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Text. Let k be a subfield of C which contains all 2-power 
roots of unity, and let K = k(α1, α2, . . . , α2g+1), where the 
αi’s are independent and transcendental over k, and g is 
a positive integer. We investigate the image of the 2-adic 
Galois action associated to the Jacobian J of the hyperelliptic 
curve over K given by y2 =

∏2g+1
i=1 (x − αi). Our main result 

states that the image of Galois in Sp(T2(J)) coincides with 
the principal congruence subgroup Γ (2) � Sp(T2(J)). As an 
application, we find generators for the algebraic extension 
K(J [4])/K generated by coordinates of the 4-torsion points 
of J .
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http://youtu.be/VXEGYxA6N8w.
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1. Introduction

Fix a positive integer g. An affine model for a hyperelliptic curve over C of genus g
may be given by

y2 =
2g+1∏
i=1

(x− αi), (1)
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with αi’s distinct complex numbers. Now let α1, . . . , α2g+1 be transcendental and inde-
pendent over C, and let L be the subfield of C(α) := C(α1, . . . , α2g+1) generated over C
by the elementary symmetric functions of the αi’s. For any positive integer N , let J [N ]
denote the N -torsion subgroup of J(L̄). For each n ≥ 0, let Ln = L(J [2n]) denote the 
extension of L over which the 2n-torsion of J is defined. Set

L∞ :=
∞⋃

n=1
Ln.

Note that C(α1, . . . α2g+1) is Galois over L with Galois group isomorphic to S2g+1. It is 
well known [5, Corollary 2.11] that C(α1, . . . , α2g+1) = L1, so Gal(L1/L) ∼= S2g+1. Fix 
an algebraic closure L̄ of L, and write GL for the absolute Galois group Gal(L̄/L).

Let C be the curve defined over L by Eq. (1), and let J/L be its Jacobian. For any 
prime �, let

T�(J) := lim
←n

J
[
�n
]

denote the �-adic Tate module of J ; it is a free Z�-module of rank 2g (see [6, §18]). For 
the rest of this paper, we write ρ� : GL → Aut(T�(J)) for the continuous homomorphism 
induced by the natural Galois action on T�(J). Write SL(T�(J)) (resp. Sp(T�(J))) for the 
subgroup of automorphisms of the 2-adic Tate module T�(J) with determinant 1 (resp. 
automorphisms of T�(J) which preserve the Weil pairing). Since L contains all 2-power 
roots of unity, the Weil pairing on T2(J) is Galois invariant, and it follows that the image 
of ρ2 is contained in Sp(T2(J)). For each n ≥ 0, we denote by

Γ
(
2n

)
:=

{
g ∈ Sp

(
T2(J)

) ∣∣ g ≡ 1
(
mod 2n

)} � Sp
(
T2(J)

)

the level-2n principal congruence subgroup of Sp(T2(J)).
Our main theorem is the following.

Theorem 1.1. With the above notation, the image under ρ2 of the Galois subgroup fix-
ing L1 is Γ (2) � Sp(T2(J)).

Before setting out to prove this theorem, we state some easy corollaries.

Corollary 1.2. Let G denote the image under ρ2 of all of GL. Then we have the following:
a) G contains Γ (2) � Sp(T2(J)), and G/Γ (2) ∼= S2g+1.
b) In the case that g = 1, G = Sp(T2(J)) = SL(T2(J)).
c) For each n ≥ 1, the homomorphism ρ2 induces an isomorphism

ρ̄
(n)
2 : Gal(Ln/L1)

∼→ Γ (2)/Γ
(
2n

)

via the restriction map Gal(L̄/L1) � Gal(Ln/L1).
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Proof. Since Gal(L1/L) ∼= S2g+1, part (a) immediately follows from the theorem. If 
g = 1, then fix a basis of T2(J) so that we may identify Sp(T2(J)) (resp. SL(T2(J))) 
with Sp2(Z2) (resp. SL2(Z2)). Then it is well known that Sp2(Z2) = SL2(Z2), and that 
SL2(Z2)/Γ (2) ∼= SL2(Z/2Z) ∼= S3. Since, by part (a), G/Γ (2) ∼= S3 when g = 1, the 
linear subgroup G must be all of Sp(T2(J)) = SL(T2(J)), which is the statement of (b). 
To prove part (c), note that for any n ≥ 0, the image under ρ2 of the Galois subgroup 
fixing the 2n-torsion points is clearly G ∩ Γ (2n). But G > Γ (2), so for any n ≥ 1, the 
image under ρ2 of Gal(L̄/L(2n)) is Γ (2n). Then part (c) immediately follows by the 
definition of ρ̄(n)

2 . �
In Section 2, we will prove the main theorem by considering a family of hyperelliptic 

curves whose generic fiber is C. In Section 3, we will use the results of the previous 
two sections to determine generators for the algebraic extension L2/L (Theorem 3.1). 
Finally, in Section 4, we will generalize Theorems 1.1 and 3.1 by descending from C to 
a subfield k ⊂ C which contains all 2-power roots of unity.

2. Families of hyperelliptic Jacobians

In order to prove Theorem 1.1, we study a family of hyperelliptic curves parametrized 
by all (unordered) (2g + 1)-element subsets T = {αi} ⊂ C whose generic fiber is C. Let 
e1 :=

∑2g+1
i=1 αi, . . . , e2g+1 :=

∏2g+1
i=1 αi be the elementary symmetric functions of the 

variables αi, and let Δ be the discriminant function of these variables. Then the base of 
this family is the affine variety over C given by

X := Spec
(
C
[
e1, e2, . . . , e2g+1,Δ−1]). (2)

This complex affine scheme may be viewed as the configuration space of (2g+1)-element 
subsets of C (see the discussion in Section 6 of [10]). More precisely, we identify each 
C-point T = (e1, e2, . . . , e2g+1) of X with the set of roots of the squarefree degree-(2g+1)
polynomial z2g+1 − e1z

2g + e2z
2g−1 − . . . − e2g+1 ∈ C[z], which is a (2g + 1)-element 

subset of C. Note that the function field of X is L. The (topological) fundamental 
group of X is isomorphic to B2g+1, the braid group on 2g + 1 strands. The braid group 
B2g+1 is generated by elements σ1, σ2, . . . , σ2g, with relations σ1σi+1σi = σi+1σiσi+1 for 
1 ≤ i ≤ 2g and σiσj = σjσi for 2 ≤ i + 1 < j ≤ 2g. (See Section 1.4 of [2] for more 
details.)

We also define the complex affine scheme

Y := Spec
(
C
[
α1, α2, . . . , α2g+1,

{
(αi − αj)−1}

1≤i<j≤2g+1

])
. (3)

As a complex manifold, Y is the ordered configuration space, whose C-points may be 
identified with 2g + 1-element subsets of C which are given an ordering (a C-point is 
identified with its coordinates (α1, α2, . . . , α2g+1)). There is an obvious covering map 
Y → X which sends each point (α1, α2, . . . , α2g+1) of Y to the point in X corresponding 
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to the (unordered) subset {α1, α2, . . . , α2g+1}. The pure braid group on 2g + 1 strands, 
denoted P2g+1, is defined to be the kernel of the surjective homomorphism from B2g+1

to the symmetric group S2g+1 which sends σi to (i, i +1) ∈ S2g+1 for 1 ≤ i ≤ 2g (see the 
proof of Theorem 1.8 in [2]). Then P2g+1�B2g+1 is the (normal) subgroup corresponding 
to the cover Y → X, and is therefore isomorphic to the fundamental group of Y .

Let OX denote the coordinate ring of X, and let F (x) ∈ OX [x] be the degree-(2g+1)
polynomial given by

x2g+1 +
2g+1∑
i=1

(−1)ieix2g+1−i. (4)

Now denote by C → X the affine scheme defined by the equation y2 = F (x). Clearly, C
is the family over X whose fiber over a point T ∈ X(C) is the smooth affine hyperelliptic 
curve defined by y2 =

∏
z∈T (x −z), and the generic fiber of C is C/L. Fix a basepoint T0

of X, and a basepoint P0 of CT0 . Then we have a short exact sequence of fundamental 
groups

1 → π1(CT0 , P0) → π1(C, P0) → π1(X,T0) → 1. (5)

We now construct a continuous section s : X → C, following the proof of Lemma 6.1 
and the discussion in [10, §6]. For i = 1, 2, let Ei → X be the affine scheme given 
by Spec(OX [x, y]/(yi − F (x))[F (x)−1]). Then E1 → X is clearly the family of complex 
topological spaces whose fiber over a point T ∈ X can be identified with C \T , and there 
is an obvious degree-2 cover E2 → E1. Let t : X → E1 be the continuous map of complex 
topological spaces which sends a point T ∈ X to maxz∈T {|z|} + 1 ∈ C \ T = E1,T . This 
section then lifts to a section t̃ : X → E2. Define s : X → C to be the composition of t̃
with the obvious inclusion map E2 ↪→ C. It is easy to check from the construction of s
that it is a section of the family C → X.

The section s induces a monodromy action of π1(X, T0) on π1(CT0 , P0), which is given 
by σ ∈ π1(X) acting as conjugation by s∗(σ) on π1(CT0 , P0) � π1(C, P0). This induces 
an action of B2g+1 on the abelianization of π1(CT0 , P0), the homology group H1(CT0 , Z), 
which is isomorphic to Z2g. We denote this action by

R : B2g+1 ∼= π1(X,T0) → Aut
(
H1(CT0 ,Z)

)
. (6)

This action respects the intersection pairing on CT0 , so the image of R is actually con-
tained in the corresponding subgroup of symplectic automorphisms Sp(H1(CT0 , Z)).

The following theorem is proven in [1] (Théoréme 1), as well as in [5] (Lemma 8.12).

Theorem 2.1. In the representation R : B2g+1 → Sp(H1(CT0 , Z)), the image of P2g+1

coincides with Γ (2).
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Let B̂2g+1 denote the profinite completion of B2g+1 ∼= π1(X, T0). Since X may be 
viewed as a scheme over the complex numbers, Riemann’s Existence Theorem yields an 
isomorphism between its étale fundamental group πét

1 (X, T0) and B̂2g+1 [3, Exposé XII, 
Corollaire 5.2]. Meanwhile, πét

1 (X, T0) is isomorphic to the Galois group Gal(Lunr/L), 
where Lunr is the maximal extension of L unramified at all points of X. The represen-
tation R : B2g+1 → Sp(H1(CT0 , Z)) induces a homomorphism of profinite groups

R : Gal
(
Lunr/L

)
= B̂2g+1 → Sp

(
H1(CT0 ,Z) ⊗ Z�

)
(7)

for any prime �. Composing this map with the restriction homomorphism GL :=
Gal(L̄/L) � Gal(Lunr/L) yields a map which we denote R� : GL → Sp(H1(CT0 , Z) ⊗Z�). 
The following proposition will allow us to convert the above topological result into the 
arithmetic statement of Theorem 1.1.

Proposition 2.2. Assume the above notation, and let � be any prime. Then there is an 
isomorphism of Z�-modules T�(J) ∼→ H1(CT0 , Z) ⊗ Z� making the representations ρ� and 
R� isomorphic.

Proof. We proceed in five steps.
Step 1: We switch from the affine curve C to a smooth compactification of C, which 

is defined as follows. Let C ′ be the (smooth) curve defined over L by the equation

y′ 2 = x′
2g+1∏
i=1

(
1 − αix

′). (8)

We glue the open subset of C defined by x �= 0 to the open subset of C ′ defined by x′ �= 0
via the mapping

x′ �→ 1
x
, y′ �→ y

xg+1 ,

and denote the resulting smooth, projective scheme by C̄. (See [5, §1] for more details 
of this construction.) Let ∞ ∈ C̄(L) denote the “point at infinity” given by (x′, y′) =
(0, 0) ∈ C ′. The curve C̄ has smooth reduction over every point T ∈ X and therefore 
can be extended in an obvious way to a family C̄ → X whose generic fiber is C̄/L. Note 
that C̄T is a smooth compactification of CT for each T ∈ X. There is a surjective map 
π1(CT0 , P0) � π1(C̄T0 , ∞T0) induced by the inclusion C ↪→ C̄. Note also that the section 
s : X → C ⊂ C̄ can be continuously deformed to the “constant section” s̄ : X → C̄ sending 
each T ∈ X to the point at infinity ∞T ∈ CT . Therefore, s̄∗ : π1(X, T0) → π1(C̄T0 , ∞T0)
is the composition of s∗ with the map π1(CT0 , P0) � π1(C̄T0 , ∞T0). In this way, we 
may view the action of π1(X, T0) on π1(CT0 , P0)ab = π1(C̄T0 , ∞T0)ab as being induced 
by s̄∗.

Step 2: We switch from (topological) fundamental groups to étale fundamental groups. 
Since X and C, as well as CT for each T ∈ X, can be viewed as a scheme over the complex 
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numbers, Riemann’s Existence Theorem implies that the étale fundamental groups of X, 
C, and each CT (defined using a choice of geometric base point T̄0 over T0) are isomorphic 
to the profinite completions of their respective topological fundamental groups. Taking 
profinite completions induces a sequence of étale fundamental groups

1 → πét
1 (CT̄0

, 0T̄0
) → πét

1 (C, 0T̄0
) → πét

1 (X, T̄0) → 1, (9)

which is a short exact sequence by [3, Corollaire X.2.2]. Moreover, the section s̄ : X → C̄
similarly gives rise to an action of πét

1 (X, T̄0) on πét
1 (C̄T0 , ∞T̄0

)ab.
Step 3: We switch from C̄ to its Jacobian. Define J → X to be the abelian scheme 

representing the Picard functor of the scheme C → X (see [4, Theorem 8.1]). Note 
that JT is the Jacobian of CT for each C-point T of X, and the generic fiber of J is 
J/L, the Jacobian of C/L. Let f∞ : C̄ → J be the morphism (defined over L) given 
by sending each point P ∈ C̄(L) to the divisor class [(P ) − (∞)] in Pic0

L(C̄), which 
is identified with J(L). By [4, Proposition 9.1], the induced homomorphism of étale 
fundamental groups (f∞)∗ : πét

1 (C̄, ∞) → πét
1 (J, 0) factors through an isomorphism 

πét
1 (C̄, ∞)ab ∼→ πét

1 (J, 0). This induces an isomorphism πét
1 (C̄T , ∞T )ab ∼→ πét

1 (JT , 0T ) for 
each T ∈ X. Note that the composition of the section s̄ : X → C̄ with f∞ is the “zero 
section” o : X → J mapping each T to the identity element 0T ∈ JT . Thus, the action of 
πét

1 (X, T̄0) on πét
1 (CT0 , ∞T̄0

)ab coming from the splitting of (5) is the same as the action 
of πét

1 (X, T̄0) on πét
1 (JT̄0

, 0T̄0
) coming from the splitting of (9) induced by the section 

o∗ : πét
1 (X, T̄0) → πét

1 (J , 0T̄0
).

Step 4: We now show that this action on πét
1 (JT̄0

, 0T̄0
) is isomorphic to a Galois 

action on πét
1 (JL̄, 0) (and therefore on its �-adic quotient T�(J)). Let η : Spec(L) → X

denote the generic point of X. Note that we may identify πét
1 (L, L̄) with GL, and that 

η∗ : GL � πét
1 (X, η̄) is a surjection (in fact, it is the restriction homomorphism of Galois 

groups corresponding to the maximal algebraic extension of L unramified at all points 
of X). Also, the point 0 ∈ JL may be viewed as a morphism 0 : Spec(L) → JL which 
induces 0∗ : GL = πét

1 (L, L̄) → πét
1 (JL, 0). Let T̄0 and η̄ be geometric points over T0 and 

η respectively. Then we have [3, Corollaire X.1.4] an exact sequence of étale fundamental 
groups

πét
1 (Jη̄, 0η̄) → πét

1 (J , 0η̄) → πét
1 (X, η̄) → 1. (10)

Changing the geometric basepoint of X from η̄ to T̄0 (resp. changing the geometric 
basepoint of J from 0η̄ to 0T̄0

) non-canonically induces an isomorphism πét
1 (X, η̄) ∼→

πét
1 (X, T̄0) (resp. an isomorphism πét

1 (J , 0η̄) 
∼→ πét

1 (J , 0T̄0
)). Fix such an isomorphism 

ϕ : πét
1 (X, η̄) ∼→ πét

1 (X, T̄0). Then we have the following commutative diagram, where all 
horizontal rows are exact:
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1 πét
1 (JL̄, 0) πét

1 (JL, 0) πét
1 (L, L̄)

0∗

η∗

1

πét
1 (Jη̄, 0η̄)

sp

πét
1 (J , 0η̄)

	

πét
1 (X, η̄)

o∗

	 ϕ

1

1 πét
1 (JT̄0

, 0T̄0
) πét

1 (J , 0T̄0
) πét

1 (X, T̄0)

o∗

1

Here the vertical arrow from πét
1 (J , 0η̄) to πét

1 (J , 0T̄0
) is a change-of-basepoint iso-

morphism chosen to make the lower right square commute, and sp : πét
1 (Jη̄, 0η̄) →

πét
1 (JT̄0

, 0T̄0
) is the surjective homomorphism induced by a diagram chase on the bot-

tom two horizontal rows. Grothendieck’s Specialization Theorem [3, Corollaire X.3.9]
states that sp is an isomorphism, which implies that the second row is also a short exact 
sequence. Thus, the action of πét

1 (X, T̄0) on πét
1 (JT̄0

, 0T̄0
) arising from the splitting of the 

lower row by o∗ is isomorphic to the action of πét
1 (X, η̄) on πét

1 (Jη̄, 0η̄) arising from the 
splitting of the middle row by o∗, via the isomorphism sp : πét

1 (Jη̄, 0η̄) → πét
1 (JT̄0

, 0T̄0
). 

In turn, a simple diagram chase confirms that this action, after pre-composing with 
η∗ : πét

1 (L, L̄) � πét
1 (X, η̄), can be identified with the action of πét

1 (L, L̄) on πét
1 (JL̄, 0)

arising from the splitting of the top row by 0∗. We denote this action by R̃ : GL =
πét

1 (L, L̄) → Aut(πét
1 (JL̄, 0)). Since the Tate module T�(J) may be identified with the 

maximal pro-� quotient of πét
1 (JL̄, 0), R̃ induces an action of GL on T�(J), which we de-

note by R̃� : GL → Aut(T�(J)). One can identify the symplectic pairing on π1(JT0 , 0T0)
with the Weil pairing on T�(J) via the results in [6, Chapter IV, §24]. Therefore, the 
image of R̃� is a subgroup of Sp(T�(J)).

By the above construction, we may identify the maximal pro-� quotient of πét
1 (JT̄0

, 0T̄0
)

with H1(CT0 , Z) ⊗Z�. Note that the isomorphism sp : πét
1 (Jη̄, 0η̄) 

∼→ πét
1 (JT̄0

, 0T̄0
) induces 

an isomorphism of their maximal pro-� quotients sp� : T�(J) ∼→ H1(CT0 , Z) ⊗ Z�. By 
construction, the representation R̃� is isomorphic to the representation R� via sp�.

Step 5: It now suffices to show that R̃� = ρ�. To determine R̃�, we are interested 
in the action of GL on the group AutJL̄

(Z) for each �-power-degree covering Z → JL̄. 
But each such covering is a subcovering of [�n] : JL̄ → JL̄, so it suffices to determine 
the action of GL on the group of translations {tP |P ∈ J [�n]} for each n. Recall that 
0∗ : GL → πét

1 (JL, 0) is induced by the inclusion of the L-point 0 ∈ JL. Thus, for any 
σ ∈ GL, 0∗(σ) acts on any connected étale cover of JL via σ acting on the coordinates of 
the points. Since R̃(σ) is conjugation by 0∗(σ) on πét

1 (JL̄, 0) � πét
1 (JL, 0), one sees that 

for each n, 0∗(σ) acts on {tP |P ∈ J [�n]} by sending each tP to σ−1tPσ = tPσ . Thus, GL

acts on the Galois group of the covering [�n] : JL̄ → JL̄ via the usual Galois action on 
J [�n]. This lifts to the usual action of GL on T�(J), and we are done. �

It is now easy to prove the main theorem.
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Proof of Theorem 1.1. Recall that P2g+1 is the normal subgroup of B2g+1 ∼= π1(X, T0)
corresponding to the cover Y → X, and the function field of Y is C(α1, . . . , α2g+1) = L1. 
It follows that the image of Gal(L̄/L1) under η∗ is P̂2g+1 � B̂2g+1 ∼= πét

1 (X, T̄0)
(where P̂2g+1 denotes the profinite completion of P2g+1). Therefore, the statement 
of Theorem 2.1 with � = 2 implies that the image of Gal(L̄/L1) under R2 is 
Γ (2) � Sp(H1(CT0 , Z) ⊗ Z2). It then follows from the statement of Lemma 2.2 that 
the image of Gal(L̄/L1) under ρ2 is Γ (2) � Sp(T2(J)). �
3. Fields of 4-torsion

One application of Theorem 1.1 is that it allows us to obtain an explicit description 
of L2. We will follow Yu’s argument in [10].

Proposition 3.1. We have

L2 = L1
(
{
√
αi − αj }1≤i<j≤2g+1

)
.

Proof. For n ≥ 1, let Bn denote the set of bases of the free Z/2nZ-module JT0 [2n]. 
Then it was shown in the proof of Theorem 1.1 that GL acts on Bn through the map 
R : π1(X, T0) → Sp(H1(CT0 , Z)) = Sp(H1(JT0 , Z)) in the statement of Theorem 2.1, and 
the subgroup fixing all elements of Bn corresponds to R−1(Γ (2n)) � π1(X, T0). Hence, 
by covering space theory, there is a connected cover Xn → X corresponding to an orbit 
of Bn under the action of π1(X, T0), and the function field of Xn is the extension of L
fixed by the subgroup of GL which fixes all bases of J [2n]. Clearly, this extension is Ln. 
Thus, the Galois cover Xn → X is an unramified morphism of connected affine schemes 
corresponding to the inclusion L ↪→ Ln of function fields.

Note that, setting n = 1, we get that X1 is the Galois cover of X whose étale funda-
mental group can be identified with R−1(Γ (2)) � π1(X, T0). Theorem 2.1 implies that 
R−1(Γ (2)) is isomorphic to P̂2g+1, the profinite completion of P2g+1. For n ≥ 1, the 
étale morphism Xn → X1 corresponds to the function field extension Ln ⊃ L1, which by 
Corollary 1.2(c) has Galois group isomorphic to Γ (2)/Γ (2n). Therefore, Xn is the cover 
of X1 whose étale fundamental group can be identified with a normal subgroup of P̂2g+1
with quotient isomorphic to Γ (2)/Γ (2n).

In the proof of Corollary 2.2 of [8], it is shown that Γ (2)/Γ (4) ∼= (Z/2Z)2g2+g, and 
thus,

Gal(L2/L1) ∼= Γ (2)/Γ (4) ∼= (Z/2Z)2g
2+g. (11)

It is also clear from looking at a presentation of the pure braid group P2g+1 (see for 
instance [2, Lemma 1.8.2]) that the abelianization of P2g+1 is a free abelian group of 
rank 2g2 + g. Therefore, its maximal abelian quotient of exponent 2 is isomorphic to 
(Z/2Z)2g2+g. Thus, P̂2g+1 has a unique normal subgroup inducing a quotient isomorphic 
to (Z/2Z)2g2+g. It follows that there is only one Galois cover of X1 with Galois group 
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isomorphic to Γ (2)/Γ (4), namely X2. The field extension L1({
√
αi − αj }i<j) ⊃ L1 is 

unramified away from the hyperplanes defined by (αi − αj) with i �= j and is obtained 
from L1 by adjoining 2g2 + g independent square roots of elements in L×

1 \(L×
1 )2. There-

fore, L1({
√
αi − αj }i<j) is the function field of a Galois cover of X(2) with Galois group 

isomorphic to (Z/2Z)2g2+g ∼= Γ (2)/Γ (4). It follows that this cover of X1 is X2, and that 
L1({

√
αi − αj }i<j) is L2, the function field of X2. �

4. Generalizations

As in Section 1, let k be an algebraic extension of Q which contains all 2-power roots 
of unity, and let K be the transcendental extension obtained by adjoining the coeffi-
cients of (1) to k. We will also fix the following notation. Let CK be the hyperelliptic 
curve defined over K given by Eq. (1), and let JK be its Jacobian. For each n ≥ 0, let 
Kn be the extension of K over which the 2n-torsion of JK is defined. Note that, analo-
gously to the situation with C/L, the extension K2 is k(α1, . . . , α2g+1), which is Galois 
over K with Galois group isomorphic to S2g+1. Let ρ2,K : Gal(K∞/K) → Sp(T2(JK))
be the homomorphism arising from the Galois action on the Tate module of JK . 
We now investigate what happens to the Galois action when we descend from work-
ing over C to working over k. (In what follows, we canonically identify T2(J) with 
T2(JK) and Γ (2n) with the level-2n congruence subgroup of Sp(T2(JK)) for each 
n ≥ 0.)

Proposition 4.1. The statements of Theorem 1.1, Corollary 1.2, and Proposition 3.1 are 
true when L and ρ2 are replaced by K and ρ2,K respectively.

Proof. For any n ≥ 0, let θn : Gal(L∞/Ln) → Gal(K∞/Kn) be the composition 
of the obvious inclusion Gal(L∞/Ln) ↪→ Gal(L∞/Kn) with the obvious restriction 
map Gal(L∞/Kn) � Gal(K∞/Kn). Let ρ̄(∞)

2 (resp. ρ̄(∞)
2,K ) be the representation of 

Gal(L∞/L) (resp. Gal(K∞/K)) induced from ρ2 (resp. ρ2,K) by the restriction homo-
morphism of the Galois groups. It is easy to check that ρ̄(∞)

2 = ρ̄
(∞)
2,K ◦ θ0. It will suffice 

to show that θ0 is an isomorphism.
First, note that for any n ≥ 0, θn is injective by the linear disjointness of K∞ and 

Ln over Kn. Now suppose that n ≥ 1. Then, as in the proof of Corollary 1.2, the image 
under ρ̄ of Gal(L∞/Ln) is the entire congruence subgroup Γ (2n). Therefore, since θn
is injective, the image under ρ̄K of Gal(K∞/Kn) contains Γ (2n). But since K contains 
all 2-power roots of unity, the Weil pairing is Galois invariant, and so the image of 
Gal(K∞/Kn) must also be contained in Γ (2n). Therefore, θn is an isomorphism for 
n ≥ 1. Now, using Corollary 1.2(a) and the fact that Gal(K(α1, . . . , α2g+1)/K) ∼= S2g+1, 
we get the commutative diagram below, whose top and bottom rows are short exact 
sequences.
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1 Gal(L∞/L1)

θ1

Gal(L∞/L)

θ0

S2g+1 1

1 Gal(K∞/K1) Gal(K∞/K) S2g+1 1

By the Short Five Lemma, since θ1 is an isomorphism, so is θ0. �
Remark 4.2. a) Suppose we drop the assumption that k contains all 2-power roots of 
unity. Then ρ2,K(GK) is no longer contained in Sp(T2(J)) in general. However, the Galois 
equivariance of the Weil pairing forces the image of ρ2,K to be contained in the group of 
symplectic similitudes

GSp
(
T2(J)

)
:=

{
σ ∈ Aut

(
T2(J)

) ∣∣ E2
(
P σ, Qσ

)
= χ2(σ)E2(P,Q) ∀P,Q ∈ T2(J)

}
,

where E2 : T2(J) ×T2(J) → lim←n μ2n ∼= Z2 is the Weil pairing on the 2-adic Tate module 
of J , and χ2 : GK → Z×

2 is the cyclotomic character on the absolute Galois group of K. 
Galois equivariance of the Weil pairing also implies that K∞ contains all 2-power roots 
of unity. Thus, K∞ ⊃ K(μ2∞), and the statements referred to in Proposition 4.1 still 
hold when we replace K with K(μ2∞).

Furthermore, if K contains 
√
−1, the Weil pairing on J [4] is Galois invariant, so the 

image of Gal(K2/K1) coincides with Γ (2)/Γ (4) � Sp(J [4]) and is therefore isomorphic 
to Gal(L2/L1). It follows that Proposition 3.1 still holds over K(

√
−1 ); that is,

K2 = K1
(√

−1, {
√
αi − αj }1≤i<j≤2g+1

)
. (12)

b) In addition, suppose that k is finitely generated over Q (for example, a num-
ber field). We may specialize by assigning an element of k to each coefficient of the 
degree-(2g + 1) polynomial in (1), and defining the corresponding Jacobian Jk/k and 
Galois representation ρ2,k : Gk → Sp(T2(Jk)). Then we may use Proposition 1.3 of [7]
and its proof (see also [9]) to see that for infinitely many choices of e1, . . . , e2g+1 ∈ k, 
ρ2,k(Gk) can be identified with ρ2,K(GK) from part (a). We have ρ2,k(Gal(k̄/k(μ2∞))) =
ρ2,k(Gk) ∩ Sp(T2(Jk)), and therefore, the statements referred to in Proposition 4.1 still 
hold over k(μ2∞). Similarly, Proposition 3.1 still holds over k(

√
−1 ).
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