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1. Introduction

Fix a positive integer g. An affine model for a hyperelliptic curve over C of genus g

may be given by

2g+1

v’ =[] (z—00), (1)

i=1
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with «;’s distinct complex numbers. Now let o, ..., asg41 be transcendental and inde-
pendent over C, and let L be the subfield of C(a) := C(au, ..., a441) generated over C
by the elementary symmetric functions of the «;’s. For any positive integer N, let J[N]
denote the N-torsion subgroup of J(L). For each n > 0, let L, = L(J[2"]) denote the
extension of L over which the 2"-torsion of J is defined. Set

Lo i= U Ly.
n=1

Note that C(a,...ag41) is Galois over L with Galois group isomorphic to Sag41. It is
well known [5, Corollary 2.11] that C(ev,...,asg41) = L1, so Gal(L1/L) = Sy441. Fix
an algebraic closure L of L, and write G, for the absolute Galois group Gal(L/L).

Let C be the curve defined over L by Eq. (1), and let J/L be its Jacobian. For any
prime /¢, let

Ty(J) == 1(1_r£11,][€"]

denote the ¢-adic Tate module of J; it is a free Zy-module of rank 2g (see [6, §18]). For
the rest of this paper, we write p; : G, — Aut(T;(J)) for the continuous homomorphism
induced by the natural Galois action on Ty(J). Write SL(T¢(.J)) (resp. Sp(T¢(.J))) for the
subgroup of automorphisms of the 2-adic Tate module Tp(J) with determinant 1 (resp.
automorphisms of Ty(J) which preserve the Weil pairing). Since L contains all 2-power
roots of unity, the Weil pairing on T5(.J) is Galois invariant, and it follows that the image
of py is contained in Sp(75(J)). For each n > 0, we denote by

r2") = {g € Sp(Tx(J)) | g=1 (mod 2")} < Sp(T»(J))

the level-2™ principal congruence subgroup of Sp(7(J)).
Our main theorem is the following.

Theorem 1.1. With the above notation, the image under ps of the Galois subgroup fiz-
ing Ly is I'(2) < Sp(Tx(J)).

Before setting out to prove this theorem, we state some easy corollaries.

Corollary 1.2. Let G denote the image under ps of all of G1,. Then we have the following:
a) G contains I'(2) < Sp(T>(J)), and G/I'(2) = Sag41.
b) In the case that g = 1, G = Sp(Ts(J)) = SL(T%(J)).

¢) For each n > 1, the homomorphism ps induces an isomorphism
pS : Gal(L,/Ly) = I(2)/T(2")

via the restriction map Gal(L/L1) — Gal(L,/L,).
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Proof. Since Gal(Li/L) = Sag41, part (a) immediately follows from the theorem. If
g = 1, then fix a basis of T5(J) so that we may identify Sp(7(J)) (resp. SL(T2(J)))
with Spy(Zsa) (resp. SLa(Zz)). Then it is well known that Spy(Zs) = SLa(Zs), and that
SLo(Z2)/I'(2) = SLo(Z/2Z) = Ss. Since, by part (a), G/I'(2) =2 S3 when g = 1, the
linear subgroup G must be all of Sp(T2(J)) = SL(T%(J)), which is the statement of (b).
To prove part (c), note that for any n > 0, the image under py of the Galois subgroup
fixing the 2"-torsion points is clearly G N I'(2"). But G > I'(2), so for any n > 1, the
image under py of Gal(L/L(2")) is I'(2"). Then part (c) immediately follows by the
definition of 55, O

In Section 2, we will prove the main theorem by considering a family of hyperelliptic
curves whose generic fiber is C. In Section 3, we will use the results of the previous
two sections to determine generators for the algebraic extension Lo/L (Theorem 3.1).
Finally, in Section 4, we will generalize Theorems 1.1 and 3.1 by descending from C to
a subfield £ C C which contains all 2-power roots of unity.

2. Families of hyperelliptic Jacobians

In order to prove Theorem 1.1, we study a family of hyperelliptic curves parametrized
by all (unordered) (2g + 1)-element subsets T' = {a;} C C whose generic fiber is C. Let
er = fo{l QyennyCogq] 1= Hfi‘fl «; be the elementary symmetric functions of the
variables «;, and let A be the discriminant function of these variables. Then the base of
this family is the affine variety over C given by

X = SpeC(C[€1,627...7€2g+1,A71}). (2)

This complex affine scheme may be viewed as the configuration space of (2g+ 1)-element
subsets of C (see the discussion in Section 6 of [10]). More precisely, we identify each
C-point T' = (e, €g, . .., e24+41) of X with the set of roots of the squarefree degree-(2¢g+1)
polynomial z29%1 — €1229 + e522971 — ... — e3541 € Cl[z], which is a (2g + 1)-element
subset of C. Note that the function field of X is L. The (topological) fundamental
group of X is isomorphic to Bag1, the braid group on 2g + 1 strands. The braid group
Byg1 is generated by elements 01,09, ..., 024, with relations 010410; = 04541040441 for
1 <i<2gand 0,05 = 0gjo; for 2 <i+1 < j < 2g. (See Section 1.4 of [2] for more
details.)
We also define the complex affine scheme

Y = Spec(C [al, Qg,...,00¢01, {(Oéi - Olj)_l}lgi<j§29+1]). (3)

As a complex manifold, Y is the ordered configuration space, whose C-points may be
identified with 2g + 1-element subsets of C which are given an ordering (a C-point is
identified with its coordinates (o, as,...,a2441)). There is an obvious covering map
Y — X which sends each point (aq, as, ..., agg41) of Y to the point in X corresponding
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to the (unordered) subset {a1, @, ..., a244+1}. The pure braid group on 2g + 1 strands,
denoted Py41, is defined to be the kernel of the surjective homomorphism from Bggi1
to the symmetric group Sag41 which sends o; to (i,i+1) € Syg41 for 1 < i < 2g (see the
proof of Theorem 1.8 in [2]). Then P41 <<Bag1 is the (normal) subgroup corresponding
to the cover Y — X, and is therefore isomorphic to the fundamental group of Y.

Let Ox denote the coordinate ring of X, and let F(z) € Ox|z] be the degree-(2g+1)
polynomial given by

2g+1
m2g—|—1 + Z (—1)i€i$2g+1_i. (4)
i=1

Now denote by C — X the affine scheme defined by the equation y? = F(z). Clearly, C
is the family over X whose fiber over a point 7' € X (C) is the smooth affine hyperelliptic
curve defined by y? = [, oy (z — 2), and the generic fiber of C is C/ L. Fix a basepoint Tp
of X, and a basepoint Py of Cr,. Then we have a short exact sequence of fundamental
groups

1—)Wl(CTO,Po)—>7T1(C,Po)—>7T1(X,T0)—)1. (5)

We now construct a continuous section s : X — C, following the proof of Lemma 6.1
and the discussion in [10, §6]. For ¢ = 1,2, let & — X be the affine scheme given
by Spec(Ox|[z,y]/(y" — F(x))[F(x)~']). Then & — X is clearly the family of complex
topological spaces whose fiber over a point T € X can be identified with C\ T, and there
is an obvious degree-2 cover & — &;1. Let t : X — &1 be the continuous map of complex
topological spaces which sends a point T' € X to max,er{|z|} +1 € C\ T = & 1. This
section then lifts to a section £ : X — &. Define s : X — C to be the composition of ¢
with the obvious inclusion map & < C. It is easy to check from the construction of s
that it is a section of the family C — X.

The section s induces a monodromy action of m1(X,Tp) on 71 (Cr,, Po), which is given
by o € m1(X) acting as conjugation by s.(o) on m1(Cr,, Py) < m1(C, Py). This induces
an action of Bagy1 on the abelianization of 71 (Cr,, Py), the homology group H:(Cr,,Z),
which is isomorphic to Z29. We denote this action by

R: ng+1 =m (X, To) — Aut(Hl(CTO,Z)). (6)
This action respects the intersection pairing on Cr,, so the image of R is actually con-
tained in the corresponding subgroup of symplectic automorphisms Sp(H; (Cr,,7Z)).

The following theorem is proven in [1] (Théoréme 1), as well as in [5] (Lemma 8.12).

Theorem 2.1. In the representation R : Bygi1 — Sp(H1(Cr,,Z)), the image of Pagi1
coincides with I'(2).
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Let §29+1 denote the profinite completion of Bygi1 = m1(X,Tp). Since X may be
viewed as a scheme over the complex numbers, Riemann’s Existence Theorem yields an
isomorphism between its étale fundamental group 7$*(X, Ty) and §29+1 [3, Exposé XII,
Corollaire 5.2]. Meanwhile, 7§*(X, Tp) is isomorphic to the Galois group Gal(L" /L),
where L""" is the maximal extension of L unramified at all points of X. The represen-
tation R : Bagi1 — Sp(H1(Cry, Z)) induces a homomorphism of profinite groups

R:Gal(L™ /L) = Bagy1 — Sp(H1(Cry, Z) @ Zy) (7)

for any prime ¢. Composing this map with the restriction homomorphism G :=
Gal(L/L) — Gal(L" /L) yields a map which we denote Ry : G1, — Sp(H1(Cr,,Z) ®Z¢).
The following proposition will allow us to convert the above topological result into the
arithmetic statement of Theorem 1.1.

Proposition 2.2. Assume the above notation, and let £ be any prime. Then there is an
isomorphism of Ze-modules Ty(J) = H;(Cr,,Z) ® Z¢ making the representations p, and
Ry isomorphic.

Proof. We proceed in five steps.
Step 1: We switch from the affine curve C' to a smooth compactification of C, which
is defined as follows. Let C’ be the (smooth) curve defined over L by the equation

2g+1

y'?=a H (1— oua’). (8)
i=1

We glue the open subset of C' defined by x # 0 to the open subset of C” defined by 2’ # 0
via the mapping

9+’

and denote the resulting smooth, projective scheme by C. (See [5, §1] for more details
of this construction.) Let co € C(L) denote the “point at infinity” given by (2',y') =
(0,0) € C’'. The curve C has smooth reduction over every point 7' € X and therefore
can be extended in an obvious way to a family C — X whose generic fiber is C'/L. Note
that Cr is a smooth compactification of C7 for each T € X. There is a surjective map
71(Cr,, Po) — m1(Cry, 007,) induced by the inclusion C < C. Note also that the section
5: X — C C C can be continuously deformed to the “constant section” 5 : X — C sending
each T € X to the point at infinity copr € Cp. Therefore, s, : m1 (X, To) — m (C_TO, 00T, )
is the composition of s, with the map m(Cr,, Py) — m1(Cr,,007,). In this way, we
may view the action of 7 (X, Tp) on 71 (Cr,, Po)*® = m1 (C_To,ong)ab as being induced
by S,.

Step 2: We switch from (topological) fundamental groups to étale fundamental groups.
Since X and C, as well as Cr for each T' € X, can be viewed as a scheme over the complex
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numbers, Riemann’s Existence Theorem implies that the étale fundamental groups of X,
C, and each Cr (defined using a choice of geometric base point Ty over Ty) are isomorphic
to the profinite completions of their respective topological fundamental groups. Taking
profinite completions induces a sequence of étale fundamental groups

1— 7' (Cp,, 05,) — 71 (C,05,) — 7{'(X, Tp) — 1, (9)

which is a short exact sequence by [3, Corollaire X.2.2]. Moreover, the section 5: X — C
similarly gives rise to an action of 7{ (X, Tp) on m{*(Cr,, 004, )™

Step 8: We switch from C' to its Jacobian. Define J — X to be the abelian scheme
representing the Picard functor of the scheme C — X (see [4, Theorem 8.1]). Note
that Jp is the Jacobian of Cp for each C-point T of X, and the generic fiber of J is
J/L, the Jacobian of C/L. Let fo, : C — J be the morphism (defined over L) given
by sending each point P € C(L) to the divisor class [(P) — (o0)] in Pic} (C), which
is identified with J(L). By [4, Proposition 9.1], the induced homomorphism of étale
fundamental groups (fso)« : 7¢(C,00) — m{t(J,0) factors through an isomorphism
7éH(C, 00)*” 5 7€t(J,0). This induces an isomorphism 7¢*(Cr, cor)*® = ¢t (Jr, Or) for
each T € X. Note that the composition of the section 5 : X — C with f. is the “zero
section” o : X — 7 mapping each T to the identity element O € J7. Thus, the action of
m$'(X, To) on 7§ (Cr,, 007,)*" coming from the splitting of (5) is the same as the action
of m{'(X,Ty) on 7{"(Jyz,,05,) coming from the splitting of (9) induced by the section
0, s THHX, Tp) — m$H(T, 07,)-

Step 4: We now show that this action on Wft(jfg,()fo) is isomorphic to a Galois
action on 7§(Jz,0) (and therefore on its ¢-adic quotient Ty(J)). Let n : Spec(L) — X
denote the generic point of X. Note that we may identify 7¢*(L, L) with G, and that
ns : G — w¢(X,7) is a surjection (in fact, it is the restriction homomorphism of Galois
groups corresponding to the maximal algebraic extension of L unramified at all points
of X). Also, the point 0 € J may be viewed as a morphism 0 : Spec(L) — Jr, which
induces 0, : G = n§*(L, L) — 7$*(Jp,0). Let Ty and 7 be geometric points over Ty and
7 respectively. Then we have [3, Corollaire X.1.4] an exact sequence of étale fundamental
groups

T ( Ty, 05) — 71T, 05) — 7 (X, 7) — L. (10)

Changing the geometric basepoint of X from 7 to Ty (resp. changing the geometric
basepoint of J from 05 to 07 ) non-canonically induces an isomorphism 7¢*(X,7) =
7¢'(X, Tp) (resp. an isomorphism 7$'(J,05) = 7{*(7, 07, )). Fix such an isomorphism
(X, 1) 5 7§t (X, Tp). Then we have the following commutative diagram, where all

horizontal rows are exact:
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04
“—

1 ———7{"(Jp,0) ———={"(Jp,0) ——=7{"(L, L) — 1

\77]7 ) - Trft(j701’_]) - Tri:t(Xa T_]) —1

|
| sp ll o lup
Y —

l——my (jTOvOTO) - 7r1 (J OTO) - Wft(XvTO) —1

Here the vertical arrow from w$*(7,0;) to 7{'(J,04) is a change-of- basepomt iso-
morphism chosen to make the lower right square commute, and sp : Y T5,05) —
ﬂft(jfo,ofo) is the surjective homomorphism induced by a diagram chase on the bot-
tom two horizontal rows. Grothendieck’s Specialization Theorem [3, Corollaire X.3.9]
states that sp is an isomorphism, which implies that the second row is also a short exact
sequence. Thus, the action of 7¢*(X, T) on Wft(jTo, 07,) arising from the splitting of the
lower row by o, is isomorphic to the action of 7{*(X,7) on 771 !(J5,05) arising from the
splitting of the middle row by o,, via the isomorphism sp : 7¢¢(J5, 05) — wft(jfo,ofo).
In turn, a simple diagram chase confirms that this action, after pre- composing with
ne : WL, L) — 7§'(X,7), can be identified with the action of (L, L) on 71'1 t(Jz,0)
arising from the splitting of the top row by 0,. We denote this action by R : Gy =
7$t(L,L) — Aut(n$*(J;,0)). Since the Tate module T;(J) may be identified with the
maximal pro-£ quotient of 7¢*(.Jz,0), R induces an action of G, on Ty(J), which we de-
note by Ry : G — Aut(Ty(J)). One can identify the symplectic pairing on 7 (JI1,01,)
with the Weil pairing on T;(J) via the results in [6, Chapter IV, §24]. Therefore, the
image of Ry is a subgroup of Sp(T;(J)).

By the above construction, we may identify the maximal pro-¢ quotient of 7¢* (JIz,:07,)
with Hy(Cr,, Z) ®Zy. Note that the isomorphism sp : 7" (75, 05) = " (T, , 07, ) induces
an isomorphism of their maximal pro-¢ quotients sp, : Ty(J) = Hi(Cr,,Z) ® Zy. By
construction, the representation Ry is isomorphic to the representation R, via SPy-

Step 5: It now suffices to show that R, = pe- To determine Rg, we are interested
in the action of G on the group Aut;_ (Z) for each (-power-degree covering Z — Jg.
But each such covering is a subcovering of [¢"] : J; — J;, so it suffices to determine
the action of G, on the group of translations {tp|P € J[¢"]} for each n. Recall that

. 1 Gp — 7$t(Jp,0) is induced by the inclusion of the L-point 0 € Jr. Thus, for any
o € G, 0.(0) acts on any connected étale cover of Jy, via o acting on the coordinates of
the points. Since R(o) is conjugation by 0, (o) on 7§ (J;,0) < 7§ (Jr,0), one sees that
for each n, 0,(c) acts on {tp|P € J[("]} by sending each tp to o~ tpo = tpo. Thus, G,
acts on the Galois group of the covering [¢"] : J; — J; via the usual Galois action on
J[¢™]. This lifts to the usual action of G on T;(J), and we are done. O

It is now easy to prove the main theorem.
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Proof of Theorem 1.1. Recall that P,y is the normal subgroup of Bagy1 = (X, Tp)
corresponding to the cover Y — X, and the function field of Y is C(ay, ..., azg41) = L.
It follows that the image of Gal(L/L;) under 7, is ﬁ29+1 < §29+1 ~ 78X, Tp)
(where ﬁgng] denotes the profinite completion of Phgi1). Therefore, the statement
of Theorem 2.1 with £ = 2 implies that the image of Gal(L/L;) under R, is
I'(2) < Sp(H1(Cr,,Z) ® Z2). It then follows from the statement of Lemma 2.2 that

the image of Gal(L/L1) under ps is I'(2) < Sp(Tx(J)). O
3. Fields of 4-torsion

One application of Theorem 1.1 is that it allows us to obtain an explicit description
of Ly. We will follow Yu’s argument in [10].

Proposition 3.1. We have

Ly = Li({\/ai — o }1<icj<agr)-

Proof. For n > 1, let B,, denote the set of bases of the free Z/2"Z-module Jr,[2"].
Then it was shown in the proof of Theorem 1.1 that G acts on B, through the map
R:m(X,To) = Sp(H1(Cr,,Z)) = Sp(H1(JI1,, Z)) in the statement of Theorem 2.1, and
the subgroup fixing all elements of B,, corresponds to R~(I'(2")) <1 71 (X, Tp). Hence,
by covering space theory, there is a connected cover X,, — X corresponding to an orbit
of B,, under the action of m1(X,Tp), and the function field of X,, is the extension of L
fixed by the subgroup of G, which fixes all bases of J[2"]. Clearly, this extension is L,.
Thus, the Galois cover X,, — X is an unramified morphism of connected affine schemes
corresponding to the inclusion L < L, of function fields.

Note that, setting n = 1, we get that X; is the Galois cover of X whose étale funda-
mental group can be identified with R=(I'(2)) <t 71 (X, Tp). Theorem 2.1 implies that
R™Y(I’(2)) is isomorphic to ]329+1, the profinite completion of P4yi. For n > 1, the
étale morphism X,, — X3 corresponds to the function field extension L,, D L, which by
Corollary 1.2(c) has Galois group isomorphic to I'(2)/I'(2"). Therefore, X,, is the cover
of X; whose étale fundamental group can be identified with a normal subgroup of ]32g+1
with quotient isomorphic to I'(2)/I(2"™).

In the proof of Corollary 2.2 of [8], it is shown that I'(2)/I'(4) = (Z/2Z)292+9, and
thus,

Gal(La/Ly) = I'(2)/T(4) = (Z/27)%9° 9. (11)

It is also clear from looking at a presentation of the pure braid group Pag41 (see for
instance [2, Lemma 1.8.2]) that the abelianization of Pg41 is a free abelian group of
rank 2¢g2 + g. Therefore, its maximal abelian quotient of exponent 2 is isomorphic to
(z/ 2Z)292+9 . Thus, ]329+1 has a unique normal subgroup inducing a quotient isomorphic
to (Z/ 2Z)292+g . It follows that there is only one Galois cover of X; with Galois group
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isomorphic to I'(2)/I'(4), namely Xs. The field extension Li({\/a; — @;j }i<j) D Ly is
unramified away from the hyperplanes defined by (a; — «;) with ¢ # j and is obtained
from L; by adjoining 2¢% + g independent square roots of elements in L;*\(L{*)2. There-
fore, L1 ({\/a; — aj }i<;) is the function field of a Galois cover of X (2) with Galois group
isomorphic to (Z/27)29°+9 = I'(2) /I'(4). It follows that this cover of X; is Xo, and that
Li({\/oi — ¢ }i<j) is Lo, the function field of X5. O

4. Generalizations

As in Section 1, let k& be an algebraic extension of Q which contains all 2-power roots
of unity, and let K be the transcendental extension obtained by adjoining the coeffi-
cients of (1) to k. We will also fix the following notation. Let Cx be the hyperelliptic
curve defined over K given by Eq. (1), and let Jx be its Jacobian. For each n > 0, let
K,, be the extension of K over which the 2"-torsion of Jx is defined. Note that, analo-
gously to the situation with C'/L, the extension K» is k(a, ..., a24+1), which is Galois
over K with Galois group isomorphic to Sagy1. Let po x @ Gal(Ko/K) — Sp(T2(Jk))
be the homomorphism arising from the Galois action on the Tate module of Jg.
We now investigate what happens to the Galois action when we descend from work-
ing over C to working over k. (In what follows, we canonically identify T5(J) with
T5(Jk) and I'(2"™) with the level-2" congruence subgroup of Sp(T:(Jk)) for each
n>0.)

Proposition 4.1. The statements of Theorem 1.1, Corollary 1.2, and Proposition 3.1 are
true when L and pa are replaced by K and po g respectively.

Proof. For any n > 0, let 0, : Gal(Lw/L,) — Gal(K./K,) be the composition
of the obvious inclusion Gal(Loo/L,) — Gal(Loo/K,) with the obvious restriction
map Gal(Le/Ky) — Gal(Kw/K,). Let ﬁgoo) (resp. ﬁg);()) be the representation of
Gal(Loo/L) (resp. Gal(K/K)) induced from ps (resp. pa2 i) by the restriction homo-
morphism of the Galois groups. It is easy to check that pg‘”) = [)éof() o fy. It will suffice
to show that 6y is an isomorphism.

First, note that for any n > 0, 6,, is injective by the linear disjointness of K, and
L, over K,. Now suppose that n > 1. Then, as in the proof of Corollary 1.2, the image
under p of Gal(Ls/Ly) is the entire congruence subgroup I'(2™). Therefore, since 6,
is injective, the image under px of Gal(Ko/K,,) contains I'(2™). But since K contains
all 2-power roots of unity, the Weil pairing is Galois invariant, and so the image of
Gal(Ko/K,) must also be contained in I'(2"). Therefore, 6,, is an isomorphism for
n > 1. Now, using Corollary 1.2(a) and the fact that Gal(K (o, ..., azg+1)/K) = Sagt1,
we get the commutative diagram below, whose top and bottom rows are short exact
sequences.
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1 —— Gal(Loo/Ll) E—— Gal(LOO/L) 52g+1 1
Lk
1 —— Gal(Koo/Kl) —_— Gal(Koo/K) 52g+1 1

By the Short Five Lemma, since 6; is an isomorphism, so is . 0O

Remark 4.2. a) Suppose we drop the assumption that k contains all 2-power roots of
unity. Then ps i (G ) is no longer contained in Sp(75(J)) in general. However, the Galois
equivariance of the Weil pairing forces the image of ps i to be contained in the group of
symplectic similitudes

GSp(T2(J)) = {o € Aut(Tx(J)) | E2(P7,Q°) = x2(0)E2(P,Q) VP, Q € Ta(J)},

where Fy : To(J)XTo(J) — lim, pon = Zs is the Weil pairing on the 2-adic Tate module
of J, and xo : Gk — ZJ is the cyclotomic character on the absolute Galois group of K.
Galois equivariance of the Weil pairing also implies that K, contains all 2-power roots
of unity. Thus, K., D K(u2=), and the statements referred to in Proposition 4.1 still
hold when we replace K with K (p9e).

Furthermore, if K contains v/—1, the Weil pairing on J[4] is Galois invariant, so the
image of Gal(K3/K7) coincides with I'(2)/I'(4) <t Sp(J[4]) and is therefore isomorphic
to Gal(Lo/Ly). It follows that Proposition 3.1 still holds over K (y/—1); that is,

Ky = K1 (V-1 {y/ai — aj }1<icj<2g+1)- (12)

b) In addition, suppose that & is finitely generated over Q (for example, a num-
ber field). We may specialize by assigning an element of k to each coefficient of the
degree-(2g 4+ 1) polynomial in (1), and defining the corresponding Jacobian Ji/k and
Galois representation ps : G, — Sp(T2(Jk)). Then we may use Proposition 1.3 of [7]
and its proof (see also [9]) to see that for infinitely many choices of ei,...,es511 € k,
pa2.x(Gy) can be identified with pg ;e (G¢) from part (a). We have po i (Gal(k/k(pa=))) =
p2,k(Gr) N Sp(T2(Jx)), and therefore, the statements referred to in Proposition 4.1 still
hold over k(ua ). Similarly, Proposition 3.1 still holds over k(y/—1).
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