o0 720 7 0.

(i) If ag = 1/360, then from (2.2), we have

Sy _ - 1 1
@) — Wy = 240n4+0(n5

and the rate of convergence of the sequence (17),(11) —1In(A)),>1 is n™3, since

i 3 — -
nh_)n;on (@} —In(A)) 0"

We know that the fastest possible sequence (71)7(11))”21 is obtained only for a3 = 1/360.
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Next, we define the sequence (d/,(f))nzl by the relation

1 1 a n?
w® =3 kn( n 1 ) 2.3
an ( +2+12) n<n+360n3+n4 L (2:3)

Using the same method from (2.1) to (2.2), we have

5@ _ g —1—-360ay 54 756ay —29 — 1260a4 0 i 9.4
B VT 756m5 30245 o) @29
The fastest possible sequence (u?r(?))nzl is obtained only for ay = —1/360. Then,

from (2.4), we have

@) o) _ 29 1
W5~ gy = 7560n5+0(n6)

and the rate of convergence of the sequence (1, T —1In(A)),>1 is n™4, since

29
lim n*(@(? —In(4)) = ——.
Jim o (@7 —In(4)) = 2505
Similarly, we have a5 = 29/15120, - - -, the new sequence (1.7) is obtained.
Next, we deal with (1.8). We need to find the value b3 € R which produces the most
accurate approximation of the form

5 ZkQIn 3+—2+ In n+b3 +n—3—£. (2.5)
3 2 6 9 12
Using (2.5) and developing the power series in 1/n, we have
(1) _ (D) —1—120b3 1—240b3 28003 —1 1 96
T It T TR60,2 36007 420n? s ) (2:6)

From Lemma 1.1, we know that the speed of convergence of the sequence (s% ) —In(B))n>1
is even higher as the value s satisfying (1.16). Thus, using Lemma 1.1, we have

(i) If b3 # —1/120, then the rate of convergence of the sequence (5%1) —In(B))p>1 is

n~1, since

—-1-12
lim n(s(l) —In(B)) = Z1— 1206 # 0.

n—oo ™ 360
(ii) If b3 = —1/120, then from (2.6), we have

) _ s _ 1 1
S~ = g T O(F)
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and the rate of convergence of the sequence (57(11) —1In(B)),>1 is n2, since

1
i 2(z(1) _ -
nlgrgon (31 —In(B)) 510"

We know that the fastest possible sequence (5%1)),21 is obtained only for b3 = —1/120.
Similarly, we have by = 1/80, b5 = —143/10080, - - -, and the new sequence (1.8) is
obtained.
Finally, we deal with (1.9). We need to find the value ¢5 € R which produces the most
accurate approximation of the form

~ " 4 3 2 1 c n n
=S mk) - (S ) Sy T (o
n ; nB) -ty T )M ) T T (2.7)

Using the same method from (2.5) to (2.6), we have

gy _ —L1—1260c; | 1—1260c5 | 25200c; — 17 1Y) 28)
" n+l 2520n3 1680n4 25 200n5 nb
The fastest possible sequence (f%l))nzl is obtained only for ¢5 = —1/1260. Then,

from (2.8), we have

- . 1 1
t(l) _ t(l) - - il
n ntl = gaond T 0 nd

and the rate of convergence of the sequence (5511) —In(C))p>1 is n 3, since

~ 1
li 3(F) .
dim n® (5, —In(C)) = 250

Similarly, we have ¢ = 1/630, ¢c; = —19/8400,-- -, and the new sequence (1.9) is
obtained.

3. Proof of Theorem 1.2

First, we deal with (1.10). Since @i, w2 converge to In(A), we only need to show
that (u?ﬁtl))nzl is strictly increasing and (11},(12))"21 is strictly decreasing.

Let fa(x) = ﬁé}) — “79(5217 ga(z) = w§?) — @;%21 By some calculations, we have
(@) = Eatn >0
223 (z 4 1)3(360z* + 1)3(3602* + 144022 + 216022 + 1440z + 361)3 ’
" _ Ga(x)
ga(z) = 623 (z + 1)3(36025 + @ — 1)3(36025 + 18002 + 360023 + 360022 + 1801z + 360)3 0,

where
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Fa(z) = 562986 7202 + 3 465 352 468 320 768 0002'° + 1321 288 738 099 200 0002:*°

+ 2176 782 336 000 000223 + 26 605 117 440 000 0002:%2

+ 151891034 112 000 000x2* + 537 784 960 020 480 0002:%°

+ 3272090 834 534 400 00027 + 2 386 418 568 192 000 0002:'®

+ 14511 340 088z — 613 501 543 221 1202° + 326 634 457 115 520 00022
+ 1824 559 560 069 120 0002 '* + 894 162 859 591 680 00023

+ 83383032 198 988 800! 4 12117703 331 635 2002 °

— 284305012992 0002° — 155011978 272 960" — 20 743 871 103 360°
— 13327842124802° + 3090 188 88022 4 10899 957 608x> + 47 045 881
+ 2854285964 116 992 00015,

G a(z) = 3584444799 343 426 5602 4 108 626 650 193 138 688 0002%° + 2241 043 2002

491231436 172 676 608 000" 4- 61 969 625 709 866 496 000>

+ 22365 172491 587 25620 + 82 768 456 160 449 920 0002 *®

+ 954059 363 880 370 560213 + 10 521 114 624 000 00022® + 110 380 020 819+
+ 38049203 5372 + 11 768 202 72022 + 33 649 521 271 234 560 000223

+ 105 150 184 424 994 816 0002 + 152 374 763 520 000 000>

+ 4596 921 681 223 680 0002>° + 6 212 992 160 247 888"

+ 14 305 316 480 225 280 000** + 238 786 513 777 236 96022

+ 169407912 114 74427 4 52 771 118 954 658 508 80027 + 707 643 146 8592.°
+ 13516 465204 8812° 4 11 047 988 148 370 444 800x*°

+ 27050 892 805 333 555 200*¢ + 69 372 578 784 375 360!

+ 1261219906 565 6402° + 1051 026 699 202 560 000226 + 186 624 000.

Combining f/{(c0) = 0, ¢g/4(c0) = 0 and f4'(x) > 0, ¢’{(z) < 0, we have f}(z) < 0,
ga(x) > 0 for & > 1. Thus, fa(z) is strictly concave, and ga(z) is strictly convex.
Combining fa(co) = 0 and ga(o0) = 0, we obtain fa(x) < 0 and ga(z) > 0 for x > 1.
The proof of (1.10) is completed.

Next, we deal with (1.11). We only need to show that (5%2)),21 is strictly increasing

and (E%l))nzl is strictly decreasing. Let fp(z)

By similar

= &7 - 52, g(2) = &) - 5,

calculations, we have f}(x) > 0 and g% (x) < 0. Combining f5(c0) = 0,

gh(00) = 0 and fF(x) > 0, g5 (z) < 0, we have f(z) < 0, gh(x) > 0 for x > 1.
Thus, fp(z) is strictly concave, and gp(x) is strictly convex. Combining fp(oo) = 0
and gp(co) = 0, we obtain fp(x) < 0 and gg(x) > 0 for x > 1. The proof of (1.11) is

completed.
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Finally, we deal with (1.12). We only need to show that (t( )) >1 is strictly increasing
and (757(1 ))n>1 is strictly decreasing. Let fo(z) = i tflu go(x) = #H t;l_gl By similar
calculations, we have f(x) > 0 and ¢g//(z) < 0. Combining f{;(c0) =0, g/ (c0) = 0 and

& (x) >0, g (x) <0, we have fli(z) <0, g&(z) > 0 for > 1. Thus, fo(z) is strictly
concave, and ge(x) is strictly convex. Combining fe(00) = 0 and ge(oco) = 0, we obtain

fe(z) <0 and go(x) > 0 for « > 1. The proof of (1.12) is completed.
4. Proof of Theorem 1.3

First, we prove (1.13). Based on the argument of Theorem in [5] or the method in [6],
it is easy to have

. ~ (2
B —In(A) = > (0P - a7),) = > falk). (4.1)
k=n k=n
By some calculations, we have
29 ) 29
_ - 4.2
B 1e ~ 10 < 51900 (42)
as > 1. For the upper bound in (1.13), using fz(0co) = 0, we have
T 29 [ 29
— [ fh@)de < = [ 27 5%z = . 4.
/fw(x) TS 512 /x T = 7560" / (4.3)
k & z

Combining (4.1) and (4.3), for all nature number n > 2, we have

k )
=29 29 29
2@ (A _/ -5 :_/ = 29 (44
B —In(A) < ) e | @M= e [ a7Pde s0200m — 1 Y

ke=n k=1 n-1
For the lower bound, combining (4.2), we have
r 29 [ 29
w(k) = — do > —— 1)~ %da = k+1
full) == [ fu@rte > 20 [ @4 1) e = st 1)
k k
99 k+2
R -5
= | © dx (4.5)
k+1

Combining (4.1) and (4.5), we have
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oo k+2 0o 99
5 _ In(A) / Cr= =0 (46
@ = In(4) 7560 7560 v = sy 40
k+1 n+1

Combining (4.4) and (4.6), we complete the proof of (1.13).
Next, we prove (1.14). It is easy to have

In(B) — 5 = f:(g =3 Z fs(k (4.7)
k=n
By similar calculation, we have
R < ) < S0 (4.8)
for 2 > 1. For the upper bound in (1.14), using fs(co) = 0, we have
fa(k) = —/fg( )dx < 21;—230 0 dr = %/{4 < 13?)20 / z e, (4.9)
k k k—1
Combining (4.7) and (4.9), for all nature number n > 2, we have
< 143 143 [ 143
In(B) — 52 < kz:;l 10 OSOk/1 x4 dr = mn_l ztdr = 30240(n 17" (4.10)
For the lower bound, combining (4.8), we have
oo k+2
/fg Ydx > % (x+1)5de = %(k +1)7 > 13?)20 / x4 dx.
k k k+1
(4.11)
Combining (4.7) and (4.11), we have
< 43 f 143 [ 143
In(B) — 53 > Z 10080k+1 r4dr = 10080 / r4dr = 30200 T 17" (4.12)

Combining (4.10) and (4.12), we complete the proof of (1.14).
Finally, we prove (1.15).

In(C) — i®) = i(t&i’l N(Q)):ifz(k)- (4.13)
k=n

k=n
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By some calculation, we have

19 ) 19
—— < —f; —_ 4.14
16800z + 15 ~ 1% < Tgg0.0° (4.14)
for z > 1. For the upper bound in (1.15), combining f;(co) = 0, we have
T 19 [ 19 19 [
fi(x)de < —— [ 27 %z = k® / “Pdx.  (4.15
/t *<Toz0 ) T = ga00F maop | ¢ (A1)
k k k—1
Combining (4.13) and (4.15), for all natural number n > 2, we have
oo k 9]
In(C) — @ < / vy = —— / v = 0 (4.16)
8400 8400 33600(n —1)*" '
k-1 -
For the lower bound, combining (4.14), we have
%) 19 oo 19 19 k+2
(k) =— [ fi(x)de > —— 1) %z = k 2.
() /ff(x) T > 1egg | @H D Vde = gk + )7 > g [ o 70de
k k k+1
(4.17)
Combining (4.13) and (4.17), we have
k+2 [e%)
In(C) — 2 > Z / ey = 9 (4.18)
8400 8400 33600(n + 1)*
k+1 n+1

Combining (4.16) and (4.18), we complete the proof of (1.15).
5. Numerical computation

In this section, we give three tables to demonstrate the superiority of our new conver-
gent sequences w&”, wgf), E%l), 5%2), f%l) and if&?’ over the classical sequences w,,, Sy, ty,
respectively.

Combining Theorem 1.1, Theorem 1.2 and Theorem 1.3, we have Table 1, Table 2
and Table 3.

In conclusion, we assert that the use of polynomial in the problem of approximating the
constants of Glaisher—Kinkelin type is more adequate than the use of classical asymptotic

series, since more accurate approximations are obtained.



D. Lu, C. Mortici / Journal of Number Theory 144 (2014) 340-352 351

Table 1
Simulations for w,, @ and @ 2.
" w, —In(A) In(A)—w" @ —In(A)
In(A) In(A) In(A)
10 5.5754 x 107° 5.7558 x 1076 3.9523 x 1077
25 8.9314 x 10~° 3.6176 x 10~ 7 9.9662 x 10~°
50 2.2332 x 1076 4.4943 x 1078 6.1983 x 1071
100 5.5833 x 1077 5.6007 x 107° 3.8645 x 10~
250 8.9334 x 1078 3.5778 x 10710 9.8788 x 10712
1000 5.5834 x 107° 5.5851 x 10712 3.8561 x 1071

Table 2
Simulations for s,,, 5511) and 512).
n In(B) —s, s —In(B) In(B)—3%
In(B) In(B) In(B)
10 9.1186 x 1072 1.4184 x 1073 1.6216 x 1074
25 3.6489 x 1073 2.2215 x 107* 1.0115 x 10~°
50 1.8245 x 1072 5.5137 x 107° 1.2534 x 106
100 9.1228 x 10™* 1.3734 x 107° 1.5599 x 10~ 7
250 3.6492 x 107* 2.1927 x 1076 9.9571 x 107°
1000 9.1229 x 107° 1.3689 x 1077 1.5537 x 1071

Table 3
Simulations for t,,, fﬁll) and fﬁ?.

In(©)—t, 40 In(0) In(0) 7D

n —In(0) ~“Tn(0) —In(C)
10 9.5911 x 107° 2.0314 x 107° 2.9306 x 1076
25 1.5365 x 1072 1.2578 x 106 7.20525 x 1078
50 3.8419 x 10~° 1.5545 x 1077 4.4416 x 107°
100 9.6053 x 1077 1.9321 x 1078 2.7568 x 10710
250 1.5369 x 1077 1.2323 x 107° 7.0278 x 10712
1000 9.6054 x 10~° 1.9222 x 10~ 2.7395 x 1071
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