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We obtain some formulas for the stuffle product and apply 
them to derive a decomposition formula for multiple zeta 
values. Moreover, we give an application to combinatorics and 
get the following identity:

D(n + 1, t + 1) + D(n, t)

= 2
n∑

�=0

D(t, n− �) + 2
t∑

�=0

D(n, t− �),

where D(n, t) is the Delannoy number.
© 2015 Elsevier Inc. All rights reserved.

1. Introduction

The multiple zeta value (MZV) is defined by

ζ(α) =
∑

n1>n2>···>nr>0
n−α1

1 n−α2
2 · · ·n−αr

r ,
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where α = (α1, α2, . . . , αr) is an r-tuple of positive integers with α1 ≥ 2. The number r

is called the depth of ζ(α) and |α| = α1 + α2 + · · · + αr is called the weight of ζ(α). 
For convenience, we write {s}k to be k repetitions of s, for example, ζ({s}3) = ζ(s, s, s), 
and in particular ζ(t, {s}0) = ζ(t).

Recently multiple zeta values (MZVs) and their generalizations have attracted much 
attention, both in pure mathematics and theoretical physics (see [3]). A systematic study 
only started in the early 1990s, although the prehistory can be traced back to Euler in 
the 18th century.

A principal goal in the theoretical study of MZVs is to determine all possible algebraic 
relations among them. Several explicit values are interesting and known for special index 
sets (e.g. [1,2,9,10]). For example, Zagier [10] evaluated the value of ζ({2}a, 3, {2}b) and 
T. Arakawa and M. Kaneko (ref. [9, Theorem 1]) evaluated the value of ζ({2n}m).

Let us consider the coding of multi-indices �s = (s1, . . . , sk), si are positive integers 
and s1 > 1, by words (that is, by monomials in non-commutative variables) over the 
alphabet X = {x, y} by the rule

�s �→ x�s = xs1−1yxs2−1y · · ·xsk−1y.

We set

ζ(x�s) := ζ(�s )

for all admissible words (that is, beginning with x and ending with y); then the weight 
(or the degree) |x�s| := |�s | coincides with the total degree of the monomial x�s, whereas 
the length (or the depth) l(x�s) := l(�s ) is the degree with respect to the variable y.

Let Q〈X〉 = Q〈x, y〉 be the Q-algebra of polynomials in two non-commutative vari-
ables which is graded by the degree (where each of the variables x and y is assumed to 
be of degree 1); we identify the algebra Q〈X〉 with the graded Q-vector space H spanned 
by the monomials in the variables x and y (see [7]).

We also introduce the graded Q-vector spaces H1 = Q1
⊕

Hy and H0 = Q1
⊕

xHy, 
where 1 denotes the unit (the empty word of weight 0 and length 0) of the algebra Q〈X〉. 
Then the space H1 can be regarded as the subalgebra of Q〈X〉 generated by the words 
zs = xs−1y, whereas H0 is the Q-vector space spanned by all admissible words.

Let us define the shuffle product x on H and the stuffle product ∗ (the harmonic 
product) on H1 by the rules

1 x w = w x 1 = w, 1 ∗ w = w ∗ 1 = w (1)

for any word w, and

x1ux x2v = x1(ux x2v) + x2(x1ux v), (2)

zju ∗ zkv = zj(u ∗ zkv) + zk(zju ∗ v) + zj+k(u ∗ v) (3)
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for any words u, v, any letters xi = x or y (i = 1, 2), and any generators zj, zk of the 
subalgebra H1, and then extend the above rules to the whole algebra H and the whole 
subalgebra H1 by linearity. Sometimes it becomes useful to consider the stuffle product 
on the whole algebra H by formally adding to the last rule the rule

xj ∗ w = w ∗ xj = wxj

for any word w and any integer j ≥ 1. We note that induction arguments enable us to 
prove that each of the above products is commutative and associative. Then the map ζ

is a morphism with respect to both products x and ∗, and it satisfies the following 
property:

ζ(w1 x w2) = ζ(w1)ζ(w2) = ζ(w1 ∗ w2) for all w1, w2 ∈ H0.

Recently, Eie, Wei [5] and Lei, Guo, Ma [8] are both based on the shuffle product to 
get some restricted decomposition formulas for MZVs. For example,

Proposition 1. (See Theorem 1.1 of [8].) For positive integers m, n, j, and k, we have

ζ(m + 1, {1}j−1)ζ(n + 1, {1}k−1)

=
∑

0≤n1≤n
j1+j2=j,ji≥0

|α|=n−n1+j1+1

(
m− 1 + n1

m− 1

)(
j2 + k − 1

k − 1

)

× ζ(m + n1 + α1, α2, . . . , αj1 , αj1+1, {1}j2+k−1)

+
∑

0≤t≤k−1
m1+m2=m−1,mi≥0

|β|=m2+k−t+1

(
m1 + n− 1

n− 1

)(
j + t

j

)

× ζ(m1 + n + β1, β2, . . . , βk−t, βk−t+1 + 1, {1}j+t−1),

where |α| = α1+α2+· · ·+αj1 +αj1+1 with αi ≥ 1 and |β| = β1+β2+· · ·+βk−t+βk−t+1
with βi ≥ 1.

In this paper we derive some formulas for the stuffle product ∗ and apply them to 
obtain a corresponding decomposition formula for ζ(m, {p}n)ζ(s, {p}t), where m ≥ 2, 
s ≥ 2, p ≥ 1, n ≥ 0, and t ≥ 0 are integers.

First, we introduce some notations which we need. Let Aa
b denote the set of all possible 

sequences containing a times p and b times 2p. For example,

A3
2 = {({p}3, {2p}2), ({p}2, 2p, p, 2p), ({p}2, {2p}2, p), (p, 2p, p, 2p, p),

(p, {2p}2, {p}2), (p, 2p, {p}2, 2p), (2p, {p}3, 2p), (2p, {p}2, {2p}, p),
(2p, p, 2p, {p}2), ({2p}3, {p}3)}.
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Then our main theorem can be stated as

Theorem 1. Let m ≥ 2, s ≥ 2, p ≥ 1, n ≥ 0, and t ≥ 0 be integers. Then

ζ(m, {p}n)ζ(s, {p}t)

=
∑

1≤�≤n
0≤k≤min(t,n−�)
α∈At+n−�−2k

k

(
t + n− �− 2k

t− k

)[
ζ(m, {p}�−1, s + p, α1, . . . , αn+t−�−k)

+ ζ(m, {p}�, s, α1, . . . , αn+t−�−k)
]

+
∑

1≤�≤t
0≤k≤min(n,t−�)
α∈At+n−�−2k

k

(
t + n− �− 2k

n− k

)[
ζ(s, {p}�−1,m + p, α1, . . . , αn+t−�−k)

+ ζ(s, {p}�,m, α1, . . . , αn+t−�−k)
]

+
∑

0≤k≤min(t,n)
α∈At+n−2k

k

(
t + n− 2k

n− k

)[
ζ(m, s, α1, . . . , αn+t−k)

+ ζ(s,m, α1, . . . , αn+t−k) + ζ(m + s, α1, . . . , αn+t−k)
]
. (4)

The stuffle product of two multiple zeta values of depth m and n, respectively, will 
product D(m, n) numbers of MZVs, where D(m, n) is the Delannoy number. The De-
lannoy number D(m, n) (see page 81 of [4]) is defined for nonnegative integers m and n
by

D(m,n) =
{ 1, if m · n = 0,
D(m− 1, n) + D(m− 1, n− 1) + D(m,n− 1), if m · n 	= 0.

(5)

By counting the number of MZVs in Eq. (4) produced from the stuffle product, we obtain 
an interesting identity:

Theorem 2. For nonnegative integers n and t, we have

D(n + 1, t + 1) + D(n, t) = 2
n∑

�=0

D(t, n− �) + 2
t∑

�=0

D(n, t− �). (6)

2. Simple stuffle products

Let Ga
b denote the set of all possible words containing a times zp and b times z2p. For 

example,



K.-W. Chen / Journal of Number Theory 153 (2015) 107–116 111
G3
2 = {z3

pz
2
2p, z2

pz2pzpz2p, z2
pz

2
2pzp, zpz2pzpz2pzp, zpz

2
2pz

2
p,

zpz2pz
2
pz2p, z2pz

3
pz2p, z2pz

2
pz2pzp, z2pzpz2pz

2
p, z3

2pz
3
p}.

We use 
∑

w∈Ga
b
w to indicate

∑
w∈Ga

b

w :=
∑

w=w1w2···wa+b∈Ga
b

wi∈{zp,z2p}
#{wi : wi=zp}=a

w1w2 · · ·wa+b.

For our convenience, we let z0
p = 1.

Lemma 1. For integers m ≥ 0, n ≥ 0, and p ≥ 1, we have

zmp ∗ znp =
min(m,n)∑

k=0

(
m + n− 2k

m− k

) ∑
w∈Gm+n−2k

k

w. (7)

Proof. We use induction on m +n. Assume that Eq. (7) holds for s +t with s +t < m +n, 
that is,

zsp ∗ ztp =
min(s,t)∑

k=0

(
s + t− 2k

s− k

) ∑
w∈Gs+t−2k

k

w. (8)

Now applying Eq. (3), we have

zmp ∗ znp = zp(zm−1
p ∗ znp ) + zp(zmp ∗ zn−1

p ) + z2p(zm−1
p ∗ zn−1

p ).

The sums of the degree of factors zm−1
p ∗ znp , zmp ∗ zn−1

p , and zm−1
p ∗ zn−1

p are all less than 
m + n. By the inductive hypothesis (8) we can rewrite the above identity as

zmp ∗ znp = zp

min(m−1,n)∑
k=0

(
m + n− 1 − 2k

m− 1 − k

) ∑
w∈Gm+n−1−2k

k

w

+ zp

min(m,n−1)∑
k=0

(
m + n− 1 − 2k

m− k

) ∑
w∈Gm+n−1−2k

k

w

+ z2p

min(m−1,n−1)∑
k=0

(
m + n− 2 − 2k

m− 1 − k

) ∑
w∈Gm+n−2−2k

k

w. (9)

Since the stuffle product ∗ is commutative, we can assume that m ≥ n. Firstly, if m = n, 
Eq. (9) becomes
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znp ∗ znp = zp

n−1∑
k=0

(
2n− 1 − 2k
n− 1 − k

) ∑
w∈G2n−1−2k

k

w + zp

n−1∑
k=0

(
2n− 1 − 2k

n− k

) ∑
w∈G2n−1−2k

k

w

+ z2p

n−1∑
k=0

(
2n− 2 − 2k
n− 1 − k

) ∑
w∈G2n−2−2k

k

w

= zp

n−1∑
k=0

[(
2n− 1 − 2k
n− 1 − k

)
+
(

2n− 2k − 1
n− k

)] ∑
w∈G2n−1−2k

k

w

+ z2p

n∑
k=1

(
2n− 2k
n− k

) ∑
w∈G2n−2k

k−1

w

= zp

n−1∑
k=0

(
2n− 2k
n− k

) ∑
w∈G2n−1−2k

k

w + z2p

n∑
k=1

(
2n− 2k
n− k

) ∑
w∈G2n−2k

k−1

w.

Since Ga
b = {zpw1 : w1 ∈ Ga−1

b } 
⋃
{z2pw2 : w2 ∈ Ga

b−1}, we have

zp
∑

w∈Ga−1
b

w + z2p
∑

w∈Ga
b−1

=
∑

w∈Ga
b

w.

Thus the last equation in the above identity can be calculated as

znp ∗ znp =
(

2n
n

)
z2n
p + zn2p +

n−1∑
k=1

(
2n− 2k
n− k

)⎛
⎜⎝zp

∑
w∈G2n−2k−1

k

w + z2p
∑

w∈G2n−2k
k−1

w

⎞
⎟⎠

=
(

2n
n

)
z2n
p + zn2p +

n−1∑
k=1

(
2n− 2k
n− k

) ∑
w∈G2n−2k

k

w

=
n∑

k=0

(
2n− 2k
n− k

) ∑
w∈G2n−2k

k

w.

Therefore the case of m = n holds. Now we let m > n, Eq. (9) becomes

zmp ∗ znp = zp

n∑
k=0

(
m + n− 1 − 2k

m− 1 − k

) ∑
w∈Gm+n−1−2k

k

w

+ zp

n−1∑
k=0

(
m + n− 1 − 2k

m− k

) ∑
w∈Gm+n−1−2k

k

w

+ z2p

n−1∑
k=0

(
m + n− 2 − 2k

m− 1 − k

) ∑
m+n−2−2k

w

w∈Gk
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= zp
∑

w∈Gm−n−1
n

w + z2p

n∑
k=1

(
m + n− 2k

m− k

) ∑
w∈Gm+n−2k

k−1

w

+ zp

n−1∑
k=0

[(
m + n− 1 − 2k

m− 1 − k

)
+
(
m + n− 1 − 2k

m− k

)] ∑
w∈Gm+n−1−2k

k

w

= zp
∑

w∈Gm−n−1
n

w + z2p

n∑
k=1

(
m + n− 2k

m− k

) ∑
w∈Gm+n−2k

k−1

w

+ zp

n−1∑
k=0

(
m + n− 2k

m− k

) ∑
w∈Gm+n−1−2k

k

w

= zp
∑

w∈Gm−n−1
n

w +
(
m + n

m

)
zm+n
p + z2p

∑
w∈Gm−n

n−1

w

+
n−1∑
k=1

(
m + n− 2k

m− k

)⎛
⎜⎝zp

∑
w∈Gm+n−1−2k

k

w + z2p
∑

w∈Gm+n−2k
k−1

w

⎞
⎟⎠

=
(
m + n

m

)
zm+n
p +

n−1∑
k=1

(
m + n− 2k

m− k

) ∑
w∈Gm+n−2k

k

w

+

⎛
⎜⎝zp

∑
w∈Gm−n−1

n

w + z2p
∑

w∈Gm−n
n−1

w

⎞
⎟⎠

=
(
m + n

m

)
zm+n
p +

∑
w∈Gm−n

n

w +
n−1∑
k=1

(
m + n− 2k

m− k

) ∑
w∈Gm+n−2k

k

w

=
n∑

k=0

(
m + n− 2k

m− k

) ∑
w∈Gm+n−2k

k

w.

Hence by the mathematical induction we complete the proof. �
3. Proof of Theorem 1

For our convenience, we let z−1
p = 0.

Lemma 2. For integers n ≥ 2, p ≥ 1, k ≥ 0, and m ≥ 0, we have

znz
k
p ∗ zmp =

m∑
�=0

(z�−1
p zn+p + z�pzn)(zkp ∗ zm−�

p ). (10)
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Proof. We fix the integers n, k, and p. Then we use mathematical induction on m. 
Assume that Eq. (10) holds for all integer s with s < m. The by Eq. (3), we have

znz
k
p ∗ zmp = zn(zkp ∗ zmp ) + zp(znzkp ∗ zm−1

p ) + zn+p(zkp ∗ zm−1
p ).

Since m − 1 < m, we can substitute Eq. (10) into the factor znzkp ∗ zm−1
p of the above 

identity.

znz
k
p ∗ zmp = zn(zkp ∗ zmp ) + zn+p(zkp ∗ zm−1

p )

+ zp

m−1∑
�=0

(z�−1
p zn+p + z�pzn)(zkp ∗ zm−1−�

p )

= zn(zkp ∗ zmp ) + (zn+p + zpzn)(zkp ∗ zm−1
p )

+
m∑
�=2

(z�−1
p zn+p + z�pzn)(zkp ∗ zm−�

p )

=
m∑
�=0

(z�−1
p zn+p + z�pzn)(zkp ∗ zm−�

p ).

This conclusion completes our proof. �
Using the results of Lemma 1, Lemma 2, and

zmznp ∗ zsztp = zm(znp ∗ zsztp) + zs(zmznp ∗ ztp) + zm+s(znp ∗ ztp),

we can get the following result.

Theorem 3. Let m ≥ 2, s ≥ 2, p ≥ 1, n ≥ 0, and t ≥ 0 be integers. Then

zmznp ∗ zsztp =
∑

1≤�≤n
0≤k≤min(t,n−�)
w∈Gt+n−�−2k

k

(
t + n− �− 2k

t− k

)
zm(z�−1

p zs+p + z�pzs)w

+
∑

1≤�≤t
0≤k≤min(n,t−�)
w∈Gt+n−�−2k

k

(
t + n− �− 2k

n− k

)
zs(z�−1

p zm+p + z�pzm)w

+
∑

0≤k≤min(t,n)
w∈Gt+n−2k

k

(
t + n− 2k

n− k

)
(zmzs + zszm + zm+s)w. (11)

Note that for w ∈ Ga
b , the map ζ(w) = ζ(α), where w = w1 · · ·wa+b, α =

(α1, . . . , αa+b), and αi = p if wi = zp; αi = 2p if wi = z2p. There is a natural one-
to-one correspondence between Ga

b and Aa
b .
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Then we apply the map ζ to both sides of Eq. (11). We obtain a decomposition formula 
for product of two multiple zeta values ζ(m, {p}n)ζ(s, {p}t). This is exactly the result of 
Theorem 1.

4. Application to combinatorics

In combinatorics, the set Ga
b can be identify as the set of lattice paths from (0, 0) to 

(a, b) using only steps east (1, 0) (resp. p in Ga
b ) and north (0, 1) (resp. 2p in Ga

b ). Hence 
the number of elements in Ga

b is 
(
a+b
a

)
.

On the other hand, the definition of the stuffle product ∗ (see Eq. (1) and Eq. (3)) 
indicates that the stuffle product of two multiple zeta values of depth m and n, re-
spectively, will produce D(m, n) multiple zeta values (see Eq. (5)), where D(m, n) is a
Delannoy number.

Again, the Delannoy number D(m, n) can be viewed as the number of lattice paths 
from (0, 0) to (m, n) in which only east (1, 0), north (0, 1), and northeast (1, 1) steps 
are allowed. The lattice paths described here are called Delannoy paths which give an 
alternative characterization of the stuffle product. A detailed discussion can be found 
in [6].

By counting the number of multiple zeta values in Eq. (4) produced from the stuffle 
product, we obtain the interesting Delannoy identity (6).

Proof of Theorem 2. Counting the number of multiple zeta values in Eq. (4) we have

D(n + 1, t + 1) = 2
n∑

�=1

min(t,n−�)∑
k=0

(
t + n− �− 2k

t− k

)(
t + n− �− k

k

)

+ 2
t∑

�=1

min(n,t−�)∑
k=0

(
t + n− �− 2k

n− k

)(
t + n− �− k

k

)

+ 3
min(n,t)∑

k=0

(
n + t− 2k

n− k

)(
n + t− k

k

)
. (12)

Since (see page 81 of [4])

D(m,n) =
min(m,n)∑

k=0

(
m + n− k

m

)(
m

k

)
,

we have

min(n,q)∑ (
n + q − 2k

n− k

)(
n + q − k

k

)
=

min(n,q)∑ (n + q − 2k)!
(n− k)!(q − k)!

(n + q − k)!
k!(n + q − 2k)!
k=0 k=0
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=
min(n,q)∑

k=0

n!
(n− k)!k!

(n + q − k)!
(q − k)!n!

=
min(n,q)∑

k=0

(
n

k

)(
n + q − k

n

)
= D(n, q).

Substituting the above identity into Eq. (12) we have

D(n + 1, t + 1) = 2
n∑

�=1

D(t, n− �) + 2
t∑

�=1

D(n, t− �) + 3D(n, t).

Hence we complete the proof. �
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