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“STRANGE” COMBINATORIAL QUANTUM MODULAR FORMS

AMANDA FOLSOM, CALEB KI, YEN NHI TRUONG VU, AND BOWEN YANG

Abstract. Motivated by the problem of finding explicit q-hypergeometric series which give rise
to quantum modular forms, we define a natural generalization of Kontsevich’s “strange” function.
We prove that our generalized strange function can be used to produce infinite families of quantum
modular forms. We do not use the theory of mock modular forms to do so. Moreover, we show how
our generalized strange function relates to the generating function for ranks of strongly unimodal
sequences both polynomially, and when specialized on certain open sets in C. As corollaries, we
reinterpret a theorem due to Folsom-Ono-Rhoades on Ramanujan’s radial limits of mock theta
functions in terms of our generalized strange function, and establish a related Hecke-type identity.

1. Introduction and statement of results

1.1. Background and motivation. Quantum modular forms have been a topic of recent interest.
Loosely speaking, as defined by Zagier [19], a quantum modular form is a complex-valued function
that exhibits modular-like transformation properties on the rational numbers, as opposed to the
upper-half of the complex plane. To be more precise, a weight k quantum modular form (k ∈ 1

2Z)

is a complex-valued function f on Q or possibly P1(Q) \ S for some appropriate set S, such that
for all γ =

(
a b
c d

) ∈ Γ, where Γ ⊆ SL2(Z) is an appropriate subgroup, the function

hγ(x) = hf,γ(x) := f(x)− ε(γ)(cx+ d)−kf
(
ax+ b

cx+ d

)
satisfies a ‘suitable’ property of continuity or analyticity. The ε(γ) are appropriate complex num-
bers, such as those that arise naturally in the theory of half-integral weight modular forms. Here,
we have modified Zagier’s original definition as in [8] to allow half-integral weights k, subgroups of
SL2(Z), and multiplier systems ε(γ), in accordance with the theory of ordinary modular forms. Za-
gier’s definition, in particular the continuity or analyticity requirement of the “error to modularity”
hγ(x), is intentionally vague, so that it may encompass many diverse, interesting, examples.

Among Zagier’s pioneering first examples of quantum modular forms is the function φ(x) :=
e(x/24)F (e(x)) (e(z) := e2πiz), where x ∈ Q \ {0}, and the function F (q) is the “strange” function

F (q) :=

∞∑
n=0

(q; q)n

(where (a; q)n :=
∏n−1

j=0 (1− aqj) for n ∈ N, and (a; q)0 := 1) originally studied by Kontsevich [19].

One “strange” aspect of the function F (q) is that it converges on no open subset of C, only when
q = ζhk := e(h/k) (k ∈ N, h ∈ Z) is a root of unity. In [19], Zagier proves that the normalized
strange function φ(x) in fact possesses some beautiful analytic properties, which we paraphrase in
the following theorem.

Theorem (Zagier, [19]). For x ∈ Q \ {0}, we have that φ(x) is quantum modular form of weight
3/2 with respect to the group SL2(Z). In particular, hγ,φ(x) is a real analytic function.

Perhaps surprisingly, F (q) has also been connected to a certain function U(1; q) which is of
independent interest for its combinatorial properties, and which was also shown in [6] to be both
mock modular and quantum modular. (For more on mock modular forms and their numerous
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applications in recent years, we refer the interested reader to the surveys by Ono [13] and Zagier
[17].) To describe this connection more precisely, we introduce some combinatorial functions. A
sequence {aj}sj=1 of integers is called a strongly unimodal sequence of size n if there exists some
integer r such that 0 < a1 < a2 < · · · < ar > ar+1 > · · · > as > 0, and a1 + a2 + · · · + as = n.
Analogous to the notion of the rank of an integer partition, one also has the notion of the rank
of a strongly unimodal sequence; in terms of the definition given above, the rank of the strongly
unimodal sequence {aj}sj=1 is defined to be s−2r+1, the number of terms after the maximal term
in the sequence minus the number of terms that precede it. It is not difficult to show that the rank
generating function for strongly unimodal sequences satisfies the following 1

U(w; q) :=

∞∑
n=1

∑
m∈Z

u(m,n)(−w)mqn =

∞∑
n=0

qn+1(wq; q)n(w
−1q; q)n,(1.1)

where u(m,n) := #{strongly unimodal sequences of size n, rank m}. The authors in [6] study this
function when w = 1, in which case

U(1; q) =
∞∑
n=1

(ue(n)− u0(n))q
n =

∞∑
n=0

qn+1(q; q)2n,

where ue(n) (resp. u0(n)) counts the number of strongly unimodal sequences of size n and even
(resp. odd) rank. The following theorem from [6] exhibits a striking relationship between Kontse-
vich’s strange function F (q) and the unimodal rank function U(1; q).

Theorem ([6, Theorem 1.1]). If q is any root of unity, then F (q−1) = U(1; q).

The subject of quantum modular forms is relatively young; hence, it has been of recent interest
to further explore the theory, and to find explicit examples. A number of recent papers (such as
[4, 5, 6, 8, 10, 12, 14]) have explored the connection between quantum modular forms and mock
modular forms, and have offered diverse examples. Here, we are motivated not by mock modular
forms, but by the problem of finding explicit q-hypergeometric series in the Habiro ring [9, 19]
which give rise to quantum modular forms, analogous to Zagier’s examination of Kontsevich’s
strange function F (q). We are also interested in whether such quantum modular forms may be
related to U(w; q) at values w other than w = 1 as studied in [6].

Indeed, we address these questions in Section 1.2 and Section 1.3. In Section 1.2 we define in (1.2)
a natural two-variable generalization of Kontsevich’s strange function F (w; q). We show how our
strange function F (w; q) is related to the two-variable unimodal rank generating function U(w; q)
both polynomially, and, when specialized to certain subsets in C, in Theorem 1.1, Theorem 1.2,
and Corollary 1.3. This generalizes the aforementioned theorem [6, Theorem 1.1] stated above. In
Section 1.3 we define using our strange function F (w; q) infinite families of functions in (1.9), (1.10)
and (1.11), which we show to be quantum modular in Theorem 1.8. In light of this, in Proposition
1.14, we study related asymptotic behaviors.

As a corollary, we show (Corollary 1.4) how our results allow us to reinterpret a recent theorem
due to the first author, Ono and Rhoades in [8] related to Ramanujan’s radial limits of mock theta
functions in terms of our strange function F (w; q). In Theorem 1.5, we also establish a general
Hecke-type identity for the two-variable unimodal rank generating function U(w; q), inspired by
a conjecture in [6] on congruences associated to the coefficients of U(−1; q), and a theorem in [6]
which gives a Hecke-type identity for U(1; q).

Proofs of the results from Section 1.2 are found in Section 2, and proofs of the results from
Section 1.3 are found in Section 3.

1Note. The function U(w; q) defined in (1.1) is equal to the function U(−w; q) as defined in [6].
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1.2. A generalized strange function and the unimodal rank function. To this end, we
make the following definition of a natural two-variable “strange” function

(1.2) F (w; q) :=
∞∑
n=0

wn+1(wq; q)n.

In particular, F (1; q) = F (q) is Kontsevich’s strange function, (essentially) a quantum modular
form, and F (1; q−1) = U(1; q) is a certain unimodal rank generating function, as described above
in Section 1.1. In addition to stating Theorem 1.1, Theorem 1.2, and Corollary 1.3, in this section,
we also offer a reinterpretation of a theorem from [8] in Corollary 1.4, in terms of F (w; q), and
provide a two-variable Hecke-type identity for U(w; q) in Theorem 1.5.

To describe our results, for k ∈ N, we define the sets

Ak := {w ∈ C : |2− wk − w−k| < 1},
Bk := {w ∈ C : |wk − w2k| < 1}.

Our first result generalizes the aforementioned result [6, Theorem 1.1], and shows that when q is a
primitive kth root of unity, and w is any complex number in Ak ∩ Bk, the two-variable unimodal
function U(w; q) is equal to our two-variable strange function F (w; q−1).

Theorem 1.1. If q = ζhk is any primitive kth root of unity (h ∈ Z, k ∈ N, gcd(h, k) = 1), and
w ∈ Ak ∩Bk, we have that

(1.3) F (w; q−1) = U(w; q).

(a) k = 3 (b) k = 10

Figure 1. Ak ∩Bk in C for k ∈ {3, 10}

Figure 1 above illustrates the permissible values of w in Theorem 1.1 when q is a primitive 3rd
or 10th root of unity. An interesting feature of Theorem 1.1 (as depicted in Figure 1) is that for a
fixed root of unity q, the value w may be either inside the unit disk, outside the unit disk, or on
the unit disk. When on the unit disk, we point out that w may be a complex number satisfying
|w| = 1 that is not necessarily a root of unity. Phrasing this another way, if we write w = re(t),
with r ∈ R+ and t ∈ R, we may either have r > 1, r < 1, or r = 1, in which case t is not necessarily
restricted to be a rational number, but can be any real number suitably close to a fixed rational
number h/k (or any translate h/k +m, m ∈ Z). Numerical examples are given in Table 1 below.

Our next theorem in fact removes all hypotheses on the second variable w. To describe it, we
define for m ∈ N the truncated functions

3



w h k U(w; ζhk ) = F (w; ζ−hk )

0.8 1 3 ≈ 3.92629 + 0.591093i
−0.9 + 0.3i 2 7 ≈ −2.14078 + 1.33102i

1.05i 3 8 ≈ −1.98835− 0.431558i
0.68− 0.7i 5 9 ≈ 4.33875− 5.65092i

Table 1. Numerical values illustrating Theorem 1.1 for selected values of w both
inside and outside the unit disk.

(1.4) Um(w; q) :=

m−1∑
n=0

(wq; q)n(w
−1q; q)nqn+1,

(1.5) Fm(w; q) :=

m−1∑
n=0

wn+1(wq; q)n.

In particular, lim
m→∞Um(w; q) = U(w; q) and lim

m→∞Fm(w; q) = F (w; q). Our next theorem is a

polynomial identity in the variable w, relating the truncated functions Fk(w; q
−1) and Uk(w; q),

when q is a fixed primitive kth root of unity.

Theorem 1.2. If q is any primitive kth root of unity, then for all w ∈ C, we have that

Fk(w; q
−1) = wkUk(w; q).

For example, when k = 3 or 4, and q = ζ3 or −i (respectively), Theorem 1.2 shows for any w that

F3(w; ζ
−1
3 ) = w3U3(w; ζ3) = w

(
1 + w +

1

2
(3 + i

√
3)w2 + w3 + w4

)
,

F4(w; i) = w4U4(w;−i) = w
(
1 + w + (1− i)w2 + (2− i)w3 + (1− i)w4 + w5 + w6

)
.

We shall see in the course of the proofs of Theorem 1.1 and Theorem 1.2 (in Proposition 2.1) how
the series U(w; q) and F (w; q) are related to their truncated polynomial counterparts in (1.4) and
(1.5).

Next, we have the following corollary, which in a special case recovers [6, Theorem 1.1] discussed
in Section 1.1.

Corollary 1.3. Let q be any primitive kth root of unity. For all positive integers b|k, and all
integers a, we have that

(1.6) F (ζab ; q
−1) = U(ζab ; q).

In particular, when a = 0, b = 1, (and q is any primitive kth root of unity) we have that

(1.7) F (q−1) = F (1; q−1) = U(1; q).

Corollary 1.3 also gives us a new way to study the radial limit relationship between Dyson’s rank
mock theta function and the Andrews-Garvan crank modular form established in [8]. In particular,
Dyson’s rank function R(w; q) and the Andrews-Garvan crank function C(w; q) are defined by

R(w, q) :=
∞∑
n=0

∑
m∈Z

N(m,n)wmqn = 1 +

∞∑
n=1

qn
2

(wq; q)n(w−1q; q)n
,
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a b h k U(ζab ; ζ
h
k ) = F (ζab ; ζ

−h
k )

1 2 1 4 −i
2 3 5 6 ≈ −1.5− 0.866025i
3 7 13 14 ≈ −2.09903 + 0.820077i
3 15 2 30 ≈ 0.582676 + 2.06846i

Table 2. Numerical values illustrating Corollary 1.3 for selected a, b, and q = ζhk .

where N(m,n) counts the number of partitions of n with rank m, and

C(w, q) :=
∞∑
n=0

∑
m∈Z

M(m,n)wmqn =
(q; q)∞

(wq; q)∞(w−1q; q)∞
,

where M(m,n) counts the number of partitions of n with crank m [3]. In [8, Theorem 1.2],
the first author, Ono, and Rhoades address and generalize a claim of Ramanujan’s, showing that
asymptotically, as q approaches roots of unity radially within the unit disk, the difference between
the mock modular rank generating function and (a multiple of the) modular crank generating
function (with w set to be another fixed root of unity), is bounded, and specifically equals the
unimodal rank generating function U(w; q) evaluated at roots of unity. Applying Corollary 1.3 to
[8, Theorem 1.2], we obtain the following result, which shows that “radial limits” of the difference
of the mock modular partition rank and modular crank generating functions may be expressed in
a new way, as special values of our two-variable Kontsevich strange function F (w; q) (which we use
to construct infinite families of quantum modular forms in Theorem 1.8). .

Corollary 1.4. Let 1 ≤ a < b and 1 ≤ h < k be integers with gcd(a, b) = gcd(h, k) = 1 and b|k. If
h′ ∈ Z satisfies hh′ ≡ −1 (mod k) then as q approaches ζhk radially within the unit disk, we have
that

lim
q→ζhk

(R(ζab ; q)− ζ−a
2h′k

b2
C(ζab ; q)) = −(1− ζab )(1− ζ−ab )F (ζab ; ζ

−h
k ).

In another direction, inspired by [6, Conjecture 1.6] on congruences associated to the coefficients
of U(−1; q), and [6, Theorem 1.5], which is a Hecke-type identity for U(1; q), we establish a general
Hecke-type identity for the two-variable unimodal rank generating function U(w; q). While our
work in this paper does not focus on establishing congruences related to the coefficients u(m,n) of
U(w; q), the following identity is suggestive; establishing such congruences would be of interest.

Theorem 1.5. We have that

U(w; q) =
(wq; q)∞(w−1q; q)∞

(q; q)2∞

⎛⎝∑
n>0

∑
6n≥|6j+1|

(−1)j+1q2n
2− j(3j+1)

2(1.8)

+
∑

m,n>0

∑
6n≥|6j+1|

(−1)j+1(wm + w−m)q2n
2+mn− j(3j+1)

2

⎞⎠ .

Remark 1.6. The result [6, Theorem 1.5] is an immediate corollary of Theorem 1.5 above when w
is specialized to equal 1.

1.3. Quantum modularity and F (w; q). In this section, we extend work of Zagier in [19] on
Kontsevich’s strange function F (q) = F (1; q), and show that our general strange function F (w; q)
can be used to define infinite families of quantum modular forms. We define these forms in (1.9),
(1.10), and (1.11), and establish quantum modularity in Theorem 1.8. In Proposition 1.14, we
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establish related asymptotic properties. To describe our results, for any positive integer b, we let
�b := lcm(b, 12). We define the set of rational numbers

Sb :=

{
h

k
: h ∈ Z, k ∈ N, gcd

(
h,

�bk

12

)
= 1, b

∣∣∣ �bk
12

}
⊆ Q,

and tuples of integers

T := {(a, b, c) : b ∈ N, a ∈ Z, gcd(a, b) = 1, ζab 	= 1, c ∈ 2N0} ,
where 2N0 := {0, 2, 4, 6, . . . }. Using our strange function F (w; q), we define for (a, b, c) ∈ T the
functions F±a,b,c : Sb → C by

F±a,b,c(x) :=(i�b)
1
2 e

(
(�bc+ 2)2x

8�b

)
(ζ−ab e (−cx)−1)

(
F (ζab e(cx);e (12x/�b))±F

(
ζ−ab e(−cx);e (12x/�b)

))
,

and the functions φa,b,c : Sb → C by

φa,b,c(x) := F−a,b,c(x) + 2(i�b)
1
2 ζ−a�bc4b (ζ−ab − 1)e

(
x

2�b

)
F
(
ζ−ab ; e (12x/�b)

)
(1.9)

= F+
a,b,c(x) + 2(i�b)

1
2 ζ−a�bc4b

�bc

2
−1∑

n=1

χ(n)ζ
a(n−1)
2b e

(
n2x

2�b

)
,(1.10)

where χ(n) :=
(
12
n

)
is defined using the Kronecker symbol.

Remark 1.7. We shall see in Section 3.1.2 how to deduce the equivalence of the two expressions
(1.9) and (1.10) above defining φa,b,c.

To state our results most generally, we use the functions φa,b,c to define further strange functions

of interest. For any N -tuple of integers (N ∈ N) a := (a1, a2, . . . , aN ) ∈ ZN and N -tuple of even
integers c := (c1, c2, . . . , cN ) ∈ (2N0)

N , and positive integer b such that (aj , b, cj) ∈ T for each

1 ≤ j ≤ N , we define the functions Φ
(N)
a,b,c : Sb → C by

Φ
(N)
a,b,c(x) :=

N∑
j=1

φaj ,b,cj (x).(1.11)

Note that Φ
(1)
(a),b,(c) = φa,b,c. Among the simplest examples of the functions Φ

(N)
a,b,c (and φa,b,c) are the

following, the second of which is nothing but our generalized strange function F (w; e(x)) specialized
at w = −1, up to a simple factor:

Φ
(1)
(a),b,(0)(x) = φa,b,0(x) = (i�b)

1
2 e

(
x

2�b

)
(ζ−ab − 1)(F (ζab ; e(12x/�b)) + F (ζ−ab ; e(12x/�b))),

Φ
(1)
(1),2,(0)(x) = φ1,2,0(x) = −4(12i)

1
2 e
( x

24

)
F (−1; e(x)).

Theorem 1.8 establishes the quantum modularity of the generalized strange functions Φ
(N)
a,b,c(x) and

φa,b,c(x).

Theorem 1.8. With hypotheses on N,a, b, and c given above, for x ∈ Sb, we have that the functions

Φ
(N)
a,b,c are quantum modular forms of weight 1

2 . Moreover, for all x ∈ Sb and M =
(

α β
γ δ

)
∈ Γ(2�b)

such that γx 	= −δ, we have that

Φ
(N)
a,b,c(x)− (γx+ δ)−

1
2ψ−1�b

(M)Φ
(N)
a,b,c(Mx) =

∫ i∞

− δ
γ

∑N
j=1 ϑaj ,b,cj (u)√

u− x
du.(1.12)
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In particular, when N = 1, a = (a), and c = (c), we have that

φa,b,c(x)− (γx+ δ)−
1
2ψ−1�b

(M)φa,b,c(Mx) =

∫ i∞

− δ
γ

ϑa,b,c(u)√
u− x

du.(1.13)

The functions ϑa,b,c are defined in (3.12), and the multiplier ψ�b is defined in (3.13).

Remark 1.9. Results similar to (1.12) and (1.13) hold for odd integers c, and can be deduced easily
from the results in this paper. For simplicity and ease of notation, we state Theorem 1.8 in the
case of even integers c only.

Remark 1.10. Theorem 1.8 does not directly apply to the original Kontsevich strange function
F (q) = F (1; q) studied by Zagier, which is obtained by specializing w = ζab = 1 in our generalized
strange function F (w; q). While F (1; q) is indeed a valid specialization of our function F (w; q),
Zagier proved that the strange function F (q) is (essentially) quantum modular of weight 3/2, which

is the dual weight to our families φ
(N)
a,b,c(x) and φa,b,c(x) of quantum modular forms of weight 1/2.

For this reason, our proof of Theorem 1.8 does not directly apply to F (q) = F (1; q); however, our
methods here are inspired by, and are similar to, Zagier’s original proof given in [19] establishing
the quantum modularity of F (q) = F (1; q).

An interesting feature of Theorem 1.8 is that it gives a simple closed expression in terms of either
our strange function F (w; q) or the unimodal rank function U(w; q) for the integral appearing in
the right hand side of (1.13), as we show in Corollary 1.11 below. For ease of notation, we define
the following polynomials in roots of unity, where (a, b, c) ∈ T and h and k are such that h/k ∈ Sb.

Fa,b,c(h, k) := (i�b)
1
2 ζ

(�bc+2)2h
8�bk

(ζ−ab ζ−chk − 1)
(
FN+

h,k

(
ζab ζ

ch
k ; ζ12h�bk

)
+ FN−

h,k

(
ζ−ab ζ−chk ; ζ12h�bk

))
,

Ua,b,c(h, k) := 2(i�b)
1
2 ζ

(�bc+2)2h
8�bk

(ζ−ab ζ−chk − 1)UNmin
h,k

(
ζ±ab ζ±chk ; ζ−12h�bk

)
,

Pa,b,c(h, k) := 2(i�b)
1
2 ζ−a�bc4b

�bc/2−1∑
n=1

χ(n)ζ
a(n−1)
2b ζn

2h
2�bk

.

Recall that the truncated functions Fm(w; q) and Um(w; q) appearing above are defined in (1.5)

and (1.4). The numbers N±
h,k = N±(a, b, c, h, k) are the unique integers 1 ≤ N±

h,k ≤ �bk
12 satisfying

the congruence conditions in (3.19). The number Nmin
h,k = Nmin

h,k (a, b, c, h, k) := min{N+
h,k,N−

h,k}.
Corollary 1.11 shows how the integrals appearing in Theorem 1.8 may be evaluated exactly and

expressed simply in terms of (“strange” or “unimodal”) polynomials, evaluated at roots of unity.
The numbers H = HM (h, k) and K = KM (h, k) appearing below are defined in (3.20) and (3.21).

Corollary 1.11. With notation and hypotheses as above, we have that

∫ i∞

− δ
γ

ϑa,b,c(u)√
u− h

k

du = Fa,b,c(h, k) + Pa,b,c (h, k)−
(
γ h
k + δ

)− 1
2 ψ−1�b

(M) (Fa,b,c(H,K) + Pa,b,c (H,K))

(1.14)

= Ua,b,c(h, k) + Pa,b,c (h, k)−
(
γ h
k + δ

)− 1
2 ψ−1�b

(M) (Ua,b,c(H,K) + Pa,b,c (H,K)) .(1.15)

Remark 1.12. Corollary 1.11 follows almost immediately from Theorem 1.8 and Corollary 1.3. To
be precise, the fact that the strange functions F (w; q) used to define φa,b,c reduce to the truncated
functions FN± appearing in (1.14) follows from the argument given in the proof of Theorem 1.8.
The expression given in (1.15) follows using that same argument with Corollary 1.3 and Theorem
1.8.
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Remark 1.13. Clearly, Corollary 1.11 gives exact values for the integrals appearing on the right
hand side of (1.12) as well.

We illustrate Corollary 1.11 with the following examples.

Example 1. We take a = 1, b = 2, c = 0, h = 1, k = 2, so that h/k = 1/2 ∈ S2. We choose
M = ( 1 0

24 1 ) ∈ Γ(24), hence H = 1, and K = 26. A direct calculation using (1.14) and (1.15)
reveals that

φ1,2,0

(
1
2

)− 13−
1
2φ1,2,0

(
1
26

)
= 4(12i)

1
2 ζ48 + 4

(
12i

13

) 1
2

ζ624

12∑
n=0

(−1)n+1(−ζ26; ζ26)n

= 4(12i)
1
2 ζ48 + 4

(
12i

13

) 1
2

ζ624

12∑
n=0

ζ−n−126 (−ζ−126 ; ζ−126 )2n.

Hence, by Corollary 1.11, the integral appearing in (1.13) may be evaluated exactly as

∫ i∞

− 1
24

ϑ1,2,0(u)√
u− 1

2

du = 4(12i)
1
2 ζ48 + 4

(
12i

13

) 1
2

ζ624

12∑
n=0

(−1)n+1(−ζ26; ζ26)n

= 4(12i)
1
2 ζ48 + 4

(
12i

13

) 1
2

ζ624

12∑
n=0

ζ−n−126 (−ζ−126 ; ζ−126 )2n

≈ 2.61608 + 1.61783i.

Example 2. We take a = 3, b = 4, c = 2, h = 33, k = 40, so that h/k = 33/40 ∈ S4. We choose
M =

(
97 48−192 −95

) ∈ Γ(24), hence, H = −5121, and K = 10136. A direct calculation using (1.14)
and (1.15) reveals that the strange functions F3,4,2(33, 40) and F3,4,2(−5121, 10136) satisfy

F3,4,2(33, 40)

(1.16)

= (12i)
1
2 ζ1859320 (ζ−34 ζ−3320 − 1)

(
7∑

n=0

ζ
12(n+1)
5 (ζ12940 ; ζ3340 )n +

31∑
n=0

ζ
−12(n+1)
5 (ζ−6340 ; ζ3340 )n

)
,

= 2(12i)
1
2 ζ1859320 (ζ−34 ζ−3320 − 1)

(
7∑

n=0

ζ
−33(n+1)
40 (ζ6340 , ζ

−33
40 )n(ζ

−129
40 , ζ−3340 )n

)
,

(1.17)

F3,4,2(−5121, 10136)
(1.18)

= (12i)
1
2 ζ−28848381088 (ζ−34 ζ51215068 − 1)

(
7599∑
n=0

ζ
−330(n+1)
1267

(
ζ−776110136 ; ζ−512110136

)
n
+

2535∑
n=0

ζ
330(n+1)
1267

(
ζ−248110136 ; ζ−512110136

)
n

)
,

= 2(12i)
1
2 ζ−28848381088 (ζ−34 ζ51215068 − 1)

(
2535∑
n=0

ζ
5121(n+1)
10136 (ζ776110136; ζ

5121
10136)n(ζ

2481
10136; ζ

5121
10136)n

)
,

(1.19)
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and the polynomials P3,4,2(33, 40) and P3,4,2(−5121, 10136) satisfy

P3,4,2(33, 40) = −2(12i)
1
2

11∑
n=1

χ(n)ζ
3(n−1)
8 ζ33n

2

960 ,(1.20)

P3,4,2(−5121, 10136) = −2(12i)
1
2

11∑
n=1

χ(n)ζ
3(n−1)
8 ζ−1707n

2

81088 .(1.21)

Hence, by Corollary 1.11, the integral appearing in (1.13) may be evaluated exactly, using the finite
sums in (1.16) or (1.17), (1.18) or (1.19), and (1.20) and (1.21), as∫ i∞

− 95
192

ϑ3,4,2(u)√
u− 33

40

du

= F3,4,2(33, 40) + P3,4,2 (33, 40)−
(−1267

5

)− 1
2 (F3,4,2(−5121, 10136) + P3,4,2 (−5121, 10136))

≈ −2.47333 + 0.934816i.

In light of Theorem 1.8, we also offer an asymptotic expansion in Proposition 1.14 for our general
strange function F (w; q), which is a generating function for values of L-functions. This asymptotic
expansion also gives rise to a new way to evaluate F (ζab ; 1) as a finite sum.

Proposition 1.14. Let Br(z) denote the rth Bernoulli polynomial. For a ∈ Z and b ∈ N, b 	= 6,
satisfying gcd(a, b) = 1 and cos(2πa/b) > 1/2, as t → 0+, we have that

e−t(ζ−ab − 1)F (ζab ; e
−24t) ∼

∞∑
r=0

L(−2r, Ca,b)
(−t)r

r!
,(1.22)

where L(−r, Ca,b)=L(−r, Ca,b, b) :=−(12b)r

r + 1

12b∑
n=1

Ca,b(n)Br+1

( n

12b

)
, and Ca,b(n) :=χ(n)ζ

a(n−1)
2b .

In particular, for such a and b, we have that

(ζ−ab − 1)F (ζab ; 1) = − 1

12b

12b∑
n=1

nχ(n)ζ
a(n−1)
2b .(1.23)

2. q-hypergeometric series

In this section, we prove Theorem 1.1, Theorem 1.2, Corollary 1.3, and Theorem 1.5. We point
out that Theorem 1.1 follows in part from Theorem 1.2.

2.1. Proof of Theorem 1.1. To prove Theorem 1.1, we establish the following results relating
the two-variable unimodal rank function U(w; q) and our two-variable strange function F (w; q) to
their truncated counterparts Uk(w; q) and Fk(w; q).

Proposition 2.1. Let k ∈ N, h ∈ Z be such that gcd(h, k) = 1. The following are true.

i) For all w ∈ Ak, we have that U(w; ζhk ) = (wk + w−k − 1)−1Uk(w; ζ
h
k ).

ii) For all w ∈ Bk, we have that F (w; ζ−hk ) = (w2k + 1− wk)−1Fk(w; ζ
−h
k ).

The proof of Theorem 1.1 makes use of Proposition 2.1 and Theorem 1.2, whose proofs we give
below.
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Proof of Theorem 1.1. From Theorem 1.2 and Proposition 2.1, we have for w ∈ Ak ∩Bk that

F (w; ζ−hk ) = (w2k + 1− wk)−1Fk(w; ζ
−h
k ) = (wk + w−k − 1)−1Uk(w; ζ

h
k ) = U(w; ζhk ).

�

Proof of Proposition 2.1. If |2 − wk − w−k| < 1, then the geometric series
∑∞

l=0(2 − wk − w−k)l

converges absolutely to (wk + w−k − 1)−1. Hence, we have

(wk + w−k − 1)−1 =
∞∑
l=0

(2− wk − w−k)l = lim
r→∞

r−1∑
l=0

(1− w−k)l(1− wk)l

= lim
r→∞

r−1∑
l=0

(wζhk ; ζ
h
k )

l
k(w

−1ζhk ; ζ
h
k )

l
k,(2.1)

where we have used the fact that 1 − xk =
∏k

m=1(1 − xζhmk ). Multipliying both sides of (2.1) by

Uk(w; ζ
h
k ), and using the fact that (xζhk ; ζ

h
k )

l
k = (xζhk ; ζ

h
k )lk and (xζhk ; ζ

h
k )lk(xζ

h
k ; ζ

h
k )n = (xζhk ; ζ

h
k )lk+n

for any l, n ∈ N0, we have that (wk + w−k − 1)−1Uk(w; ζ
h
k ) equals

= lim
r→∞

r−1∑
l=0

k−1∑
n=0

(wζhk ; ζ
h
k )lk(w

−1ζhk ; ζ
h
k )lk(wζ

h
k ; ζ

h
k )n(w

−1ζhk ; ζ
h
k )nζ

h(n+1)
k

= lim
r→∞

r−1∑
l=0

k−1∑
n=0

(wζhk ; ζ
h
k )lk+n(w

−1ζhk ; ζ
h
k )lk+nζ

h(lk+n+1)
k

= lim
r→∞

r−1∑
l=0

(l+1)k−1∑
n=lk

(wζhk ; ζ
h
k )n(w

−1ζhk ; ζ
h
k )nζ

h(n+1)
k

= lim
r→∞

rk−1∑
n=0

(wζhk ; ζ
h
k )n(w

−1ζhk ; ζ
h
k )nζ

h(n+1)
k ,

which is by definition the function U(w; ζhk ). This proves part (i) of Proposition 2.1.

To prove part (ii) of Proposition 2.1, we proceed similarly. If |wk −w2k| < 1, then the geometric
series

∑∞
l=0(w

k − w2k)l converges absolutely to (w2k + 1− wk)−1. Hence, we have

(w2k + 1− wk)−1 =
∞∑
l=0

(wk − w2k)l = lim
r→∞

r−1∑
l=0

wlk(1− wk)l = lim
r→∞

r−1∑
l=0

wlk(wζ−hk ; ζ−hk )lk.(2.2)

Multiplying both sides of (2.2) by Fk(w; ζ
−h
k ) we obtain that (w2k + 1− wk)−1Fk(w; ζ

−h
k ) equals

lim
r→∞

r−1∑
l=0

k−1∑
n=0

wkl+n+1(wζ−hk ; ζ−hk )lk(wζ
−h
k ; ζ−hk )n = lim

r→∞

r−1∑
l=0

k−1∑
n=0

wkl+n+1(wζ−hk ; ζ−hk )lk(wζ
−h
k ; ζ−hk )n

= lim
r→∞

r−1∑
l=0

(l+1)k−1∑
n=lk

wn+1(wζ−hk ; ζ−hk )n = lim
r→∞

rk−1∑
n=0

wn+1(wζ−hk ; ζ−hk )n = F (w; ζ−hk ).

�
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2.2. Proofs of Theorem 1.2 and Corollary 1.3. To prove Theorem 1.2 (and hence Corollary
1.3), we establish the following important lemmas. Our methods here are inspired by and are
similar to methods used in [6, 7]. For all h ∈ Z and k ∈ N such that gcd(h, k) = 1, and a ∈ N0, we
define the polynomials Ck(x,w) and va(x,w) = va,h,k(x,w) in the variables x and w by

Ck(x,w) = Ch,k(x,w) := w−k
k−1∑
n=0

wn+1
n∏

m=1

(x− wζ−mh
k ),(2.3)

(wk + w−k − xk)va(x,w) := Ck(ζ
−ah
k x,w)− (wx; ζ−hk )a(w

−1x; ζ−hk )aCk(x,w).(2.4)

We also let ua(x,w) := va(ζ
ah
k x,w). In what follows, for ease of notation, we may write C(x) for

Ck(x,w), and ua(x) for ua(x,w). In Lemma 2.2, we establish a recursive relationship satisfied by
the polynomial C(x).

Lemma 2.2. Assuming the notation and hypotheses above, we have that

(2.5) C(ζ−hk x) = (wx− 1)(w−1x− 1)C(x) + x(w−k + wk − xk).

In Lemma 2.3, we establish a recursive relationship satisfied by the polynomial ua(x), and relate
uk(x) to the polynomial C(x).

Lemma 2.3. For all k ∈ N and a ∈ N0, assuming the notation and hypotheses above, we have that

uk(x) = xkC(x),(2.6)

ua+1(x)− ua(x) = (wxζhk ; ζ
h
k )a(w

−1xζhk ; ζ
h
k )aζ

h(a+1)
k x.(2.7)

Proof of Lemma 2.2. We have that wk−1(C(ζ−hk x)− (wx− 1)(w−1x− 1)C(x)) equals

k−1∑
n=0

wn
n∏

m=1

(ζ−hk x− wζ−hmk )− w1−k(wx− 1)(w−1x− 1)
k−1∑
n=0

wn
n∏

m=1

(x− wζ−mh
k )

= 1− (wx− 1)(w−1x− 1) +

k−1∑
n=1

wnζ−nhk (x− w)

n−1∏
m=1

(x− wζ−mh
k )

− (wx− 1)(w−1x− 1)

k−1∑
n=1

wn
n∏

m=1

(x− wζ−mh
k )

= −x(x− w − w−1) +
k−1∑
n=1

wn
n−1∏
m=1

(x− wζ−mh
k )

(
ζ−nhk (x− w)−(wx− 1)(w−1x− 1)(x− wζ−nhk )

)

= −x(x− w − w−1)− x

k−1∑
n=1

wn
n−1∏
m=1

(x− wζ−mh
k )

(
(x− w)(x− wζ−nhk )− w−1x+ 1

)

= −x

(
x− w − w−1 +

k−1∑
n=1

wn
n∏

m=0

(x− wζ−mh
k )−

k−2∑
n=0

wn
n∏

m=0

(x− wζ−mh
k )

)

= −x

(
x− w − w−1 + wk−1

k−1∏
m=0

(x− wζ−mh
k )− (x− w)

)
= xwk−1(wk + w−k − xk),

where we have used that
∏k−1

m=0(x − wζ−mh
k ) = xk − wk. Multiplying through by w1−k gives (2.5)

as desired. �
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Proof of Lemma 2.3. Letting a = k in (2.4), we have that

(wk + w−k − xk)uk(x) = C(x)−
k−1∏
m=0

(1− wxζ−mh
k )(1− w−1xζ−mh

k )C(x)

= C(x)− (wkxk − 1)(w−kxk − 1)C(x) = C(x)xk(wk + w−k − xk),

where we have used that
∏k−1

m=0(1− yζ−mh
k ) = 1− yk. Dividing by (wk + w−k − xk) yields (2.6).

Next, from (2.4), letting x �→ ζahk x, noting that (ζahk x)k = xk, we obtain,

(wk + w−k − xk)ua(x) = C(x)− (wζahk x; ζ−hk )a(w
−1ζahk x; ζ−hk )aC(ζahk x)

= C(x)− (wxζhk ; ζ
h
k )a(w

−1xζhk ; ζ
h
k )aC(ζahk x).(2.8)

We let a �→ a+ 1 in (2.8) and subtract from this result equation (2.8) to obtain

(wk+w−k − xk)(ua+1(x)− ua(x))(2.9)

=(wxζhk ; ζ
h
k )a(w

−1xζhk ; ζ
h
k )a

(
C(ζahk x)− (1− wζ

(a+1)h
k x)(1− w−1ζ(a+1)h

k x)C(ζ
(a+1)h
k x)

)
.

From Lemma 2.2, letting x �→ ζ
h(a+1)
k x, we have that

C(ζahk x)− (1− wζ
(a+1)h
k x)(1− w−1ζ(a+1)h

k x)C(ζ
(a+1)h
k x) = ζ

(a+1)h
k x(wk + w−k − xk).

Substituting this into equation (2.9) and dividing by (wk + w−k − xk) yields (2.7). �
Proof of Theorem 1.2. Letting x = 1 in equation (2.7), we have

(2.10) ua+1(1)− ua(1) = (wζhk ; ζ
h
k )a(w

−1ζhk ; ζ
h
k )aζ

(a+1)h
k .

From (2.6), (2.10) and the fact that u0(1) = 0, we obtain

(2.11) C(1) = uk(1) =
k−1∑
a=0

(ua+1(1)− ua(1)) =
k−1∑
a=0

(wζhk ; ζ
h
k )a(w

−1ζhk ; ζ
h
k )aζ

(a+1)h
k .

Using (2.11) with (2.3), (1.4) and (1.5) proves Theorem 1.2. �
Proof of Corollary 1.3. Let h ∈ Z be such that gcd(h, k) = 1. Then there exists h′ ∈ Z such that
hh′ ≡ −1 (mod k). Further, since b|k, we define γ to be the integer in {0, 1, 2, . . . , k − 1} such

that γ ≡ h′ak/b (mod k). Thus, we have that 1 − ζab ζ
hγ
k = 0, and hence, that (ζab ζ

h
k ; ζ

h
k )n = 0 for

all integers n ≥ k. Similarly, (ζab ζ
−h
k ; ζ−hk )n = 0 for all integers n ≥ k. Therefore, we have that

U(ζab ; ζ
h
k ) = Uk(ζ

a
b ; ζ

h
k ) and F (ζab ; ζ

−h
k ) = Fk(ζ

a
b ; ζ

−h
k ). Combining this with Theorem 1.2 proves

Corollary 1.3. �

2.2.1. Proof of Theorem 1.5.

Proof of Theorem 1.5. Our proof here extends the proof of [6, Theorem 1.5]. Here, we first make
use of a general identity found in Ramanujan’s lost notebook. Namely, from [2, Entry 12.2.2 (p.1)]
we find that

(q)2∞
(x)∞(x−1q)∞

=
∞∑

n=−∞

(−1)nq
n(n+1)

2

1− xqn
=

1

1− x
+

∞∑
n=1

(−1)nq
n(n+1)

2

1− xqn
+

∞∑
n=1

(−1)nq
n(n−1)

2

1− xq−n

=
1

1− x
+ (1− x−1)

∞∑
n=1

(−1)nq
n(n+1)

2 (1 + qn)

(1− xqn)(1− x−1qn)
,
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which implies

(2.12)
1

(1− x)(1− x−1)

(
(q)2∞

(xq)∞(x−1q)∞
− 1

)
=

∞∑
n=1

(−1)nq
n(n+1)

2 (1 + qn)

(1− xqn)(1− x−1qn)
.

Next, we use Bailey’s pair with βn = 1, α0 = 1 and

αn = (1− q2n)q2n
2−n

⎛⎝ n−1∑
j=−n

(−1)j+1q−
j(3j+1)

2

⎞⎠+ (−1)n(1 + qn)q
n(n−1)

2

as provided in [6].2 We substitute αn into [6, equation (3.2)], which yields that
∑∞

n=1(xq)n−1(x
−1q)n−1qn

equals

1

(1− x)(1− x−1)

(
(xq)∞(x−1q)∞

(q)2∞
− 1

)
(2.13)

+
(xq)∞(x−1q)∞

(q)2∞

∞∑
n=1

n−1∑
j=−n

1− q2n

(1− xqn)(1− x−1qn)
(−1)j+1q2n

2− j(3j+1)
2

+
(xq)∞(x−1q)∞

(q)2∞

∞∑
n=1

(−1)nq
n(n+1)

2 (1 + qn)

(1− xqn)(1− x−1qn)
.

Using (2.12), we see that the third term in (2.13) is −1 multiplied by the first term in (2.13). Thus,
we deduce (after re-indexing the second term in (2.13)) that

∞∑
n=1

(xq)n−1(x−1q)n−1qn =
(xq)∞(x−1q)∞

(q)2∞

∑
n≥1

∑
6n≥|6j+1|

1− q2n

(1− xqn)(1− x−1qn)
(−1)j+1q2n

2− j(3j+1)
2 .

(2.14)

It is not difficult to see that (1 − q2n)(1 − xqn)−1(1 − x−1qn)−1 = 1 +
∑

m≥1(x
−m + xm)qmn.

Substituting this into (2.14) (with x = w) yields

U(w; q) =
(wq; q)∞(w−1q; q)∞

(q; q)2∞

×
⎛⎝∑

n>0

∑
6n≥|6j+1|

(−1)j+1q2n
2− j(3j+1)

2 +
∑

m,n>0

∑
6n≥|6j+1|

(−1)j+1(wm + w−m)q2n
2+mn− j(3j+1)

2

⎞⎠
as claimed. �

3. Quantum modular forms

In this section, we prove Theorem 1.8 and Proposition 1.14. We also establish the equivalence of
the two expressions (1.9) and (1.10) defining our quantum modular forms φa,b,c(x) built from our
strange function F (w; q) studied in Section 2. Our methods extend and are inspired by methods
used by Zagier to establish the quantum modular properties of Kontsevich’s strange function F (q).
Equally important to our proof are q-hypergeometric properties of our strange function F (w; q),
which we establish in Section 3.1, and associated modular properties, which we establish in Section
3.2.

2We have corrected a minor typo from [6]. In particular, the exponent of q in the second summand is n(n− 1)/2
instead of n(n+ 1)/2.
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3.1. Strange functions. To state our results, we define two relatives F1(w; q) and F2(w; q) of our
“strange” function F (w; q) by

F1(w; q) := w

∞∑
n=1

( n−1∑
j=0

wj

)
qn(wq; q)n−1,

F2(w; q) :=

∞∑
n=0

wn ((wq; q)n − (wq; q)∞) .

Essential to our proof of Theorem 1.8, which establishes the quantum modularity of our strange
functions φa,b,c(x), is Proposition 3.1 below. This proposition relates the strange functions F (w; q),
F1(w; q) and F2(w; q) in parts (i) and (ii), and gives a related q-series identity in part (iii). We
note that part (i) is established in the case ζ = 1 and d = 0, and part (ii) is established in the case
w = 1, by Zagier in [18].

Proposition 3.1. The following are true:

(i) Let ζ be a fixed root of unity, and d ∈ Z. Then the function F1(ζ�
d;�) equals the function

ζ−1�−dF (ζ�d;�) as a power series in � �→ ρ − q (|q| < 1), where ρ is any root of unity
satisfying ζρm = 1 for some m ∈ Z.

(ii) The function F1(w; q) equals the function F2(w; q) as a power series in q, and also as a
function of q in the unit disk.

(iii) We have that (wq; q)∞ + (1− w)F1(w; q) =
∑∞

n=1 χ(n)w
n−1
2 q

n2−1
24 .

Remark 3.2. When w = 1, part (iii) of Proposition 3.1 reduces to the well-known identity

(q; q)∞ =

∞∑
n=1

χ(n)q(n
2−1)/24.

In this case, we obtain no useful information about the strange function F1(1; q), and hence Kont-
sevich’s strange function F (1; q) = F (q) by part (i) of Proposition 3.1. However, the case w = 1
is already treated in [19], where F (1; q) = F (q) is shown to be (essentially) quantum modular of
weight 3/2. Here, we are concerned with establishing the quantum modular properties of F (w; q)
when w 	= 1.

3.1.1. Proof of Proposition 3.1. To prove Proposition 3.1, we first establish two auxiliary Lemmas,
Lemma 3.3 and Lemma 3.4. To state Lemma 3.3, we define for N ∈ N the function

F2,N (w; q) :=

N−1∑
n=0

wn ((wq; q)n − (wq; q)N ) .

Lemma 3.3. For any N ∈ N, we have that

F2,N (w; q) = w

N∑
n=1

( n−1∑
j=0

wj

)
qn(wq; q)n−1.(3.1)

In order to state Lemma 3.4, we must introduce some further notation. We define for a ∈ N and
b ∈ −N the functions

Aa(q) = Aa(q, ρ, ζ) := ζ
a−1∑
r=0

(
a

r + 1

)
ρa−r−1(−q)r,

Bb(q) = Bb(q, ρ, ζ) := ζ
∞∑
r=0

(
b

r + 1

)
ρb−r−1(−q)r,

14



where q, ρ, and ζ are as defined in Proposition 3.1 (i), and for x ∈ Z, y ∈ N0, the binomial coefficients
are defined by

(
x

y

)
:=

y−1∏
j=0

(x− j)

y!
.(3.2)

We also define A0(q) = B0(q) := 0. With hypotheses given on ρ and ζ, for fixed d ∈ Z, we
may assume ρ is a kth root of unity and ζ another root of unity such that ζρd+m = 1 for some
integer m satisfying 1 ≤ m ≤ k. Using the functions Aa(q) and Bb(q), we define the products
Πj(N, q) = Πj(N, q, ρ, ζ, d) (j ∈ {1, 2}) for integers N ∈ N and d ∈ N0 by

Π1(N, q) :=

d+N∏
�=d+1

�≡d+m (mod k)

A�(q), Π2(N, q) :=

d+N∏
�=d+1

��≡d+m (mod k)

(1− ζρ� + qA�(q)).

We also define for integers N ≥ 2 and d ∈ −N the product Π3(N, q) = Π3(N, q, ρ, ζ, d) by

Π3(N, q) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d+N∏
�=d+1

�≡d+m (mod k)

B�(q) ×
d+N∏

h=d+1
h�≡d+m (mod k)

(1− ζρh + qBh(q)), N < −d, d 	= −1,

−1∏
�=d+1

�≡d+m (mod k)

B�(q) ×
−1∏

h=d+1
h�≡d+m (mod k)

(1− ζρh + qBh(q)), N ≥ −d, d 	= −1,

and Π3(N, q) := (1− ζ) if d = −1. Similarly, we define the product Π4(N, q) = Π4(N, q, ρ, ζ, d) for
integers N ≥ 2 and d ∈ −N by

Π4(N, q) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d+N∏
�=0

�≡d+m (mod k)

A�(q) ×
d+N∏
h=0

h�≡d+m (mod k)

(1− ζρh + qAh(q)), N ≥ −d, d 	= −1,

N−1∏
�=1

�≡d+m (mod k)

A�(q) ×
N−1∏
h=1

h�≡d+m (mod k)

(1− ζρh + qAh(q)), d = −1,

and Π4(N, q) := 1 if N < −d, d 	= −1.

Lemma 3.4. Let ζ, ρ, q, and d be as in the statement of Proposition 3.1 (i). The following are
true.
(i) If N ∈ N, and d ∈ N0, then

(ζ(ρ− q)d+1; ρ− q)N = q�N−m
k

+1� ·Π1(N, q) ·Π2(N, q).

(ii) If N ∈ N, N ≥ 2, and d ∈ −N, then

(ζ(ρ− q)d+1; ρ− q)N = q�N−m
k

+1� ·Π3(N, q) ·Π4(N, q).

Proof of Lemma 3.3. Lemma 3.3 is easily proved by induction on N . When N = 1, (3.1) follows
by direct calculation. Assuming (3.1) holds for some N ∈ N, we have that
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N∑
n=0

wn((wq; q)n − (wq; q)N+1) =

N∑
n=0

wn((wq; q)n − (wq; q)N + (wq; q)N − (wq; q)N+1)

=

N−1∑
n=0

wn ((wq; q)n − (wq; q)N ) + wN ((wq; q)N − (wq; q)N ) +

N∑
n=0

wn ((wq; q)N − (wq; q)N+1))

= w

N∑
n=1

⎛⎝n−1∑
j=0

wj

⎞⎠ qn(wq; q)n−1 + w
N∑
j=0

wjqN+1(wq; q)N = w
N+1∑
n=1

⎛⎝n−1∑
j=0

wj

⎞⎠ qn(wq; q)n−1,

as desired, establishing (3.1) for all N ∈ N by induction. �

Proof of Lemma 3.4. To prove part (i), for � ∈ N, we have that 1 − ζ(ρ − q)� = 1 − ζρ� + qA�(q).
Thus, for N ∈ N and d ∈ N0, we have that

(ζ(ρ− q)d+1; ρ− q)N =
d+N∏
�=d+1

(1− ζρ� + qA�(q)) = q�N−m
k

+1� ·Π1(N, q) ·Π2(N, q),

where the integer m is such that ζρd+m = 1, 1 ≤ m ≤ k, as claimed. Here, we have used the fact
that for 1 ≤ v ≤ y, y ∈ N,

#{� | 1 ≤ � ≤ b, � ≡ v (mod y)} =

⌊
b− v

y
+ 1

⌋
,

and also the fact that ζρ� = 1 for � ≡ d+m (mod k).
To prove part (ii), we proceed similarly, additionally using where necessary the fact that for

� ∈ −N and |β| < |α|,

(α+ β)� =

∞∑
r=0

(
�

r

)
α�−rβr.(3.3)

(This well-known expansion can be deduced by multiplying [15, 4.6.7] by αa, with z = β/α, for
example.) We apply (3.3) in the case α = ρ and β = −q, and note that |q| < |ρ| = 1. That is, for
any term 1− ζ(ρ− q)� with � ∈ N encountered in expanding the product (ζ(ρ− q)d+1; ρ− q)N , we
proceed as above in the proof of (i). A direct calculation leads to the product Π4(N, q) under the
hypotheses given on N and d in its definition. For any term 1− ζ(ρ− q)� with � ∈ −N encountered,
we use (3.3). A direct calculation leads to the product Π3(N, q) under the hypotheses given in its
definition. Proceeding as in the proof of part (i) yields the claim in (ii). �
Proof of Proposition 3.1.
(ii): It follows by a straightforward calculation that

lim
N→∞

((wq; q)N − (wq; q)∞)
N−1∑
n=0

wn(3.4)

converges absolutely to 0 for all w 	= 1 in the closed unit disk. For such w, using (3.4) and the
definition of F2,N , we have that

0 = lim
N→∞

(
−F2,N (w; q) +

N−1∑
n=0

wn ((wq; q)n − (wq; q)∞)

)
,

hence, limN→∞F2,N (w; q) = F2(w; q). Letting N → ∞ in (3.1) of Lemma 3.3 yields part (ii) of
Proposition 3.1.
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(i): We use Lemma 3.4 and the definition of F (w; q), and find for d ∈ N0 that

F (ζ(ρ− q)d; ρ− q) = ζ(ρ− q)d +
∞∑
n=1

(ζ(ρ− q)d)n+1q�n−m
k

+1� ·Π1(n, q) ·Π2(n, q).(3.5)

The integers k and m are fixed, so for any j ∈ N0, there are at most finitely many n ∈ N such that⌊
n−m
k + 1

⌋
= j. If such an n exists for a given j, then we may define for j ∈ N0, the number

Nj = Nj(m, k) := max

{
n ∈ N

∣∣∣∣ ⌊n−m

k
+ 1

⌋
= j

}
.

If such an n does not exist for a given j, we define Nj = Nj(m, k) := 0. Thus, using (3.5) and
the definitions of Π1(n, q) and Π2(n, q), we have shown that when d ∈ N0, the coefficient of qj in
F (ζ(ρ − q)d; ρ − q) (as a series centered at q = 0) for any j ∈ N0 is the coefficient of qj in the
polynomial FNj+1(ζ(ρ − q)d; ρ − q) defined in (1.5). Making the change of variable � �→ ρ − q

(shifting the center to � = ρ), we thus have that for any d ∈ N0, F (ζ�d;�) is well defined as a
power series in � �→ ρ− q as claimed.

Similarly, when d ∈ −N, using Lemma 3.4 and the definition of F (w; q), we obtain

F (ζ(ρ− q)d; ρ− q) = ζ(ρ− q)d + ζ2(ρ− q)2d(1− ζρd+1 + qBd+1(q))

+

∞∑
n=2

(ζ(ρ− q)d)n+1q�n−m
k

+1� ·Π3(n, q) ·Π4(n, q).

For any j ∈ N0, similar to the number Nj , we define the numbers

Mj = Mj(m, k) := max

{
n ∈ N

∣∣∣∣ n ≥ 2,

⌊
n−m

k
+ 1

⌋
= j

}
if such an n exists for a given j; if not, we define Mj = Mj(m, k) := 1. Arguing as above, we have

that for d ∈ −N, for any j ∈ N0, the coefficient of qj in F (ζ(ρ − q)d; ρ − q) (as a series centered
at q = 0) is the coefficient of qj in the finite sum FMj+1(ζ(ρ − q)d; ρ − q). While FMj+1 is not
a polynomial in this case due to the presence of terms Bb(q), there are only finitely many Bb(q)
contributing to the finite sum FMj+1, and it is still the case that at most finitely many terms in

any such expansion contribute to the coefficient of any qj . Making the change of variable � �→ ρ−q
(shifting the center to � = ρ), we thus have that for any d ∈ −N, F (ζ�d;�) is well defined as a
power series in � �→ ρ− q.

Having established that F (ζ�d;�) is well-defined as a power series in � �→ ρ − q for any d ∈ Z,
we let x = ζ(ρ− q)d and y = ρ− q, and compute for N ∈ N that the difference between x−1F (x; y)
and the polynomial F2,N (x; y) is

x−1F (x; y)−F2,N (x; y) = (xy; y)N

N∑
n=0

xn +

∞∑
n=1

xN+n(xy; y)N+n.

From Lemma 3.4 and the definitions of the products Πj(N, q) (j ∈ {1, 2, 3, 4}), we may deduce that

(xy; y)N = O
(
q�N−m

k
+1�). Hence, the power series expansion of the function ζ−1(ρ− q)−dF (ζ(ρ−

q)d; ρ − q) (centered at q = 0) agrees with that of the function F2,N (ζ(ρ − q)d, ρ − q) up to (and

including) the
⌊
N−m

k + 1
⌋− 1 term in the series. As N → ∞,

⌊
N−m

k + 1
⌋→ ∞, using Proposition

3.1 (ii) established above, we have that (as series centered at q = 0)

F1(ζ(ρ− q)d; ρ− q) = F2(ζ(ρ− q)d; ρ− q) = ζ−1(ρ− q)−dF (ζ(ρ− q)d; ρ− q).

Making the change of variable � �→ ρ− q (shifting the center to � = ρ) proves the claim.
17



(iii): Zagier shows in [18] that the function

S(w) = Sq(w) :=

∞∑
n=0

(w; q)n+1w
n(3.6)

satisfies the two identities (recall χ(n) :=
(
12
n

)
)

S(w) =

∞∑
n=1

χ(n)w
n−1
2 q

n2−1
24 ,(3.7)

S(w) = (wq; q)∞ + (1− w)
∞∑
n=0

((wq; q)n − (wq; q)∞)wn.(3.8)

Combining this with Proposition 3.1 (ii) proves (iii). �

3.1.2. Equivalence of (1.9) and (1.10). To establish the equivalence of the two expressions (1.9)
and (1.10) defining our quantum modular forms φa,b,c(x), we first establish a recursive relationship
satisfied by the function S(w) defined in (3.6).

Lemma 3.5. For k ∈ N, we have

S(w) = −
6k−1∑
n=1

χ(n)w−
n+1
2 q

n2−1
24 + χ(6k − 1)w−3kq

k(3k−1)
2 S(q−kw).(3.9)

Proof of Lemma 3.5. We proceed by induction on k. In [19], Zagier proves that

S(w) = 1− qw2 − q2w3S(qw).

As such, we have that S(q−1w) = 1− q−1w2 − q−1w3S(w), which is equivalent to

S(w) = −w−1 + qw−3 − qw−3S(q−1w)(3.10)

as desired in the case k = 1. Now assume for some k ∈ N that (3.9) holds. Using (3.10) with
w → q−kw, we have that

S(q−kw) = −qkw−1 + q3k+1w−3 − q3k+1w−3S(q−(k+1)w).

We substitute the above equation into (3.9) and notice that

χ(6k − 1)w−3kq
k(3k−1)

2 (−qkw−1) = −χ(6k + 1)w−3k−1q
k(3k+1)

2 ,

χ(6k − 1)w−3kq
k(3k−1)

2 (q3k+1w−3) = −χ(6k + 5)w−3k−3q
3k2+5k+2

2 ,

to obtain S(w) = −
6k+5∑
n=1

χ(n)w−
n+1
2 q

n2−1
24 +χ(6k+5)w−3(k+1)q

(k+1)(3k+2)
2 S(q−(k+1)w) as desired. �

Having established Lemma 3.5, we apply it with k = �bc/12, w = ζ−ab , and q = e(12x/�b), to
obtain (using the notation S(w) = Sq(w))
(3.11)

Se(12x/�b)

(
ζ−ab

)
= −

�bc

2
−1∑

n=1

χ(n)ζ
a(n+1)
2b e

(
n2 − 1

2�b
x

)
+ζa�bc4b e

(
xc2�b
8

)
e

(−xc

2

)
Se(12x/�b)(ζ

−a
b e(−cx)).

Next, noting that Sq(w) = w−1(1− w)F (w; q), we rewrite

2(i�b)
1
2 ζ−a�bc4b (ζ−ab − 1)e

(
x

2�b

)
F
(
ζ−ab ; e (12x/�b)

)
= −2(i�b)

1
2 ζ−a�bc4b ζ−ab e

(
x

2�b

)
Se(12x/�b)

(
ζ−ab

)
.
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Applying equation (3.11), we obtain

2(i�b)
1
2 ζ−a�bc4b (ζ−ab − 1)e

(
x

2�b

)
F
(
ζ−ab , e (12x/�b)

)
= −2(i�b)

1
2 e

(
(�bc+ 2)2x

8�b

)
ζ−ab e(−cx)Se(12x/�b)

(
ζ−ab e(−cx)

)
+2(i�b)

1
2 ζ−a�bc4b

�bc

2
−1∑

n=1

χ(n)ζ
a(n−1)
2b e

(
n2x

2�b

)
= 2(i�b)

1
2 e

(
(�bc+ 2)2x

8�b

)(
ζ−ab e(−cx)− 1

)
F
(
ζ−ab e(−cx); e (12x/�b)

)
+ 2(i�b)

1
2 ζ−a�bc4b

�bc

2
−1∑

n=1

χ(n)ζ
a(n−1)
2b e

(
n2x

2�b

)
,

from which we deduce the equivalence of (1.9) and (1.10).

3.2. Modularity. Here, we establish a number of modular results, and use them together with
our q-hypergeometric results from Section 3.1 to ultimately prove Theorem 1.8 and Proposition
1.14. Let b ∈ N, and let �b := lcm(b, 12). We let a ∈ Z, c ∈ 2Z, with gcd(a, b) = 1, and define for
τ ∈ H := {x+ iy : x, y ∈ R, y > 0} the function

ϑa,b,c(τ) :=
∑
n∈Z

(
n+

�bc

2

)
χ(n) (ζab )

n−1
2 q

(n+�bc/2)
2

2�b .(3.12)

We show in Lemma 3.6 that ϑa,b,c is an ordinary modular form on the congruence subgroup

Γ(2�b) :=
{(

α β
γ δ

)
:
(

α β
γ δ

)
≡ ( 1 0

0 1 ) (mod 2�b), αδ − βγ = 1
}
⊆ SL2(Z)

with respect to the multiplier ψ�b defined for matrices M =
(

α β
γ δ

)
∈ Γ(2�b) by

ψ�b(M) :=

(
�b
δ

)(
2γ

δ

)
ε−1δ ,(3.13)

where as usual,
( ·
·
)
denotes the Kronecker symbol, and

εδ :=

{
1, δ ≡ 1 (mod 4),

i, δ ≡ 3 (mod 4).

Lemma 3.6. For any M =
(

α β
γ δ

)
∈ Γ(2�b) and τ ∈ H, we have that

ϑa,b,c(Mτ) = ψ�b(M)(γτ + δ)
3
2ϑa,b,c(τ).

Next we define a “period integral” of our modular theta function ϑa,b,c, namely, the function
ϑ∗a,b,c, which is defined on the lower-half of the complex plane H− := {z ∈ C | Im(z) < 0}. In
order to remain consistent with our previous notation, we let τ ∈ H as usual, and define ϑ∗a,b,c with
respect to the variable τ ∈ H−, the complex conjugate of τ , as follows:

ϑ∗a,b,c(τ) :=
∫ i∞

τ

ϑa,b,c(u)√
u− τ

du.

Using the modular properties of the theta function ϑa,b,c(τ) established in Lemma 3.6, we establish
near modular properties of the integral ϑ∗a,b,c(τ) in Lemma 3.7.
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Lemma 3.7. For any M =
(

α β
γ δ

)
∈ Γ(2�b) and τ ∈ H, we have that

ϑ∗a,b,c(Mτ)− (γτ + δ)
1
2ψ�b(M)ϑ∗a,b,c(τ) = −(γτ + δ)

1
2ψ�b(M)

∫ i∞

− δ
γ

ϑa,b,c(u)√
u− τ

du.

Proof of Lemma 3.6. For any N ∈ Z, we define

θN,b(τ) :=
∑
n∈Z

n≡N (mod �b)

nq
n2

2�b .

By definition, the function θN,b(τ) is equal to Shimura’s theta function θ(τ,N, �b, �b;x) (that is,
P (x) = x) defined in [16]. By applying [16, Proposition 2.1], and simplifying, using the fact that

M ∈ Γ(2�b), we find that for any b ∈ N, N ∈ Z, M =
(

α β
γ δ

)
∈ Γ(2�b) and τ ∈ H, that

θN,b(Mτ) = ψ�b(M)(γτ + δ)
3
2 θN,b(τ).(3.14)

Next, we re-write

ϑa,b,c(τ) =
∑
n∈Z

(
n+

�bc

2

)
χ(n) (ζab )

n−1
2 q

(n+�bc/2)
2

2�b

=
∑

s∈{1,5,7,11}
χ(s)

∑
n∈Z

n≡s (mod 12)

(
n+

�bc

2

)
(ζab )

n−1
2 q

(n+�bc/2)
2

2�b

=
∑∗

k (mod b)

s∈{1,5,7,11}

χ(s) (ζab )
k−1
2

∑
n≡s+ �bc

2
(mod 12)

and

n≡k+ �bc

2
(mod b)

nq
n2

2�b ,

where
∑∗

denotes that the summation is only taken over those pairs (k, s) for which

gcd(b, 12) | (k− s). In this case (and only this case, by the Chinese remainder theorem), there is a
unique solution to the system of congruences{

n ≡ s+ �bc
2 (mod 12),

n ≡ k + �bc
2 (mod b),

modulo �b := lcm(12, b), i.e. n ≡ N(s,k,b) (mod �b) for some integer N(s,k,b). Thus, we may re-write
the function ϑa,b,c(τ) as ∑∗

k (mod b)

s∈{1,5,7,11}

χ(s) (ζab )
k−1
2 θN(s,k,b),b(τ).(3.15)

Lemma 3.6 now follows by applying (3.14) to (3.15). �

Proof of Lemma 3.7. Lemma 3.7 follows by making straightforward changes of variables in the
integral, combined with Lemma 3.6. To be precise, for M ∈ Γ(2�b), we have

ϑ∗a,b,c(Mτ) =

∫ i∞

Mτ

ϑa,b,c(u)√
u−Mτ

du.
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Letting u = Mv, and applying Lemma 3.6, after some simplification, we obtain

ϑ∗a,b,c(Mτ) =

∫ − δ
γ

τ

(
ϑa,b,c(Mv)√
Mv −Mτ

· dv

(γv + δ)2

)
= −(γτ + δ)

1
2ψlb(M)

∫ τ

− δ
γ

ϑa,b,c(v)√
v − τ

dv.

Hence, we have that

ϑ∗a,b,c(Mτ)− (γτ + δ)
1
2ψlb(M)ϑ∗a,b,c(τ) = −(γτ + δ)

1
2ψlb(M)

∫ i∞

− δ
γ

ϑa,b,c(u)√
u− τ

du,

as desired. �

Having established the modularity of our theta function ϑa,b,c(τ) and the near modularity of
its period integral ϑ∗a,b,c(τ) in Lemma 3.6 and Lemma 3.7, we are nearly ready to prove Theorem
1.8. Our last needed ingredient is Lemma 3.8 below, which will allow us to study the asymptotic
behavior of the period integral ϑ∗a,b,c(τ), where τ = x+ iy ∈ H, as y → 0+.

Lemma 3.8. Let τ = x + iy ∈ H (i.e. x, y ∈ R, with y > 0). With notation and hypotheses as
above, we have that

ϑ∗a,b,c(τ) =(i�b)
1
2

∑
n>0

χ(n)ζ
a(n−1)
2b e

(
(n+ �bc/2)

2 τ

2�b

)
erfc

(
(n+ �bc/2)

√
2πy

�b

)

+ (i�b)
1
2

∑
0<n<�bc/2

χ(n)ζ
−a(n+1)
2b e

(
(−n+ �bc/2)

2 τ

2�b

)
erfc

(
(−n+ �bc/2)

√
2πy

�b

)

− (i�b)
1
2

∑
n>�bc/2

χ(n)ζ
−a(n+1)
2b e

(
(−n+ �bc/2)

2 τ

2�b

)
erfc

(
(n− �bc/2)

√
2πy

�b

)
.

Here, erfc(z) := 2√
π

∫∞
z e−u2

du is the complementary error function.

Proof of Lemma 3.8. We substitute the definition of ϑa,b,c(u) into the integral defining ϑ∗a,b,c and

integrate term by term, making the change of variable 2πi(n + �bc
2 )2(u − τ)/(2�b) = −w2 in the

integral. After some simplification, we find that

(3.16) ϑ∗a,b,c(τ) = (i�b)
1
2

∑
n∈Z

χ(n)ζ
a(n−1)
2b e

(
(n+ �bc/2)

2 τ

2�b

)⎛⎝ 2√
π

∫ sgn(n+�bc/2)·∞

(n+
�bc

2
)
√

2πy
�b

e−w
2
dw

⎞⎠.

Hence, splitting the sum in equation (3.16) into three sums, n > 0, 0 > n > − �bc
2 and n < − �bc

2
(noting that the summands equal zero for n = 0 and n = −�bc/2), and changing all indices of
summation to positive, we obtain

ϑ∗a,b,c(τ) =(i�b)
1
2

∑
n>0

χ(n)ζ
a(n−1)
2b e

(
(n+ �bc/2)

2 τ

2�b

)
erfc

(
(n+ �bc/2)

√
2πy

�b

)

+ (i�b)
1
2

∑
0<n<

�bc

2

χ(n)ζ
a(−n−1)
2b e

(
(−n+ �bc/2)

2 τ

2�b

)
erfc

(
(−n+ �bc/2)

√
2πy

�b

)

− (i�b)
1
2

∑
n>

�bc

2

χ(n)ζ
a(−n−1)
2b e

(
(−n+ �bc/2)

2 τ

2�b

)
erfc

(
(n− �bc/2)

√
2πy

�b

)
.

�
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Proof of Theorem 1.8. Let τ = x + iy ∈ H, with x ∈ Sb and y > 0. Using Proposition 3.1 and
Lemma 3.8, we find after a short calculation that the asymptotic expansions of the functions φa,b,c(τ)
and ϑ∗a,b,c(τ) as power series in y coincide. To be more precise, using the fact that erfc(0) = 1, we

see from Lemma 3.8 that, formally, letting y → 0+, ϑ∗a,b,c(x) equals

(i�b)
1
2

∑
n>0

χ(n)ζ
a(n−1)
2b e

(
(n+ �bc/2)

2 x

2�b

)
+ (i�b)

1
2

∑
n>0

χ(n)ζ
a(−n−1)
2b e

(
(n− �bc/2)

2 x

2�b

)
− 2(i�b)

1
2

∑
n>

�bc

2

χ(n)ζ
a(−n−1)
2b e

(
(n− �bc/2)

2 x

2�b

)
.(3.17)

On the other hand, for x ∈ Sb, a short calculation reveals that
(
(ζ±ab e(±cx); e

(
12x
�b

))
∞

= 0. Using

this fact together with (repeated applications of) Proposition 3.1, we find that, formally, letting
y → 0+, φa,b,c(x) also equals the expression in (3.17). That is, as y → 0+, φa,b,c(τ) ∼ ϑ∗a,b,c(τ).
(This is made more formal as argued in [11] using a Mellin transform.) Thus, the function φa,b,c

inherits its near modular properties on Q from ϑ∗a,b,c. Precisely, from Lemma 3.7, we have for τ ∈ H

and M ∈ Γ(2�b) that

ϑ∗a,b,c(τ)− (γτ + δ)−
1
2ψ−1�b

(M)ϑ∗a,b,c(Mτ) =

∫ i∞

− δ
γ

ϑa,b,c(u)√
u− τ

du.(3.18)

The function ϑa,b,c(u) appearing in the integral in (3.18) is a cusp form. Hence, we may deduce
(as argued in [11, 19], for example) that this error to modularity of ϑ∗a,b,c(τ) appearing on the

right hand side of (3.18) as y → 0+ is real-analytic for x ∈ Sb such that γx 	= −δ. Moreover, a
short calculation reveals that the functions φa,b,c(x) and φa,b,c(Mx) exist (and are finite sums) for
x ∈ Sb satisfying γx 	= −δ. To be precise, with integers a, b, c and rational number x = h/k ∈ Sb

satisfying the given hypotheses, there exists some integer h̃ such that hh̃ ≡ 1 (mod �bk
12 ). We define

the numbers N±
h,k = N±(a, b, c, h, k) to be the unique integer 1 ≤ N±

h,k ≤ �bk
12 satisfying

N±
h,k ≡ h̃

(
∓a�bk

12b
∓ ch�b

12

)(
mod

�bk

12

)
.(3.19)

We also define the numbers

H = HM (h, k) :=

{
αh+ βk, γh+ δk > 0,

−αh− βk, γh+ δk < 0,
(3.20)

K = KM (h, k) := |γh+ δk|.(3.21)

Using this notation, we see that the strange functions used to define φa,b,c(
h
k ) in (1.10) are in fact

finite sums; that is, F
(
ζ±ab ζ±chk ; ζ12h�bk

)
= FN±

h,k

(
ζ±b ζ±chk ; ζ12h�bk

)
. Similarly, φa,b,c(M

h
k ) = φa,b,c(

H
K ),

and the strange functions used to define φa,b,c(
H
K ) are finite sums. Thus, all functions on the left

hand side of (1.13) exist (and are calculated explicitly as polynomials in roots of unity in Corollary
1.11). Combining all of these facts, we may conclude that φa,b,c(x) is a quantum modular form of
weight 1/2, and transforms as claimed in (1.13) of Theorem 1.8. Using this result, by the hypotheses

on a, b and c, we also have that the function Φ
(N)
a,b,c(x) is a quantum modular form of weight 1/2,

and transforms as claimed in (1.12) of Theorem 1.8. �
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3.3. Asymptotics. For a ∈ Z, and b ∈ N satisfying gcd(a, b) = 1, we define for n ∈ Z the function

Ca,b(n) := χ(n)ζ
a(n−1)
2b .

For ease of notation, for the remainder of this section, we will write C(n) for Ca,b(n).

Lemma 3.9. With hypotheses and notation as above, the following are true.

(i) For all b ∈ N and n ∈ Z, we have that C(n+ 12b) = C(n).

(ii) For all b ∈ N\{6}, we have that

12b∑
n=1

C(n) = 0.

Proof of Lemma 3.9. That (i) holds follows using the definition of C(n). To prove (ii), we first
recall that gcd(a, b) = 1. We have

12b∑
n=1

χ(n)ζ
a(n−1)
2b =

b−1∑
m=0

ζ
a(12m+1−1)
2b − ζ

a(12m+5−1)
2b − ζ

a(12m+7−1)
2b − ζ

a(12m+11−1)
2b

= (1− ζ2ab − ζ3ab + ζ5ab )

b−1∑
m=0

ζ6ma
b .

Let A1 = A1(a, b) := (1− ζ2ab − ζ3ab + ζ5ab ) and let A2 = A2(a, b) :=
∑b−1

m=0 ζ
6ma
b . For b ∈ {1, 2, 3}, it

is not difficult to see that A1 = 0. For b ∈ N \ {1, 2, 3, 6}, let g = gb := gcd(b, 6), let b′ := b/g, and
let s := 6/g ∈ {1, 2, 3, 6}. We re-write

A2 =

b−1∑
m=0

ζ6ma
b =

b−1∑
m=0

e2πi(sma/b′) = g

b′−1∑
m=0

e2πi(sma/b′).

Since gcd(b′, s) = 1, the last sum above equals g
∑b′−1

r=0 e2πi(ra/b
′) = 0. Hence, for all b ∈ N \ {6}, we

have shown that
∑12b

n=1C(n) = 0, as claimed. �

Proof of Proposition 1.14. By Proposition 3.1, with q = e−24t, t ∈ R+, and w = ζab , we have that

e−t(ζab e
−24t; e−24t)∞ + e−t(ζ−ab − 1)F (ζab ; e

−24t) =
∞∑
n=1

C(n)e−n
2t.(3.22)

Using Lemma 3.9, for all b ∈ N \ {6}, by a Proposition (§3, p98) in [11], as t → 0+, we have that

∞∑
n=1

C(n)e−n
2t ∼

∞∑
r=0

L(−2r, C)
(−t)r

r!
,

where

L(−r, C) = −(12b)r

r + 1

12b∑
n=1

C(n)Br+1

( n

12b

)
,

where Br(z) denotes the rth Bernoulli polynomial. Considering the infinite product that appears
in (3.22),

e−t(ζab e
−24t; e−24t)∞ = lim

N→∞
e−t(ζab e

−24t; e−24t)N = lim
N→∞

(1− ζab )
N = 0

as t → 0+, which follows from the fact that |1−ζab |2 = 2−2 cos(2πa/b) < 1 when cos(2πa/b) > 1/2.
To prove (1.22), we observe using a similar argument to the one given above, that F (ζab ; 1) exists
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for a and b under the hypotheses given. Thus, letting t → 0 in (1.23) shows that (ζ−1b − 1)F (ζab ; 1)
equals

−
2b∑

n=1

C(n)

(
n

12b
− 1

2

)
= − 1

2b

2b∑
n=1

nC(n),

where we have used that B1(x) := x− 1/2, and also Lemma 3.9. �
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