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S-ADIC VERSION OF MINKOWSKI’S GEOMETRY OF

NUMBERS AND MAHLER’S COMPACTNESS CRITERION

DMITRY KLEINBOCK, RONGGANG SHI, AND GEORGE TOMANOV

Abstract. In this note we give a detailed proof of certain results on
geometry of numbers in the S-adic case. These results are well-known
to experts, so the aim here is to provide a convenient reference for the
people who need to use them.

1. Introduction

The space of unimodular lattices in Rn (n ≥ 2) can be identified with the
homogeneous space X = SLn(Z)\SLn(R) via the correspondence Zng ↔
SLn(Z)g where g ∈ SLn(R). It is proved by Mahler [11] that a subset R of
X is relatively compact if and only if nonzero elements of the corresponding
unimodular lattices are separated from zero. This phenomenon is called
Mahler’s compactness criterion [2, Chapter V]. It has been very useful in
dynamical approach to number theory; we refer the readers to survey papers
[4],[5] and [7] and references there for details.

Let S be a finite nonempty set of places of a global field K. We assume
S contains all the archimedean places if K is a number field. For each place
v of K, let Kv be the completion of K at v. Let KS =

∏
v∈S Kv and

(1.1) IS = {a ∈ K : a is integral in Kv for every place v �∈ S}.
We consider K and hence IS as subrings of KS via natural embeddings
K → Kv. Then the homogeneous space SLn(IS)\SLn(KS) can be identified
with a set of free discrete IS-modules of rank n in Kn

S with fixed covolume.
The connection between dynamics and number theory also spreads to the
S-adic setting, where the corresponding version of Mahler’s criterion plays
an important role. The extension of Mahler’s criterion to the S-adic case
when K is a number field has already been used in several papers, and a
proof for K = Q can be found in [9]. Moreover, a preliminary version [8]
of the paper [9], published as a preprint of MPIM (Bonn), contains a proof
of the S-adic Mahler’s criterion for arbitrary number field K. When K is a
function field with genus zero and S contains a single place of degree one,
Mahler’s criterion is proved in [6]. The general S-adic case is known to
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experts, but it is not easy to find a convenient reference. Here we provide a
self-contained proof of an S-adic version of Mahler’s criterion.

Theorem 1.1. Let n ≥ 2. A set R ⊂ SLn(IS)\SLn(KS) is relatively com-
pact if and only if the subset

{
ξ ∈ InSg : ξ �= 0, g ∈ SLn(KS) and SLn(IS)g ∈ R

}

of Kn
S is separated from zero, i.e. this set has empty intersection with some

open neighborhood of zero in Kn
S .

Our proof of Theorem 1.1 is based on an S-adic version of Minkowski’s
lemma of geometry of numbers. Let vol be the normalized Haar measure
on the additive group Kn

S (see §2). For a discrete IS-module Γ in Kn
S the

covolume of Γ (denoted by cov(Γ)) is the vol of a fundamental domain of
Γ in Kn

S . Let Br(K
n
S) be the closed ball of radius r centered at zero in Kn

S
with respect to the normalized norm (see §2). For each integer 1 ≤ m ≤ n,
the m-th minimum of a discrete IS-module Γ is defined by

(1.2) λm(Γ) = inf{r > 0 : dimK

(
spanK(Br(K

n
S) ∩ Γ)

) ≥ m}.
Here spanK is the K linear span of a set and dimK is the dimension of a
vector space over K. Similar notations are used when K is replaced by other
rings. We remark here that if K = Q and S contains only the archimedean
place, then we get the usual concept of successive minima of lattice points
in Rn.

For two nonnegative real numbers s and t the notation s 
 t means
C−1s ≤ t ≤ Cs for some constant C ≥ 1. Let σ and τ be the number of real
and complex places of K respectively.1 Let �S = τ + card(S) where card
denotes the cardinality of a set. The S-adic version of Minkowski’s theorem
on successive minima (see [12, Chapter IV, §1] for the usual case) is the
following theorem.

Theorem 1.2. Let n ≥ 1 and let Γ ⊂ Kn
S be a discrete IS-module with finite

covolume. Then (
λ1(Γ) . . . λn(Γ)

)�S 
 cov(Γ)

where the implied constants depend on K,S and n.

A refined version of Theorem 1.2 will be proved in Theorem 4.4 where
the implied constants will be explicitly calculated. If K is a function field
of genus zero and S consists of a single place of degree one, then Theorem
1.2 is established in [10]. The adelic versions of Theorem 1.2 are proved in
[1] (resp. [13]) when K is a number field (resp. function field).

1If K is function field we have σ = τ = 0.
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2. Preliminaries: notations

Let K be a global field and let P be the set of places of K. Throughout
this paper we fix a positive integer n and a finite nonempty set S ⊂ P such
that S ⊃ P0 where P0 (possibly empty) is the set of archimedean places of
K.

For every v ∈ P let Kv be the completion of K at v. The S-adic numbers
and integers are defined as

KS
def
=

∏
v∈S

Kv and IS
def
= {x ∈ K : x is integral for all v ∈ P � S}

respectively. We consider K as a subring of KS via the natural inclusions
K → Kv. For v ∈ P , let | · |v be the normalized absolute value on Kv. If
v is archimedean, we identify Kv with real or complex numbers where the
usual absolute value is | · |v. If v is ultrametric then |a|−1

v = card(Iv/aIv)
for all a ∈ Iv where Iv is the ring of integers of Kv. For each ultrametric
place v ∈ P we fix a uniformizer �v (a generator of the maximal ideal of
Iv) and take qv = |�v|−1

v . We define the absolute value and content for
x = (xv)v∈S ∈ KS respectively by

|x| def= max
v∈S

|xv|v and cont(x)
def
=

∏
v∈S

|xv|εvv

where εv = 2 if Kv = C and εv = 1 otherwise.
The additive group Kn

S can be naturally identified with
∏

v∈S Kn
v and we

write every ξ ∈ Kn
S as (ξv)v∈S according to this identification. More pre-

cisely, if ξ = (x1, . . . , xn) where xi = (xi,v)v∈S , then ξv = (x1,v, . . . , xn,v).
Similarly, the group GLn(KS) can be naturally identified with

∏
v∈S GLn(Kv)

and we write every g ∈ GLn(KS) as (gv)v∈S according to this identification.
The group GLn(Kv) (resp. GLn(KS)) acts on Kn

v (resp. Kn
S ) by matrix mul-

tiplication from the right. Moreover, the action of g ∈ GLn(KS) on ξ ∈ Kn
S

is consistent with these identifications, that is, ξg = (ξvgv)v∈S under previ-
ous notations.

For v ∈ P we take volv to be the normalized Haar measure on Kv. For
archimedean v, the measure volv is the Lebesgue measure. If v is ultramet-
ric, the measure satisfies volv(I

n
v ) = 1. It follows directly from definition

that

volv(aB) = |a|nεvv volv(B)

for every a ∈ Kv and any measurable subset B of Kn
v . We take the normal-

ized Haar measure vol on Kn
S to be the product measure. In the sequel we

will abbreviate dvol(ξ) by dξ for the integration with respect to the volume
measure. For a positive integer m, we use volmv and volm to denote the
normalized Haar measures on Km

v and Km
S respectively.

If v is archimedean we take ‖ · ‖v to be the Euclidean norm on Kn
v . If v

is ultrametric we take ‖ · ‖v to be the sup norm with respect to coordinates,
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that is

‖(a1, . . . , an)‖v def
= max

1≤i≤n
|ai|v where ai ∈ Kv.

We define the norm and content for ξ ∈ Kn
S by

‖ξ‖ def
= max

v∈S
‖ξv‖v and cont(ξ)

def
=

∏
v∈S

‖ξv‖εvv .

For a ∈ I∗S , where I∗S is the group of multiplicatively invertible elements of
IS , we have that cont(a) = 1 and cont(aξ) = cont(ξ) where ξ ∈ Kn

S . Also
for every g ∈ GLn(KS) we have

d(ξg) = cont
(
det(g)

)
dξ,(2.1)

where det is the determinant of a matrix.
The set of vectors in Kn

S (resp. Kn
v ) with norm less than or equal to r is

denoted by Br(K
n
S ) (resp. Br(K

n
v )). It can be checked directly that

Br(K
n
S ) =

∏
v∈S

Br(K
n
v ).(2.2)

Let L be a free KS-submodule of Kn
S with rank m ≤ n. Then

L =
∏
v∈S

Lv,(2.3)

where Lv is an m-dimensional subspace of Kn
v . There is a unique additive

Haar measure volL on L (resp. volLv on Lv) such that

volL
(
L ∩B1(K

n
S)
)
= volm

(
B1(K

m
S )

)
(resp. volLv

(
L ∩B1(K

n
v )
)
= volmv

(
B1(K

m
v )

)
).

Moreover, the above definition, (2.2) and (2.3) imply

volL =
∏
v∈S

volLv .(2.4)

In the case where K = Q and card(S) = 1, the measure volL is the measure
given by the inner product on L. Suppose ξ = (ξv)v∈S and ξv �= 0; then
the covolume of ISξ (IS-linear span of ξ) in KSξ (KS-linear span of ξ) with
respect to volKSξ is equal to cont(ξ) multiplied by the covolume of IS in
KS . The covolume of a discrete IS-module Γ in Kn

S with respect to the
induced measure volKSΓ is called relative covolume of Γ and it is denoted
by covr(Γ). The covolume of Γ with respect to vol is denoted by cov(Γ).

3. Discrete IS-modules

Let Γ ⊂ Kn
S be a discrete IS-module. In this section, we use ideas of [9,

§8] to study properties of Γ.

Lemma 3.1. Let Γ ⊂ Kn
S be a discrete IS-module and let ξ1, . . . , ξm ∈ Γ.

The following statements are equivalent:

(1) ξ1, . . . , ξm are linearly independent over IS;
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(2) ξ1, . . . , ξm are linearly independent over K;
(3) ξ1, . . . , ξm are linearly independent over KS.

Proof. It suffices to show that (1) implies (3). We prove it by induction on
m. Write ξi = (ξi,v)v∈S as in §2. Suppose that ξ1 is linearly dependent over
KS , then there exists w ∈ S such that ξ1,w = 0. According to the strong
approximation theorem (see [3, Chapter II §15]), there is a sequence {ci}i≥1

of IS � {0} such that |ci|v → 0 as i → ∞ for any v ∈ S � {w}. Therefore
ciξ1 → 0 which contradicts the assumption that Γ is discrete. This proves
(3) in the case where m = 1.

Now suppose m > 1 and (1) implies (3) while m is replaced by m− 1. By
the case for m = 1, we know ξ1,v �= 0 for every v ∈ S. So there exists g ∈
GLn(KS) such that ξ1g = (1, 0, . . . , 0). The right multiplication of g on Kn

S
is a KS linear isomorphism, so we can without loss of generality assume that
ξ1 = (1, 0, . . . , 0). Let ϕ : Kn

S → Kn
S/KSξ1 ∼= Kn−1

S be the natural quotient
map. Since ISξ1 is a cocompact lattice in KSξ1 and Γ ⊂ Kn

S is discrete,
the module ϕ(Γ) is discrete and ϕ(ξ2), . . . , ϕ(ξm) are linearly independent
over IS . In view of the induction hypothesis, we have ϕ(ξ2), . . . , ϕ(ξm) are
linear independent over KS . Therefore ξ1, . . . , ξm are linearly independent
over KS . �

Remark 3.2. The implication (2)⇒(3) holds without assuming that ξ1, . . . , ξm
belong to a discrete IS-module, see [9, Lemma 7.1].

For a discrete IS-module Γ ⊂ Kn
S let KΓ (resp. KSΓ) be the K-linear

(resp. KS-linear) span of Γ in Kn
S . We call the dimension over K of KΓ the

rank of Γ. It follows from Lemma 3.1 that the rank of Γ is less than or equal
to n and the equality holds if and only if Γ has finite covolume.

In the following lemma we prove a Gram-Schmidt orthogonalization pro-
cess for ultrametric local fields.

Lemma 3.3. Let Kv be a ultrametric local field. For any Kv-linearly in-
dependent vectors ξ1, . . . , ξm ∈ Kn

v there exist linearly independent vectors
η1, . . . , ηm ∈ Kn

v such that η1, . . . , ηr are in the Kv-linear span of ξ1, . . . , ξr
for all r ≤ m, and

(3.1) ‖a1η1 + · · ·+ amηm‖v = max
1≤i≤m

|ai|v for all ai ∈ Kv.

Remark 3.4. In the sequel we call a basis of Lv
def
= spanKv

{ξ1, . . . , ξm} which
satisfies (3.1) an orthonormal basis of Lv. The map

ϕ : Km
v → Lv where ϕv(a1, . . . , am) = a1η1 + · · ·+ amηm

is an isometric embedding sending volmv to volLv .

Proof. Contrary to the archimedean case, here we choose an entry with
maximal absolute value for the corresponding vector. Write

ξi = (xi1, . . . , xin), where xij ∈ Kv and 1 ≤ i ≤ m.
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First we choose j1 ≤ n such that ‖ξ1‖v = |x1j1 |v and set η1 = x−1
1j1

ξ1. Next

we take η′2 = ξ2 − x2j1η1 = (y21, . . . , y2n). We choose j2 ≤ n such that

‖η′2‖v = |y2j2 |v and set η2 = y−1
2j2

η′2. In general after r steps we have r
different integers j1 . . . , jr and unit norm vectors η1, . . . , ηr such that ηi has
ji-th entry 1 and js-th entry zero for s < i. We take

η′r+1 = ξr+1 − xr+1,j1η1 − . . . xr+1,jrηr = (y1, . . . , yn)

and choose jr+1 such that ‖η′r+1‖v = |yjr+1 |v. We set ηr+1 = y−1
jr+1

η′r+1.

Then it has jr+1-th entry 1 and js-th entry 0 for s < r + 1. This induction
process gives m unit norm vectors η1, . . . , ηm.

For (a1, . . . , am) ∈ Km
v let

k = min{1 ≤ r ≤ m : |ajr |v = max
1≤i≤m

|ai|v}.
It is clear from the construction that

‖a1η1 + · · ·+ amηm‖v = |ajk |v,
which proves (3.1). �

The next lemma appeared as [9, Corollary 8.4] for K = Q and as [8,
Corollary 5.8] for K a number field.

Lemma 3.5. Suppose Γ and Γ′ are discrete IS-modules in Kn
S with

(3.2) KΓ ∩KΓ′ = {0}.
Then

(3.3) covr(Γ + Γ′) ≤ covr(Γ)covr(Γ
′).

Proof. Let L = KSΓ, L
′ = KSΓ

′ and L′′ = L+L′. In view of (3.2), Lemma
3.3 implies that L′′ is a direct sum of L and L′. The right (resp. left) hand
side of (3.3) is the covolume of Γ + Γ′ with relative to volL × volL′ (resp.
volL′′). Let L =

∏
v∈S Lv and L′ =

∏
v∈S L′

v according to (2.3). In view of
(2.4), it suffices to prove that for each v ∈ S there is a positive Haar measure
set Rv of Lv + L′

v such that

volLv+L′
v
(Rv) ≤ (volLv × volL′

v
)(Rv).(3.4)

Let r and m be the rank of L and L′′ respectively. For each v ∈ S we
choose an orthonormal basis ξ1,v, . . . , ξr,v of Lv and an orthonormal basis
ξr+1,v, . . . , ξm,v of L′

v. We will show that (3.4) holds for

Rv := {a1ξ1,v + . . .+ amξm,v : ai ∈ B1(Kv)}.
For all v ∈ S

(volLv × volL′
v
)(Rv) = vol1v

(
B1(Kv)

)m
.(3.5)

If v is archimedean, then it is clear from Eulidean geometry (i.e. volume of
parallelotope) that

volLv+L′
v
(Rv) ≤ vol1v

(
B1(Kv)

)m
= (volLv × volL′

v
)(Rv).
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If v is ultrametric, we let η1,v, . . . , ηm,v be an orthonormal basis of Lv +L′
v.

Then Remark 3.4 implies that Rv is contained in

R′
v := {(a1, . . . , am) ∈ B1(K

m
v ) : a1η1 + . . .+ amηm}.

Using Remark 3.4 again together with (3.5), we have

volLv+L′
v
(Rv) ≤ volLv+L′

v
(R′

v) = vol1v
(
B1(Kv)

)m
= (volLv × volL′

v
)(Rv).

�

4. Successive minima

The aim of this section is to prove Theorem 1.2.

Lemma 4.1. Let Γ ⊂ Kn
S be a discrete IS-module with finite covolume and

let R ⊂ Kn
S be a measurable subset. Then there exists ξ ∈ Kn

S such that

card
(
(ξ +R) ∩ Γ

) ≥ vol(R)/cov(Γ).(4.1)

Proof. Let χR be the characteristic function of R, and let F ⊂ Kn
S be a

fundamental domain for Γ. Then∫
F
card

(
(ξ +R) ∩ Γ

)
dξ =

∫
F

∑
γ∈Γ

χR(γ − ξ)dξ = vol(R).

Therefore there exists ξ ∈ F such that (4.1) holds. �

Lemma 4.2. Let Γ ⊂ Kn
S be a discrete IS-module with finite covolume. Let

R1 be a centrally symmetric convex subset of Kn
P0

and let R2 be a closed
additive subgroup of Kn

S�P0
. Suppose R ⊂ Kn

S is equal to R1 × R2 with the

natural identification of Kn
S with Kn

P0
×Kn

S�P0
. If vol(R) > 2n(σ+2τ)cov(Γ),

then R contains a nonzero element of Γ.

Proof. Let R′ = (12R1)×R2. It follows from the assumption on the vol(R)
that vol(R′) > cov(Γ). According to Lemma 4.1, we can find two distinct
elements γ1, γ2 ∈ Γ and ξ ∈ Kn

S such that γi − ξ ∈ R′ for i = 1, 2. Therefore
the nonzero element γ1 − γ2 belongs to R. �

Recall that λm(Γ) (1 ≤ m ≤ n) is the m-th minimum of a discrete IS-
module Γ, see (1.2). It follows directly from the definition that there exist
K-linearly independent vectors ξ1, . . . , ξn ∈ Γ with

‖ξm‖ = λm for all 1 ≤ m ≤ n.

Moreover, by Lemma 3.1 these vectors are also linearly independent over
KS .

According to Lemma 4.2 for any 0 < t < λ1(Γ) we have

(4.2)
( ∏

v∈S�P0

q−n
v

)
tn�Svol

(
B1(K

n
S)
)≤vol

(
Bt(K

n
S )
) ≤ 2n(σ+2τ)cov(Γ).
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Since B1(R
m) contains {(x1, . . . , xm) ∈ Rm : −m−1/2 ≤ xi ≤ m−1/2}, for

archimedean v ∈ P we have

volv
(
B1(K

n
v )
) ≥ 2nεvn−nεv/2,(4.3)

where for complex place we use B1(C
n) = B1(R

2n). By (4.2), (4.3) and (2.2)
we have

λ1(Γ)
n�S ≤ nn(σ+2τ)/2

( ∏
v∈S�P0

qnv

)
cov(Γ).(4.4)

Lemma 4.3. Let Γ be a discrete IS-module with finite covolume. Suppose
that ξ1, . . . , ξn ∈ Γ are K-linearly independent vectors and ‖ξm‖ = λm(Γ)
for all 1 ≤ m ≤ n. Then there exists g ∈ GLn(KS) such that

(4.5) cont
(
det(g)

)
=

n∏
i=1

cont(ξi)
−1,

and any nonzero vector of Γ′ def= Γg has norm greater than or equal to one.

Proof. Suppose that ξi = (ξi,v)v∈S where ξi,v ∈ Kn
v (the notation here is

the same as §2). By Lemma 3.1, for every v ∈ S the vectors ξ1,v, . . . , ξn,v
are Kv-linearly independent in Kn

v . Using Gram-Schmidt orthogonalization
process (see Lemma 3.3 for the ultrametric case), for each v ∈ S we can
find an orthonormal basis η1,v, . . . , ηn,v such that for every 1 ≤ m ≤ n the
Kv-linear span of η1,v, . . . , ηm,v is the same as that of ξ1,v, . . . , ξm,v. Let
bi = (bi,v)v∈S ∈ KS (1 ≤ i ≤ n) such that |bi,v|v = ‖ξi,v‖v. It follows from
the definition of content that

cont(bi) = cont(ξi).(4.6)

Since ηi
def
= (ηi,v)v∈S (1 ≤ i ≤ n) is a KS-basis of Kn

S , there is a unique

g ∈ GLn(KS) such that ηig = b−1
i ηi. We claim that this g satisfies the

requirement of the lemma.
The equation (4.5) follows from

cont
(
det(g)

)
= cont(b−1

1 . . . b−1
n ) =

n∏
i=1

cont(bi)
−1 =

n∏
i=1

cont(ξi)
−1,

where in the last equality we use (4.6). For the other conclusion suppose
that ζ = c1η1 + · · ·+ cmηm ∈ Γ′ = Γg where ci ∈ KS and cm �= 0. We have

ζg−1 = c1b1η1 + · · ·+ cmbmηm ∈ Γ.

Since for every v ∈ S the basis η1,v, . . . , ηn,v is orthonormal, we have

‖ζg−1‖ ≤ ‖ζ‖ max
1≤i≤m

|bi| = ‖ζ‖ · λm(Γ).(4.7)

On the other hand for any 1 ≤ j ≤ m, the KS-linear span of η1, . . . , ηj is
the same as that of ξ1, . . . , ξj . Since cmbm �= 0, Lemma 3.1 implies that
ξ1, . . . , ξm−1, ζg

−1 are K-linearly independent. Thus it follows from the
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definition of the m-th minimum of Γ = Γ′g−1 that ‖ζg−1‖ ≥ λm(Γ). This
estimate together with (4.7) imply ‖ζ‖ ≥ 1, which completes the proof. �
Theorem 4.4. Let Γ be a discrete IS-module with finite covolume. Let
ξ1, . . . , ξn ∈ Γ be K linearly independent vectors with ‖ξm‖ = λm(Γ) for all
1 ≤ m ≤ n. Then we have

cov(InS )
−1cov(Γ) ≤

n∏
i=1

cont(ξi) ≤ nn(σ+2τ)/2
( ∏

v∈S\P0

qnv

)
cov(Γ).(4.8)

Proof. We first prove the upper bound of (4.8). Suppose that Γ′ = Γg, where
g ∈ GLn(KS), satisfies the conclusion of Lemma 4.3. Then λ1(Γ

′) ≥ 1.
Applying (4.4) for Γ′ we have

1 ≤ λ(Γ′)n�S ≤ nn(σ+2τ)/2
( ∏

v∈S�P0

qnv

)
cov(Γ′).(4.9)

On the other hand by (2.1) and (4.5)

cov(Γ′) = cov(Γ) · cont(det(g)) = cov(Γ) ·
n∏

i=1

cont(ξi)
−1.(4.10)

The upper bound of (4.8) follows from (4.9) and (4.10).
Let Γ′′ be the IS-linear span of ξ1, . . . , ξn. Since Γ′′ is a submodule of Γ,

by Lemma 3.5 we get

cov(Γ) ≤ cov(Γ′′) ≤
n∏

i=1

covr(ISξi) = cov(InS ) ·
n∏

i=1

cont(ξi),

which implies lower bound of (4.8). �
To prove Theorem 1.2 we need a balance between contents and norms of

vectors in Kn
S . The following lemma is a generalization of [9, Lemma 8.6]

and [8, Lemma 5.9], and the proof is the same.

Lemma 4.5. For any ξ ∈ Kn
S with cont(ξ) �= 0, there exists a ∈ I∗S such

that ‖aξ‖�S 
 cont(ξ) where the implied constants depend on K and S.

Proof. Suppose that S = {v1, . . . , vm} where m = card(S). Let R+ be the
multiplicative group of positive real numbers. We define a map

ϕ : K → Rm
+ by ϕ(a) = (|a|v1 , . . . , |a|vm).

Let

H = {(r1, . . . , rm) ∈ Rm
+ :

m∏
i=1

r
εvi
i = 1}.

It follows from Dirichlet’s unit theorem (see [3, Chapter II §18]) that the
group ϕ(I∗S) ⊂ H is a cocompact lattice in H. So there exists A ≥ 1 which
depends on K and S such that for any (r1, . . . , rm) ∈ H we can find a ∈ I∗S
with

(4.11) A−1 ≤ ri|a|vi ≤ A.
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Suppose ξ = (ξv)v∈S . It follows from the definition that

(‖ξv1‖v1 · cont(ξ)−1/(m+τ), . . . , ‖ξvm‖vm · cont(ξ)−1/(m+τ)) ∈ H.

By (4.11) one can find a ∈ I∗S such that for all 1 ≤ i ≤ m

A−1 ≤ ‖ξvi‖vicont(ξ)−1/(m+τ)|a|vi ≤ A.

Therefore

A−m−τcont(ξ) ≤ ‖aξ‖m+τ ≤ Am+τcont(ξ).

�

Proof of Theorem 1.2. Let ξ1, . . . , ξn ∈ Γ be K-linearly independent vectors
with ‖ξi‖ = λi(Γ). By Theorem 4.4

n∏
i=1

cont(ξi) 
 cov(Γ),(4.12)

where the implied constants depend on K,S and n. The definitions of
content and norm imply

cont(ξi) ≤ λi(Γ)
�S .(4.13)

According to Lemma 4.5 there exists a1, . . . , an ∈ I∗S such that

cont(ξi) � ‖aiξi‖�S ,(4.14)

where the implied constant depends on K and S. Note that elements
a1ξ1, . . . , anξn ∈ Γ are linear independent over K. So the definition of
successive minima implies

n∏
i=1

λi(Γ) ≤
n∏

i=1

‖aiξi‖.(4.15)

Therefore the conclusion of Theorem 1.2 follows from (4.12), (4.13), (4.14)
and (4.15). �

5. Mahler’s compactness criterion

Let X = SLn(IS)\SLn(KS). There is a one-to-one correspondence be-
tween X and

{InSg : g ∈ SLn(KS)}
via the map SLn(IS)g → InSg. In this section e1, . . . , en denotes the standard
basis of Kn

S , i.e. ei has i-th entry 1 and other entries 0. Before proving
Theorem 1.1 we need the following lemma. See [9, Corollary 8.6] for K = Q

and [8, Corollary 5.1] for K a number field.

Lemma 5.1. Let M > 0. Then there are only finitely many IS-submodules
Γ of InS such that card(InS/Γ) ≤ M .
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Proof. Let Γ ⊂ InS be an IS-submodule with card(InS/Γ) ≤ M . For every
1 ≤ i ≤ n there is an ideal Ji of IS such that

ISei ∩ Γ = Jiei and card(IS/Ji) ≤ M.

Therefore

J1 × · · · × Jn ⊂ Γ ⊂ InS .

Note that IS is a Dedekind domain. It follows from the structure theory
of ideals in IS that there are only finitely many ideals J in IS such that
card(IS/J) ≤ M . So the conclusion of the lemma holds. �
Proof of Theorem 1.1. Let π : SLn(KS) → X be the natural quotient map
and let

(5.1) r = inf{‖ξg‖ : ξ ∈ InS , ξ �= 0, g ∈ SLn(KS), π(g) ∈ R}.
Suppose R is relatively compact. There exists a relatively compact subset

F ⊂ SLn(KS) with π(F ) = R. Therefore there exists C > 0 such that

‖ξg‖ ≤ C‖ξ‖ for every ξ ∈ Kn
S and g ∈ F.(5.2)

The discreteness of Γ and (5.2) imply r > 0.
Now we assume r > 0 and prove that R is relatively compact. Let {gi}i≥1

be a sequence in π−1(R). It suffices to show that there exists g ∈ SLn(KS)
such that π(g) is a limit point of a subsequence of {π(gi)}i≥1. By Theorem
1.2 there exists C ≥ 1 such that for any free IS-module Γ ∈ R one has

(5.3) r ≤ λ1(Γ) ≤ λn(Γ) ≤ C.

For every i ≥ 1 let ξ
(i)
1 , . . . , ξ

(i)
n ∈ InS be K-linearly independent vectors

such that ‖ξ(i)j gi‖ equals to the j-th minimum of InSgi. By (5.3) we have

‖ξ(i)j gi‖ ≤ C ∀ i ≥ 1 and 1 ≤ j ≤ n.(5.4)

Let

Γi = spanIS{ξ
(i)
j : 1 ≤ j ≤ n}.

According to (5.3) and Theorem 1.2 there exists M > 0 such that

(5.5) cov(InS ) ≤ cov(Γi) = cov(Γigi) ≤ M ∀ i ≥ 1.

By Lemma 5.1 and (5.5), the set {Γi : i ≥ 1} is finite. Therefore by possibly
passing to a subsequence we may assume that there exists h ∈ GLn(K) such
that Γi = InSh for all i ≥ 1. It follows that there is a sequence {fi}i≥1 in

GLn(IS) such that ejfih = ξ
(i)
j for all i ≥ 1 and 1 ≤ j ≤ n. By (5.4) there

is a subsequence {gik}k≥1 of {gi}i≥1 and g ∈ GLn(KS) such that

fikhgik → g as k → ∞.(5.6)

Since det is continuous and IS is discrete in KS , for k sufficiently large
we have det(fik) = det(fik+1

) ∈ I∗S . Therefore by possibly passing to a
subsequence and multiplying the first row of h by some element of I∗S , we
assume without loss of generality that fik ∈ SLn(IS) for all k.
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The group h−1 SLn(IS)h ∩ SLn(IS) has finite index in h−1 SLn(IS)h. So
by possibly passing to a subsequence we can find f ∈ h−1 SLn(IS)h and a
sequence {hk}k≥1 of SLn(IS) such that

h−1fikh = fhk ∀ k ≥ 1.(5.7)

By (5.6) and (5.7) we have hfhkgik → g as k → ∞. Therefore

hkgik → f−1h−1g as k → ∞.

Since hk ∈ SLd(IS) we have π(gik) → π(f−1h−1g) as k → ∞. �
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