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0. Introduction

Drinfeld modular forms are the function field analogue to classical elliptic modular
forms. The origins of this theory go back to Drinfeld’s central work [5], which has been
made more accessible to a wider audience by Deligne and Husemoller [4]. For early work
on function field modular forms see for example Goss [9,10] or Gekeler [6].
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However, until now Drinfeld modular forms have not been studied from a represen-
tation theoretic point of view. In the present paper we examine the interaction of these
two concepts.

Group actions arise naturally from the definition of Drinfeld modular forms. We focus
on the case of modular forms of level T (where A = F,[T] is the base ring) for two
reasons: On the one hand, the structure of the algebra of modular forms of level T is
well-known. The principal results are due to Cornelissen, see [3]. I have expanded upon
these in [12]. On the other hand, restriction to level T allows us to focus on actions of the
group G = GL(2,F,); the modular representation of which has been studied extensively
before, see for example [2] and [14].

The basic idea of our approach can be applied to the general case of modular forms
of level N. However, both the algebra of modular forms as well as the group action will
be more complicated in this case. Therefore, the generalization of the present results is
non-trivial.

The aim of the present paper is to determine the G-module structure of naturally
occurring modules of Drinfeld modular forms. Specifically, we provide identifications
with classical G-modules such as symmetric powers of the tautological two-dimensional
module V. In general our results are given explicitly in terms of distinguished bases.

The principal results are Theorem 2.5, which describes the modules of Eisenstein
series, Theorem 3.2, in which we state the connection between modular forms of weight
k and certain symmetric powers of V', Theorem 4.7 and Theorem 4.14, which describe
the smallest non-trivial submodule and the successive quotients of the cusp filtration,
respectively, and Theorem 5.3, in which we identify modules of cusp forms with twisted
symmetric powers of V.

The present paper is a summary of chapters 7 through 9 of the author’s dissertation
[11], with some additional content from chapter 10.

Also, it is a continuation of prior articles [12] and [13]. These preliminaries are briefly
summarized in section 1 of the present work. Specifically, we fix notation for the objects
of interest in the Drinfeld setting and for the necessary tools from modular representation
theory.

In the second section we study the action of G on the module of Eisenstein series,
which is central to the results of the following sections.

In the third section we show that the module of modular forms of weight k& is isomor-
phic to Sym* (V).

The fourth section deals with the cusp filtration. We study relations between filtrations
of different weights and describe the G-module structure of the successive quotients using
results from [12].

In the final section we apply results from [13] to identify modules of cusp forms with

determinant twists of symmetric powers of V.
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1. Preliminaries

In this section we provide a brief recap of the Drinfeld situation as well as the necessary
concepts from modular representation theory.

On the Drinfeld side we focus on modular forms of level T'. That is, we are dealing
with the same situation as in [12]. Consider again the following basic notation:

1.1. Notation. Let ¢ = p” be a prime power. Let A = [F,[T] be the ring of polynomials
over the field with ¢ elements and K = F (T) its field of quotients. On K we fix the
normalized absolute value “|-|” induced by the degree valuation on A. The completion
of K with respect to this absolute value is Ko, = F,[[T!]], the field of formal Laurent
series in 7!, The algebraic closure of K., is not Aitself complete with respect to the
unique continuation of “|-|” Its completion C,, = K, is, however, again algebraically
closed. We call Q = Co \ Koo the Drinfeld upper half-plane.

The full modular group T'(1) = GL(2, A) acts on  from the left via Mdbius transfor-
mation. In this paper, we focus on the principal congruence subgroup of level T’

N(T) = {(Ccl Z) €eTl1l)|la=d=1mod T, bECEOmOdT}.
In particular, by a modular form we always mean a Drinfeld modular form of level T,

that is, a rigid analytic function f : Q — C. that is holomorphic on € and at the cusps
of I'(T"), and satisfies

fliye (2) = (cz + d)_kf('yz) = f(z) forally= ((cl Z) e I(T) (1)

for some number ky € N, which is called the weight of f.

A more detailed explanation of this concept can be found in [12, Definition 1.3], which
is in turn a summary of [8]. Holomorphy at the cusps is defined in terms of a Fourier
expansion at each cusp with a vanishing principal part. This allows the definition of
the concept of cusp forms, with a cusp form of order n being defined as a modular
form possessing a Fourier expansion of shape ) .. a,7(2)" at each cusp (here, 7(z) is
a uniformizer akin to e>™* in the classical case).

Modular forms of level T' form a graded C-algebra M = &, M., where M}, is the
space of all modular forms of weight k. From the fact that the line bundle of modular
forms of weight 1 has degree ¢ (see [6, VII, (6.1)]) it follows that dim My, = kg + 1. The
cusp forms of order n form the subspace M;' C M;,. The resulting filtration of finite
length

M =M, DM DMED. ..

is called the cusp filtration.
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A very important tool to describe explicit bases are the Eisenstein series. As in the
classical case, they are given by certain lattice sums

Eﬁk)(z)::% 2 <az1+b>k

(a,b)cA?
(a,b)=v mod T

with v € F2 \ {(0,0)}. Here we use the same notation as in [12], which follows [3]. In
particular, omission of k indicates Eisenstein series of weight 1. For a more in-depth
background see for example [10].

Cornelissen shows that for k£ € N the Eisenstein series

B =EY, uel,

BE® = E{),,
form a basis of Eisy, the span of the Eisenstein series of weight k [3, TV, Proposition 1.1].
At the same time, he proves the direct sum decomposition of vector spaces My = Eis, &
M ,% In particular, by a simple dimension argument it follows that there are no non-trivial
cusp forms of weight 1 in the present situation.

In addition, Cornelissen shows in [3, ITII, Theorem 3.4] that the algebra M is generated
by modular forms of weight 1, that is, by Eisenstein series. The ideal of relations between
products of Eisenstein series is described explicitly.

In [12], I have restated these relations and extended them to higher weights by using
modified Eisenstein series. These are special linear combinations of the ordinary Eisen-
stein series based on work of Cornelissen (in particular the proof of his Theorem 3.4
mentioned above).

1.2. Definition. For £ € N put

81-(’6) = Z uiEl(Lk)7 0<i<qg-—-1,

u€F,
E® = Z uPER + ER)
u€l,

with the convention 0° = 1. Again we may omit k for weight & = 1 and write additionally
&y = 5@3).

With this notation, the ideal of relations is generated by the expressions
gigj - gi715j+1 for 1 S ) Sj S q— 1 (2)

(the corresponding restatement of Cornelissen’s result is given in [12, Theorem 2.3]).
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Another relation important to our calculations is
EEY = (-1)F&_wEY, 0<k<i<g, (3)

see [12, Lemma 2.7].

We call a product of modified Eisenstein series of weight 1 a standard monomial if
at most one factor & with b # 0, ¢ occurs. The standard monomials of weight &k form a
basis of My, [12, Corollary 2.6].

To describe the structure of the cusp filtration we fix the unique decomposition

k=t+eq+1) with 1<e<q+1.

We can show that the length of the cusp filtration is m(k) := U%J, see [12, Corol-

lary 4.10]. Also, we have constructed a basis of M} that is compatible with this filtration
in the sense that the intersection of the basis with a subspace of the filtration produces
a basis of this subspace.

1.3. Theorem. Let k > 2. For each 1 < i <m(k) — 1 we define a set Bi, consisting of the
modular forms

R =g TG B, 0<b<q-1,
FEM = (—1)ief B},

Let further B,‘:(k) be the set with elements
FmEk . _ e mr®) g <b<g41-t
Finally, for 1 <i <m(k) we define

Bz’+ = U Bi (disjoint union,).
i<j<m(k)

Then BIZ’JF is a basis of M}.
For the proof and further properties, see [12, Section 4].
1.4. Notation. To obtain a more uniform notation we write
BY = {.7:150’1) =& 0<b<q}

for the basis of Mfl M _ M; = Eis; that consists of the modified Eisenstein series of
weight 1.
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In the present paper, we are particularly interested in the following group action: The
definition of f|[,}, in (1) induces a right group action of the full modular group on the
algebra M of modular forms of level T

The behavior of the ordinary Eisenstein series under this group action is known to be
as follows:

1.5. Lemma (/3, I, (6.3)]). Let k € N. Let v € I'(1). We have
E{9|1),(2) = E)(2)
Jor allv e F2\ {(0,0)}. Here vy denotes the usual (row-)vector matriz product.

By definition the subgroup I'(T) acts trivially on M, so that we can restrict ourselves
to the action of the quotient group

G = GL(2,F,) =T(T)\I'(1).
In fact, we focus on the corresponding left action induced by

Yf = fliy-1). (4)

for v € G and f € M.

One sees easily that subspaces of shape My, Eisy, and M} are closed under the action
of G.

In order to study the arising structures, we apply modular representation theory and
consider the concept of a G-module. Here, we use the same language as in [13]. That is,
we identify G-modules (modules for the group algebra C,[G]) and linear representations
of G over Coo.

Note that according to [13, Remark to Notation 1.3] all results can be transferred to
the present situation despite the fact that we are using the base field Cy in place of Fq.

We describe the structure of naturally occurring G-modules by identifying them with
classical modules. For this application the tautological two-dimensional module V' and
its symmetric powers Sym”(V), n € Ny, are of particular interest to us.

As a vector space V = C% and G acts from the left by matrix multiplication. The
symmetric algebra of V' admits a graduation Sym(V) = @, -, Sym" (V). The natural
action of G on V gives rise to G-module structures on the sy;nmetric algebra Sym(V)
and the symmetric powers Sym" (V) of V.

If we write (X,Y) for the standard basis of V, the monomials (X"~Y? | 0 < i < n)
form a basis of Sym" (V). With regard to the following calculations, we observe that a

@) € G acts on a monomial X"V € Sym"™(V), 0 < i < n, via

matrix (c d

(‘; Z) XY = (aX +cY) (X + dY)'. (5)
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Also, we note that the group G is generated by the matrices of shape (g (1)), ( (1) 1) and
((1) 0) where a and ¢ pass through F.

Furthermore we will encounter determinant twists of G-modules, by which we mean
modules of shape M ®(det)™ where (det)™ is the n-th power of the determinant character.
That is, as a vector space (det)” = Co, and the action of a matrix v € G is given by
~yx = (detv)"z for x € Cop

See [13, Section 1] for additional details.

Symmetric powers are related to the following class of modules, which also plays an
important role in our applications. It has been studied extensively by Bardoe and Sin
[1], albeit in a slightly different context (cf. [13, Remark to Notation 2.1]).

1.6. Notation. Let B < G be the standard Borel subgroup of upper triangular matrices.
For 1 < § < q— 1 define the induced G-module N[§] := Ind$(xs), where s is the
character of B that acts by
a b k)
w(i )=

We have dim N[§] = ¢ + 1 for all § and write N[§, n| for N[§] ® (det)™.

In the corresponding definition in [13] we chose the analytic implementation of the
induced representation. However, for the applications in the present work it is sufficient
to know that N[0] has a basis (fi(é), fég) |0 <i<gqg—1) (see [13, Lemma 2.4]), which
satisfies the following transformation properties:

1.7. Lemma (/13, Lemma 2.5]). Let 1 <6 < q— 1. The generators of G act on the basis
(fO, 110 <i < q—1) of N[6) by

P =a P 0<i<q-1,

d—1
(09 rO =310 + £,
§=0

FO =D 1<i<s—1,

f'(é):féi)1+57ia 5§Z§q—17
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Thanks to results from [1], the structure of a module of this class is understood
entirely. In particular, we can describe their submodule lattices and their composition
factors. A version of their results adjusted to the present notation can be found in [13,
Theorem 2.17].

One important original result from [13] is the following G-module filtration for sym-
metric powers.

1.8. Theorem. Let n € N with unique decomposition n =n+n(qg+1), 0 <n < gq. Then
Sym" (V') admits a filtration of G-submodules

{0y ¢ L0 ¢ L7t oo g L) € 2O = Sym™(V),

where the inclusion maps are induced by multiplication with the eigenvector XY 94— XY
of Sym(V) and

L) = §ym" =1 (V) @ (det)’  for 0 <i <A
In particular, the submodule L(n) :== L™ C Sym™ (V) is the image of
Sym"~(+D(V) @ (det)!

under multiplication with XY 1 — XY .
For 0 <i<n—1 the successive quotients satisfy

L(i,n)/L(H‘L") =~ N[TL — 2, Z]

Proof. The structure of the filtration is described in [13, Theorem 3.6]. For the role of
the eigenvector XY? — X9Y see also Lemma 3.1 from the quoted article. O

2. The module of Eisenstein series

Since the algebra M of Drinfeld modular forms is generated by Eisenstein series, we
begin with the modules Eisg, k& € N. Applying Lemma 1.5, we can describe explicitly the
action of the generators of G' on the ordinary Eisenstein series.

2.1. Lemma. Let k € N. The generators of G act on the ordinary Fisenstein series as
follows:

E® =d*E®R 4 cF,,

u € Fy,

u—t

)
)
) Er,(lk) — E(k)
) £ = 519,
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(O EP =u*ED, weFy,
(EE
(43) B = 5"

Furthermore,
(¢°YEP =d*EP, uweF,,
(59) B®) = .

Proof. The fact that a scalar matrix acts by multiplication with a constant follows from
the fact that scalar matrices act trivially on 2. Using Lemma 1.5 we obtain for u € F,

(a 0) E’[(Lk) — E(k) _ E(k) _ E(k) _ akE(k)

" o) T e )

Note the additional inverse in the definition of the left action of G on M, cf. (4). The
remaining formulae are obtained analogously. O

As a consequence of Definition 1.2, the corresponding result for the modified Eisenstein
series is now immediate.

2.2. Lemma. Let k € N. The modified Eisenstein series possess the following transfor-
mation properties under the generators of G:

(29 e =d e, 0<i<q-1,
(57) €8 =€,
(1) & =2 ()gl. 0<i<q-1,
3=0
[k]—1
(51) €8 =3 (gl + e,
j=0
(1o) &Y =&l 1<i<k-1,
(Vo) & =& 0 Wi,
(V0) & =€,
(15) e =&

Here, [k] denotes the representative of k modulo ¢ —1 in {1,...,q—1}.
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The modified Eisenstein series of weight 1 are of particular interest for our applica-

tions:

2.3. Corollary. For 0 <1 < q we have

(39) & — e

i

(o1) &= (e,
=0

01
(1 o)gi =Eq—i-
In particular, we observe
1
(1) & =tE + &

Not only do we see that the structure of Eisy depends only on k mod g — 1, but we
can identify the modules of Eisenstein series with a class of well-known G-modules.
Before we state this result, let us briefly recap some module theoretic properties:

2.4. Definition. Let W be a G-module.

1. We say W is multiplicity free if all composition factors in a composition series of W
occur with multiplicity one.

2. The socle of W is the sum of all simple submodules of W. It is the largest semi-simple
submodule of W.

3. The head of W is the largest semi-simple quotient of W.

2.5. Theorem. Let k € N. The map Eisy, — N[k| given by

e o f 0<i<q-1,
£99 o 10

and linear extension is a G-isomorphism.

1. For k # 0 mod q—1 the submodule lattice and the composition factors of Eisy can be
parametrized as in [13, Theorem 2.17]. In particular, the module Eisy, is multiplicity
free and its socle and head are both simple G-modules.

2. If k is congruent to 0 modulo ¢ — 1, the module Eisy is semi-simple and isomor-
phic to the direct sum Cop ® Sym? (V) of simple G-modules. The one-dimensional
submodule is generated by

EF — B +e®).
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Proof. The given map is obviously an isomorphism of vector spaces. Its G-equivariance
follows immediately, if we compare the transformation properties stated in Lemma 1.7
and Lemma 2.2.

The structure of the modules Eisj, can be read off from the main results for the modules
N|d] given in [13], specifically Theorem 2.17 and Proposition 2.18 (as a modification of
[1, Theorem C]). O

Remark. Frobenius reciprocity (cf. [13, Proposition 2.6]) implies that the isomorphism
from Theorem 2.5 is unique up to a scalar factor in Co, for k # 0 mod ¢ — 1.

In the second case, the isomorphism splits into a pair of two isomorphisms between
the respective direct summands. Both isomorphisms in this pair are again unique up to
a scalar factor.

Again, we take a closer look at the situation for weight 1 where Eis; = M;. Corol-
lary 2.3 implies immediately the existence of an isomorphism of G-modules Eis; =2
Sym?(V') (the corresponding result for N[1] is given in [13, Proposition 2.19]).

In this special case, the G-module structure can be described explicitly:

2.6. Theorem.
1. If q is 2, the module Eis; = Sym? (V) admits a direct sum decomposition

Eis; = <80,52> D <50 + & —|—52> .
—_ ——

>~V ~Coo

2. For q > 2 the G-module Eisy is multiplicity free and uniserial (that is, its submodules
are totally ordered under inclusion). Its r + 1 many non-zero submodules are given

by
U; ::<5j|0§j§q,j50modpr_i>, 0<i<r
In particular, dim U; = p' + 1. The unique composition series of Eis; is
{0} U, CU; € ... CU,. =Eis;

with composition factors

and

U/Ui—1 =6 (p" —2p" ", p" ") for1<i<r.
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Here, G(m, p) is the unique simple submodule of Sym™ (V) @ (det)* (we use the same
classification of the simple G-modules as described in [13, Theorem 1.9]).

Proof. The statement for ¢ = 2 follows immediately from the second case of Theorem 2.5.

Let therefore ¢ > 2. In order to prove that each U; is a submodule of Eis; we only
have to show that it is closed under the action of G. Thus, for 0 <4 < r consider &; € U;
with j = 0 mod p"~. We observe (£V) E; = a?7€; € U; and ({})& = &; € Us.
Finally, we get

J

(61)&=>_ (e

=0

Here, (i) vanishes in characteristic p for [ # 0 mod p"~¢ due to the congruence satisfied by
j (an immediate application of the Lucas congruence). Consequently, we have (é i )€€
U;.

The remaining statements concerning the composition series are a direct consequence
of the special structure of the parametrizing sets in [13, Theorem 2.17] for the case

0=1. O

The submodule lattice of Eis; = Mj for ¢ > 2 gives rise to a second submodule
filtration on My, k > 2, besides the cusp filtration: From Cornelissen’s result [3, I11,
Theorem 3.4] we know that there is a surjective map Sym®(M;) — M;. We can now
study the images of Symk(Ui) in My under this map for each 3.

In general, the relation between this filtration and the cusp filtration remains an open
question. Initial results can be obtained by means of a suitable interpretation of results
presented in [12]. For example, Theorem 3.6 from the cited paper implies that Symk(UO)
is a submodule of Eis; for & < ¢. Some further results for the case k < ¢ can be found
in [11, Section 8.2].

3. The module M,

Next, we use the transformation properties of Eisenstein series of weight 1 to study
a basis of M} under the action of G. We choose the basis consisting of all standard
monomials of weight k£ € N as described in section 1. Note that the case k = 0 is trivial,
since My = Coo.

3.1. Lemma. Let k€ N. For0<b<qg—1 and 0 <1i < k—1 the action of the generators
of G on the standard monomials of weight k is given by

(o) &' 8E) = aDembel g, gl

b i
(o1) &7 88 =33 (O IETEE,

=0 1=0
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(Vo) & T aE = EiEg e

Further we have

—
S
o
S—
™
S
I
<2

—~
o =
— o
~
3
I

(]~

(y-tes e,

—~
o
-
~—
3]
E
I
(\q o~
|
= L

Proof. Since the group action of G is compatible with the multiplicative structure on
M, the above formulae are obtained by applying the transformation properties from
Corollary 2.3 to the individual Eisenstein factors of each standard monomial.

Consider for example 0 < b < ¢g—1and 0 < i < k — 1. In this case we observe for

generators of shape (g ?)

a —1—1 i a k—1—i a a i
(0?)55 ' gbgq:((o(l))go) ((0(1))5‘5) ((02)&1)
_ a(k—l—i)qg(l)cflfiaq—bgbg;

= qF=ambgpmlmig gl
The remaining cases follow analogously. O
This allows for the following identification:

3.2. Theorem. Let k € N. There is an isomorphism of G-modules @y : M, = Symkq(V)
given by

EyTITIEEL b XPTaTbyath 0 <h<g—1,0<i<k—1,

Er s Y

and linear extension.
Taken together, these maps induce an isomorphism of graded Co.-algebras

®: M =P M, = PSym* (V) € Sym(V).

k>0 k>0

Proof. Let us first verify the stated G-isomorphism for all £ € N. Obviously, the map
®;. is an isomorphism of vector spaces. In order to prove its G-equivariance we compare
Lemma 3.1 to the transformation properties of monomials in Sym*?(V) that can be

obtained easily from (5).
a0
01

For generators of type ((1) i) consider first the image under ®, of a standard monomial

55—1—i5b53 with0<b<g—1land0<i<k—1. We get

For generators of types ( ) and ((1) (1)) the verification is straightforward.
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.

P ((51) (&5 76E) () e en(Eg T E)

J
=0

I
<M”

o
<l
o
—
-

b\ (t\ 4iq+b—lq—3j vkq—lq—jiv lq+j
() ()t X Y.
=0

<
(e}

It is a well-known fact for binomial coefficients in characteristic p that, with b, j as above,

G0 =65

(as a special case of the Lucas congruence).

we have

We may extend the summation over j to all 0 < j < ¢ — 1, since the additional terms
are zero. This allows us to write:

qg—1 4
1t k—1—i i ig+b\ piqg+b—lg—j vkq—lg—jv lg+j
Dy ((01) (50 nggé)) — (;Zij)tzﬁ 9—J xka—lg—jylati
7=01=0
iq+b

_ (iq:lrb) tiq+b—nqu—nyn,

) qu—iq—byiq+b
) D (EFTTIEED).

Analogously, we use the Lucas congruence to show that

P ((o1) €)= (o1) @ (€5) -

In order to obtain an isomorphism of graded algebras, we have to verify that the iso-
morphisms for different weights are compatible with the multiplicative structure on M.
To this end, we consider two standard monomials P and @ of weights k and I, respec-
tively. We can easily express PQ as a standard monomial of weight k + [ and see, after
a straightforward calculation, that indeed ®(P)®;(Q) = @+ (PQ). O

Remark.

1. For k = 1 the map ®; : M; = Eis; — Sym?(V') describes the isomorphism already
mentioned in the motivation preceding Theorem 2.6.

2. We can now use results from the representation theory of symmetric powers of the
tautological G-module to describe Drinfeld modular forms. Note however that for
n > ¢ the structure of Sym" (V') is not completely established in the literature. For
example, Proposition 5.4 below provides that the multiplicities of composition factors
of modules of shape M}’ can be determined using Algorithm 4.14 from [13].
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Conversely, we can transfer concepts and known results from the Drinfeld side to the
representation theory of symmetric powers of V. See for example Theorem 5.5 at the
end of the present article, which succinctly answers a question which remained open
in the broader context of [13].

4. The quotients of the cusp filtration

Next, we consider the module M} of cusp forms. Our goal is to describe the successive
quotients of the cusp filtration of M}.

We have already studied M} as a vector space in [12, Section 4] and will be using the
corresponding notation. In particular:

4.1. Notation. For weight k € N we write
k=t+Etg+1) withl<t<g+1

and put

kq ~
Ky=|——| =t—-1+ .
m(k) {q—li + tq

Then m(k) is the length of the cusp filtration (note that M} is non-trivial only for k > 2).
For ease of notation we simply call M ;C“ ®) the smallest filtration module.

We are going to give explicit descriptions of the G-module structure of the successive
quotients in terms of the elements of the sets Bi (recalled in Theorem 1.3).
To begin, we consider the following eigenvector:

4.2. Lemma. The modular form EE, € M], | is an eigenvector with character (det)!
under the action of G.
In particular, we have Mgﬂ = (det)! as an isomorphism of G-modules.

Proof. Both statements are equivalent, since Mg 1 is spanned by & FEZ according to
Theorem 1.3.

The transformation properties of &g EZ under the generators of G' can be obtained
by means of a straightforward calculation. For the generator (2 (1]) note that E,E{ =
(=1)2&EY, according to relation (3). O

Remark. At this point we recall the function h, which is often encountered in the context
of Drinfeld modular forms (for an example, see [7]). If we interpret h as a modular form
for T'(T), it turns out to be a g-fold cusp form of weight ¢+ 1. Therefore, the above cusp
form & LY agrees with this modular form A up to a constant factor.
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Obviously, multiplication with £y EZ, allows for the identification of filtration modules
of different weights as long as we compensate for the additional determinant twist.

4.3. Lemma. Let k € N and 0 < i < m(k). Multiplication with EgEY, describes a
G-isomorphism

M@ (det)! = M2 . O

In fact, this multiplication map is compatible with the constituent sets of the respec-
tive bases in the following sense:

4.4. Lemma. Let k € N. Let further

1<i<m(k) fork>2
or

i=m(k)=0 fork=1
Then multiplication with EgEL defines a bijective map

i i+q
Bj. = Byl i1

Specifically, for i = m(k) we get
EBLFMIM = FimUHatDI D) o0 <p < g1t
For1<i<m(k)—1 we have
EoELFWF) = Flrtaktath) - gor0<b<g—1
and
50Ego]:£é’k) — féi+q,k+q+1)_

Proof. First we consider the special case where ¢ = m(k). It is easy to see that m(k)+q =
m(k + g+ 1). Also, trivially & + ¢ + 1 is congruent to € modulo ¢ + 1.

This means that elements of both B:(k) and B,Tf;iciﬂ) are parametrized by the

same set of indices 0 < b < ¢+ 1 — ¢. For such b the stated identity EoEgo]:ém(k)’k) —
Fém(k+q+1)’k+q+l) follows immediately from the definition of the bases in Theorem 1.3
and the remark covering k = 1.

In the remaining cases, the equality of EoEgo]-"éi’k) and ]:b(i+q’k+q+1) for0<b<g—1

is again trivial. For the remaining statement we apply relation (3) and observe
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EoELFR) = (—1)1€,E{FLM
= (1€, B (-1)'E) B}
= (_1)i+q(€é€+q+1—(i+q)—1Eé+q

= Fltaoktatl) 0

Remark. Note in the above lemma that ¢ = 0 is only allowed for weight £k = 1. The
reason for this is that M; is mapped onto M 5 o, the smallest non-trivial submodule of
the cusp filtration for weight ¢ + 2. Due to the special shape of the basis elements of
the smallest filtration module, BY and B],, can be identified by means of multiplication
with &FEL .

This is not true for k > 2, since then ¢ is strictly less than m(k + ¢ + 1). In this
case, the set B{, ., is the image of the set {18 10<b<qg—1}U {55} under
multiplication with the distinguished eigenvector. While this set complements B,ﬁ* to
form a basis of My, it is not itself a basis of Eis; as a G-module; it is not closed under
the action of G. We may apply results for Eisenstein series to cover the case B} g1 only
if we focus solely on the successive quotients of the cusp filtration.

If we changed the definition of the basis elements to be compatible with the direct
sum decomposition My = Eisy @ M}, the modified basis would no longer have the
desired behavior at the cusps. This behavior, however, was essential for our work in [12].
Additionally, we will see in the next section that the favorable behavior at the cusps is
an expression of the close relation to symmetric powers.

The situation described so far can be visualized as follows:

1 q q+1 m(k+q+1)
Mipgrr 2 -0 2 Mg 20 My 2 2 My
M, ® (det)! > M}!® (det)! > > MM @ (det)!
and in terms of the corresponding bases:
1 q q+1 m(k+q+1)

Biygr1 Y U Bk+q+1 U Bk+q+1 U Bk+q+1
TEQEZQ TSOEZO

B; U e U B,‘:(k)

Let us first examine the smallest filtration module for arbitrary weight k& € N. The
above identification allows us to reduce the question to one for smaller weights. To be
precise, by applying Lemma 4.3 ¢-times we observe:
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4.5. Lemma. For k > 2 there is a G-isomorphism

)

MM @ (det)t =5 M),

which is given by

fém(é)’é) — flf‘“(’“)”“), 0<b<qg+1-¢,
and linear extension. O

It is therefore sufficient to study the action of G on the sets B?(e) with 1 <t <qg+1.

4.6. Lemma. Let 1 <t < g+ 1. The map

M — Sym™ (V) @ (det)™®
given by

FMOY o xatlmtby b for0<b<g+1-t

and linear extension is an isomorphism of G-modules.

Proof. Obviously, the map in question is a vector space isomorphism. As usual, in the
next step we study the basis elements ]__ém(e),e) under the action of G.

Since m(£) equals € — 1, in this case the definition reads fém(t)’e) = &§E™Y. By
means of a straightforward application of the transformation properties of ordinary and

modified Eisenstein series, we obtain

a m(),e — m(e),e
(00)]:15())_0}15]:!5())
(m(8),8) _ §b : (m(¢)
1t €),t b— t),
( .7: t J}—
j=0

(33) F00 = (PO FEOD,
The last identity again makes use of relation (3).

On the other hand, the transformation properties of the monomials in the twisted
module Sym?™ (V) @ (det)™® are well-known (they can be read off easily from equa-
tion (5) taking into account the additional determinant twist). If we compare our results,
we see that the map in question is indeed G-equivariant. 0O

We obtain the following result for the smallest filtration module in the general case.
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4.7. Theorem. Let k € N. There is a G-isomorphism
M = SymTH (V) @ (det) ™)
given by
F{mEPE) oy xarlotobyb g <h<gbl-k
and linear extension.

Proof. This is a direct consequence of Lemma 4.5 and Lemma 4.6 (note that
(det)™®+E = (det)™(*)), O

In case of the remaining filtration modules, we can describe an analogue to Lemma 4.5.
Note that m(k) is strictly greater than 1 if and only if k is at least 3.

4.8. Lemma. Let k > 3 and 1 < i < m(k)—1. Consider the unique decomposition i = j+lq
with 1 < j < q and | € Ng. Then multiplication with (EgEL)! induces an isomorphism
of G-modules

M}y ® (det)! = M.
In particular, the elements of By satisfy
FO (g B FGRIEHD) g0 < p<g 1

and

féé’k) — (SOE;’O)IFCEQ’“‘“Q“)).

Proof. It is sufficient to verify that the module M g_ I(g+1) is well-defined. Then the claims
are proven by the [-fold application of Lemma 4.3 and Lemma 4.4, respectively.

Indeed, in the present situation we observe | < ®. Therefore k — [ (g+1) > 0 and in
particular

j=i—lg<mk)—lg=mk—Il(g+1). O

Remark. At first it may seem counter-intuitive to restrict ourselves to modules with a
low vanishing order (that is, the largest filtration modules of each weight). However, the
essential consequence of the above lemma is the resulting restriction of the basis elements
that have to be studied for each weight.

Taking into account our result for sets of shape B,T(k), k > 2,in Theorem 4.7, knowing
the transformation properties under G of the elements of the sets

Bi for k >3 and 1 <i < min(m(k) —1,q)
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is sufficient in order to have a complete description of the transformation properties for
all basis elements for all weights.

The main difficulty lies in the fact that the Cs-span of such a set B}, is not closed under
the action of G. In some cases we need elements from M ,i“ to describe the resulting
formulae.

First, we examine those cases in which the above problem does not occur. We can
even forgo the restriction i < q.

4.9. Lemma. Let k > 3 and let 1 < i < m(k)—1. The elements of BL, satisfy the following
transformation properties:

(39) A —a S, 0<hgot,
(59) FLH =a'FGP,
b
(L FE =3O FR 0<bh<q-1,
=0
(30) F™ = (—1)' FGY,
(10) FEY = (17,

Proof. As in previous statements, this follows by a straightforward application of
Lemma 2.1 and Corollary 2.3. 0O

In contrast, the formulae in the remaining cases

OLF, 1<h<q-1, “
(g1) F&"

for k > 3 and 1 < i < min(m(k) — 1, ¢) actually involve cusp forms of higher orders, that
is, basis elements of B,i+1’+.

While it is possible to give the exact result in each concrete example, it would be quite
difficult to provide a closed formula due to the cumbersome expressions that occur.

For this reason, in the remainder of this section we restrict ourselves to studying the
structure of the successive quotients of the filtration. Instead of exact transformation
formulae for the elements of a set B, k > 3, 1 <i < max(q, m(k) — 1), we only consider
congruences modulo M ,i“, thus determining the G-module structure of M} /M ,i“.

In analogy with our approach for the smallest filtration module, we can then use
Lemma 4.8 to generalize these results for quotients of order ¢ > ¢.

As mentioned in the remark following Lemma 4.4, we can immediately solve the
problem for quotients of vanishing order ¢ = ¢ using our results for Eisenstein series. We
assume k > ¢ + 2 in the following statement to guarantee ¢ < m(k).
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4.10. Lemma. Let k > q+ 2. Then
M} = My_(g41) ® (det)’'
= Eisp_(g4+1) ® (det)' & M1,y @ (det)’
is an isomorphism of G-modules. In particular, we have
M /MPT 2 Eis,_ 41y ® (det)’.
Proof. From Lemma 4.3 we get
M= MY (41 © (det)!

and

MY M ) @ (det)

The remaining claims follow immediately from the direct sum decomposition of My, _ (44 1)
into Eisenstein series and cusp forms. O

To complete our description of the quotients M /M,iJrl for © < g — 1 we will use the
reduction formula developed in [12, Proposition 5.4] to obtain the desired congruences
for the two types of transformations considered in (6).

In accordance with the notation in the quoted article, we write “[x]” for the repre-
sentative of an integer z modulo ¢ — 1 in {1,...,¢ — 1} and define further

0 =0
) = {[w] else.

4.11. Lemma. Let k >3 and 1 < i <min(m(k) — 1, —1). For 1 <b < q—1 we have

i,k) __ 1 i,k 7
(05) FM = (=) Ft), Ly mod M.

Proof. Using relations (2) and (3), we may write
(Vo) 7 =&y~ e g
= (_1)i5§_i_25q*bgqfiEéo

= (—1)EF 2 1&g EL.

Since ¢ — i — 1 < ¢ — i, this product of Eisenstein series satisfies the conditions of [12,
Proposition 5.4] and thus

(DES

(1) €™ E(hmi-2)g+q—b+149—i-1) P mod M;T.
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By means of a straightforward calculation we verify that

(k—i—-2)g+q—b+14+qg—i—1)=[k—2i -0,
and the proof is complete. 0O

4.12. Lemma. Let k > 3 and 1 < i <min(m(k) — 1, —1). Then

[k—24]—
((1) i)./—_-(z k) = zk + Z k 21] [k— 2i]—mf7(r§,k:) mod M]i+1.
m=0

Proof. According to relation (3), we may write FER = Ek—im1g, iEL . From this we

obtain
. . q_i . . . .
(01) F&M = (t€o + €)1 D (& B
3=0
k—i—1 q—z
:Z qz)tq—HchlljgkzllggEz
=0 j:O

We study the modular forms in the individual summands in more detail. We observe:

1. For l =k —i—1 and j = ¢ — ¢ the modular form in question is equal to .7-"(1 ")

according to our initial observation.
2. Forl=k—i—1and 0 <j <q—1iwemay use [12, Proposition 5.4] to obtain

k—i— i _ ck—i— i i
gq lngoo = 50 lg((k—i—l)q+j)Eoo mod MkJrl.
We can verify easily that ((k —i—1)g+j) = (k—i— 1+ j).
3. ForO0<l<k—i—1and 0<j <qg—i we note that [12, Proposition 5.4] is again
applicable (since the modular form in question contains at least one factor &) and
gives

g TIELE L = EV T T Epgay BY, mod M

As in the previous cases, we observe (lqg + j) = (I + j).
4. If [ equals 0, we have the tautological statement

& T B, =& T BL

for0<j<q-—1.
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According to the definition of the elements of B}, we get
(é i)fégk) = f(i,k) + Z k—i—l (q—i)tk72i7l7jgé€—i—18<l+j>Eéo mod M];L;-‘rl

_f(zk)+2kzl qztk 2zl]]:(ll+kj)> mOdM]i+1,

where the sum passes over all 0 <! <k —i—1and 0 <j < q— 1 such that
l+j<k—-i—-14+q—i=q—1+k—2i.
The Vandermonde identity for binomial coefficients implies

S )

l+j=m

for 0 <m < q— 1+ k — 2i — 1. Therefore we can replace the double sum by a single
summation of shape

q—14+k—2i—1

1 ik) ik —14+k—24\  k—2i—m 1(i,k) i+1

(oi)féo)zféo)‘i' Z (C At Fim mod M. (7)
m=0

Next we reorder this sum and determine the coefficient for each element of the basis Bj.
Since (m) is zero if and only if m = 0, we see immediately that the coefficients of .Féé’k)
and }"(gi’k) agree with the respective coefficients in the formula we set out to verify.

For 1 < b < g — 1 the coefficient of }"}Si’k) in (7) is tle=2i=b )\, where

q—1+k—2i—1

/\b — Z (q—l—l}-@k—%).

m=1
m=b mod g—1

Put d := [k — 2i] > 0 and write k — 2i = d + h(q — 1) with h > —1. We get
h+1
_ d+(h+1)(g—1
= 3 ) -
=0

with Kronecker delta. Here we have used the fact that

<d+(h+1)(q—1)>_ 1 b=d
b+ (h+1)(¢—=1)) |0 d<b<qg-1

to obtain the uniform upper bound A + 1 for the summation index.
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By means of a general result for binomial coefficients in characteristic p (see for
example [11, Proposition A.16]) we obtain

h+1
d+(h -
Do) = ().
j=0
and in turn

- () 1<b<d-1
"o d<b<g-1

Since d = [k — 2i], the proof is complete. O

For k > 3 and 1 <4 < min(m(k)—1,¢—1) we have now determined the transformation
properties of the entire basis B, of the quotient M /M, ,i“.

4.13. Lemma. Let k > 3 and 1 < i < min(m(k) — 1,q — 1). There is a G-isomorphism
M} /MY =5 Nk — 26, ]
given by
]_-lgi,k) . fé[kfm’])’ 0<b<q—1,
FOR) o pE-20)
and linear extension.

Proof. For the transformation properties of modules of type N[4] see Lemma 1.7. Specif-
ically, we consider the special case § = [k — 2i] with an additional twist by (det)’.

Then the statement follows by means of comparison with our results for the elements
of the basis Bi, of ]\4,2/]\4,?'1 in Lemma 4.9, Lemma 4.11 and Lemma 4.12. O

Now we lift the restriction of the vanishing order i:

4.14. Theorem. Let k > 3 and 1 <i <m(k) — 1. Then the map

~

Mi/MT = N[k — 2i,1],
given by

B e R0 0<b<q -1,

FOR o ple—2i)

and linear extension is an isomorphism of G-modules.
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Proof. Writing ¢ = j 4 lq with 1 < j < ¢ we apply Lemma 4.8 to obtain

!
i—1(q+1) © (det)

and

i+1 ~v i+l l
M]z = Mkrfl(q+1) ® (det) .
Depending on j, we use either Lemma 4.10 or Lemma 4.13 to determine the quotient on
the right hand side. In all cases we get

Moy ME 1) @ (det) 2 NIk =25 +1), ] @ (det)! = NIk —2(j +1),j +1.
Since ¢ = 7 + I mod ¢ — 1, this concludes the proof. 0O

Remark. The resulting formula is also valid for the quotient M /M ,i, which we have so
far excluded in this section. Indeed, our earlier results show that

My, /M} = Eisy, = N[k] = N[k —2-0,0].

There is also a connection to our result for the smallest filtration module in Theorem 4.7,
since we can easily verify that

k—2m(k)=qg+1—%¢ mod q—1.
5. The modules of cusp forms

Motivated by Theorem 3.2, we are now going to have a closer look at the connection
between symmetric powers of V and the cusp filtration. Our goal is to apply results
concerning the G-module structure of symmetric powers of V' from [13], in particular the
filtration recalled above in Theorem 1.8, to the present situation.

On the one hand, this alternative approach leads to additional results, specifically an
identification of the modules M} with classical G-modules. On the other hand, we obtain
alternative proofs for some of the results of the previous section.

Let us first compare the respective notations.

5.1. Notation. For weight £ € N let the decomposition k = ¢ —l—%(q + 1) and the number
m(k) be defined as in Notation 4.1.
Consider for n = kq the unique decomposition from Theorem 1.8

n=n+n(g+1) with0<n<gq.

We observe
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n=q+1-¢
n=m(k).
In particular, for fixed k there are injective G-homomorphisms
P : Sym™ D (V) @ (det)? —» Sym" (D@D (1) @ (det)i !
and
W, : Sym" ) (V) @ (det)? — SymF(V),
for each 1 <i < m(k), which are given by multiplication with powers of XY? — X7Y".
In order to further describe the interaction between modular forms and symmetric

powers, we study the G-isomorphism &y, : My = Symkq(V) from Theorem 3.2 on the
system

Bt = |J Bl 1<i<m(k),

i<j<m(k)
of bases of the filtration modules M, ,i

5.2. Lemma. Let k > 2. The elements of the sets Bfc with 1 <4 <m(k) — 1 satisfy

o), (]:é“”) =, (qu—“‘lﬂ)—byl’) , 0<b<gqg-1,

D), (_7:52’6)) =, (ykq*i(tﬂrl)) )
For the elements of le(k) we find

o, (Iém(k),k)) = Vi) <qu—m(k)(Q+1)—byb)

=Wy (X900 0<b<qg+1-t

Proof. To compute the images under ®; we use the fact that ®; is one component of
an isomorphism of algebras € j M; = &) j Sym?? according to Theorem 3.2.

Therefore, we write the elements of Bi* as polynomial expressions in terms of the
modified Eisenstein series of weight 1. That is, we substitute Eoo = £ — & and Ey =
& — Eg—1. Then all we have to do is apply ®: to the weight 1 Eisenstein series and
compute the resulting product in Symkq(V).
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This way, for 1 <i <m(k) and 0 < b < g — 1 we obtain

@ (Efj’k)) = @4(E) 7 6 (E — £1)")

— (X(kfifl)q)(qubyb)(Yq _ quly)i
_ () (—1)i=d xka—i=b=i(a=Dyb+i+ia=1)
J
§=0
(the same calculation holds verbatim for ¢ = m(k) and 0 < b < g+ 1 —¢).
Similarly, we see
i
(,k)) — 0\ (_1)i—7 xta—i(g—1) ykg—i(g+1)+i+i(q—1)
o (FEM) =30 () (=1x Y .

Jj=0

On the other hand, since ¥; is given by multiplication with (XY? — X9Y)? we get
immediately
v, (qu*i(tﬂrl)*byb) =3 (O)(—1)i xka-b-izila-Dybritila-1)
=
for 1 <i<m(k)and 0 <b < kq—i(q+1). We compare this with the images under @y,
to complete the proof. 0O

Remark. The lemma provides an insight into the motivation for the definition of the
basis B,i’*'.

In [13, Lemma 3.3] we have obtained a monomial basis of the quotient module
Sym*= U (V) /L(kq — i(g + 1)) in a natural way. The sets BL consist precisely of
the preimages of the embeddings of these bases into Sym*?(V') (cf. Theorem 1.8).

In the context of Drinfeld modular forms, this relation between Bi’+ and submodules
of Symkq(V) ensures that the basis elements are “well-behaved” at the cusps.

We use the identities described in Lemma 5.2 for 1 <4 < m(k) to map the elements of
Bi into the module Sym*¥ =41 (V)  (det)?. This construction provides the following
G-isomorphisms:

5.3. Theorem. Let k > 2. For 1 <i <m(k) there is a G-isomorphism
6« Mi =5 SymP @) (V) @ (det),

which satisfies

W00 = B[ - (8)
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Proof. For i = m(k) the G-isomorphism QS,(Cm(k)) is given by Theorem 4.7. Relation (8) is
satisfied according to Lemma 5.2.

Next we show that the claim for 1 < ¢ < m(k) — 1 follows from the validity of the
statement for i+ 1. Assume therefore that a map ¢,(€i+1) exists with the desired properties.

We want to use it in the construction of ¢S)-

(i41)
e 4 Sym*a=(+D @) (1) & (det)i+!
it
, ) ' '
v . Symkqﬂ(q+1)(v) ® (det)?
‘i)k|]\4}c
&
Sym*(V)

We proceed in two steps. On the submodule M,i“ C M; we define ¢S) as Py 0 ¢),(€i+1).

To extend this definition to the entire module M;, it is sufficient to prescribe the
images for the elements of By, since Bj extends a basis of M;*! to a basis of M;.

For an arbitrary element ]{Ei’k) € B we define ¢,(j) (fii’k)) to be the preimage of
@k(fii’k)) under ¥;. This is well-defined, since such a preimage in Sym* @) (V) g
(det)? exists according to Lemma 5.2 and is uniquely determined due to the injectivity
of ;.

It is then straightforward to verify that the resulting map satisfies relation (8). In
turn, this shows that ¢,(f) is injective and therefore an isomorphism of vector spaces.

Using the fact that both <I)k| M and ¥, are G-equivariant, and that U, is injective, we

apply relation (8) to show that qbg) is G-equivariant as well and the proof is complete. O
Remark.

1. We can interpret Theorem 3.2 as the extension of the above theorem to the special
case ¢ = 0. Therefore, Theorem 5.3 holds for k € N. Furthermore, the case k = 0 is
a tautology.

2. In particular, Theorem 5.3 can be used to identify the modules M,é with the
submodules of the filtration of Sym™ (V) recalled in Theorem 1.8. This way, the
G-isomorphism

M /M = Nk — 2, 1]

from Theorem 4.14 can be considered a corollary to the aforementioned theorems.
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Finally, we provide two examples for the transfer of results between Drinfeld modular
forms and symmetric powers of V.

First, we can use the algorithms for counting the multiplicities of composition factors
of symmetric powers of V' given in section 4 of [13] to determine the composition factors
of modules of shape M;.

We recall the necessary notation of the quoted article: Let R be a full set of represen-
tatives modulo ¢ — 1 and denote by [z]x the representative in R of an integer x. We use
the same classification of the simple G-modules as in [13], that is, &(m, p) is the unique
simple submodule of Sym™ (V) ® (det)* where 0 <m < ¢—1and p € R.

5.4. Proposition. Let k € N and 0 <i <m(k). For0 <m < g—1 and p € R denote by
A (k,i3my p) the multiplicity of the simple module &(m, 1) as a composition factor of
Further, for n € Ny let AM(n;m,u) be the multiplicity of &(m,p) as a composition
factor of Sym™(V') as determined in [13, Algorithm 4.1/).
Then

A (ks ism, i) = Akq — i(q + 1);m, [ — i]r ).
Proof. According to Theorem 5.3 and the first remark, we have
M} =2 Sym* =@+ (V) @ (det)".

Taking into account the proper offset of the determinant twist, the identity for the
multiplicities of composition factors is immediate. O

As an example for the transfer of knowledge in the other direction, we can use a
well-known fact for Drinfeld modular forms to improve [13, Theorem 3.7] by providing
a necessary and sufficient condition.

5.5. Theorem. Let n > g+ 1. There exists a G-module complement to L(n) in Sym™(V)
if and only if n is divisible by q.

Proof. If n is not a multiple of ¢, we have proven in [13, Theorem 3.7| that such a
G-module complement cannot exist.

Now let n = kq. We already know from Theorem 3.2 that Sym" (V) = M, holds.
According to the definition of L(kq) in Theorem 1.8, Theorem 5.3 implies L(kq) =
M. Therefore the statement follows immediately from the well-known decomposition of

G-modules M, = Eisy, @ M,i O
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