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1. Introduction

Let F be a real-valued arithmetic function. We say that F' clusters around the real
number u if there is some € > 0 such that, for every é > 0, the solutions n to

u—0< F(n)<u+d
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form a set of upper density at least e. If F' does not cluster around any u, we say that
F is nonclustering. The main result of this note is the following criterion for a linear
combination of multiplicative functions to be nonclustering.

Theorem 1. Let fi,..., fr be multiplicative arithmetic functions taking values in the
nonzero real numbers and satisfying the following conditions:

(i) f1 is nonclustering,
(ii) none of f1,..., fr cluster around 0,
(iii) for alli < j withi,j € {1,2,...,k}, the function f;/f; is nonclustering.

Then for all nonzero ci,...,c, € R, the arithmetic function F := c1f1 + -+ + e fr is
nonclustering.

Theorem 1 has consequences for the study of limit laws of arithmetic functions (for
background, see, e.g., [14, Chapters II1.2 and II1.4] and [12, Chapter 4]). It is easy to see
that for an arithmetic function F' possessing a limit law (i.e., possessing a distribution
function), the distribution function is continuous precisely when F' is nonclustering. Now
it is often the case that one can prove a distribution function exists by some general
principle, but that the proof does not offer any insight into whether that function is
continuous. Theorem 1 sometimes provides a convenient way of establishing continuity.

We illustrate by proving a recent conjecture of Luca and Pomerance. Let s(n) be the
sum-of-proper-divisors function, so that s(n) = o(n) — n. Let s4(n) = n — ¢(n) denote
the cototient function. In [10], Luca and Pomerance noted that s(n)/ss(n) > 1 for all

oo

& 5 is dense in [1, 00). We prove:

n > 2 and showed that the sequence {s(n)/sg(n)

Theorem 2. The arithmetic function s(n)/ss(n) possesses a continuous distribution func-
tion Dy, . Moreover, Dy, (u) is strictly increasing for u > 1.

Theorem 2 was conjectured at the end of [10, §1].
2. Nonclustering of ¢y f1 + - - - + ci fx: Proof of Theorem 1

Our argument is modeled on work of Galambos and Kétai [6] concerning pairs of
additive functions (generalizing an earlier result of Fein and Shapiro [5]).

2.1. Setup

Since f; is nonclustering and c¢; is nonzero, the theorem is obvious when k = 1.
Proceeding inductively, we may assume that k£ > 2 and that the theorem is already
known to hold for all smaller values of k.

Let u € R. We will show that by making a judicious choice of §, the upper density of
the set of n satisfying
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u—0<F(n)<u+d (1)

can be made arbitrarily small.

Let € > 0. We let Y and Z be large, fixed real numbers (independent of n); their values
will be specified more precisely in the course of the proof. To begin with, we assume that
Y, Z > 2.

For each solution n to (1), we split off the Y-smooth part of n, writing

n = st, where p|s = p<Y, and p|t = p>Y.

(Here and below, p always refers to a prime.) We refer to this way of writing n as the
‘basic decomposition’, and we reserve the letters s and ¢ for this purpose. We sometimes
make use of obvious modifications of this notation, e.g., using s’ and ¢’ for the components
in the decomposition of n'.

For a set S of positive integers, we write dS for its upper density.

2.2. Those n with large smooth part

It is known that the upper density of n with Y-smooth part larger than YZ is
< exp(—cZ),

where ¢ > 0 is an absolute constant, and the implied constant is also absolute (see [8,
Theorem 07, p. 4]). Hence, this same expression bounds the upper density of solutions
nto (1) with s > Y%,

2.8. Splitting the set of remaining n

Let S be the set of n satisfying (1) with s < YZ. We split S into two pieces, S; and S,
where

S; = {n € S: thereis an n’ € S with ¢t =’ and with f;(s) # f;(s') for some i},
Sy =S\ 8.
We proceed to bound the upper densities of S; and S,.

2.4. Bounding dS;

Let n € &1, and choose n' as in the definition of S;. Since n and n’ both satisfy (1),

k

k
|F(n) — F(n')| = | chfz(”) - Zcifi(n/)| < 26.

=1
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Writing fi(n) = fi(s)fi(t), fi(n') = fi(s')fi(t') and keeping in mind that ¢ = ¢/, the
preceding inequality becomes
k
| > cilfi(s) = filsNSi(®)] < 2.
i=1

Let 7 = r(n) be the largest index in {1,2,...,k} with f.(s) # f.(s'). Then

r—1
Ji , 2
ci(fi(s) = fi(s) == (1) + e (fr(s) — fr(s < —40.
|2 eilfils) = Fi6 50+ en i) = 1] < ey
Since none of fi,..., fi cluster around 0, we may select p > 0 (depending on the f;,

€, Y, and Z) in such a way that the set T of positive integers m satisfying | f;(m)| < p
for some i has upper density less than €Y ~%. If |f.(t)| < p, then t = n/s € T, and so
n € sT. For each s,

_ 1- -
d(sT) = gd(T) <d(T) <eY =2,
But the number of possibilities for s is at most Y#. Thus, the set of n € S; with
|f~(t)| < p has upper density at most e.
Suppose now that n € S; and that | f,-(¢)| > p. Then continuing the above calculation,

|3l — V0 + a6 - 1) < 26 @)

We enforce the condition that § > 0 is small enough that

2 : : /
P P 1)~ AED
Fi($)#Fi(S)

Then (2) implies that there is at least one value of i € {1,2,...,r—1} with f;(s) # fi(s').
We now apply the induction hypothesis to the list of functions f;/ f,, where i runs over
those indices not exceeding r — 1 for which f;(s) # fi(s"). (It is easy to see that condition
(iii) for the original list f1,..., fx implies all of conditions (i)—(iii) for the new list of
functions f;/f-.) This induction hypothesis implies that

r—1
(s — f(s
ci(fi(s) = fil ))fr

i=1

does not cluster around —ec,(f(s) — f-(s")). We may thus fix 6, ; o+ > 0 small enough to
guarantee that the set U, o of positive integers m satisfying
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r—1 f 9
1> ailfi(s) — fi(S'))f—Z(m) +er(frls) = fr(s)] < ;67“,5,5’
i=1 r

has upper density smaller than €Y ~22k~!. We make the further stipulation that our
choice of § > 0 satisfies

0 < mindy g o

where the minimum runs over all of the (finitely many!) possible triples r, s, s’ that arise
in this way.

With 6 so restricted, whenever (2) holds, n € sl 5. Each set sl s o has upper
density smaller than €Y ~24k~1, while the number of possibilities for the triple r,s, s’
is at most kY2%. Hence, the set of n € S; with |f.(t)| > p has upper density smaller
than e.

We conclude that §; has upper density smaller than 2e.

2.5. Bounding ds,

For each large real number x, we partition Sy N [1,z] as follows. Given a pair of
nonnegative integers U, V, we let So(U, V') be the subset of Sy N [1, 2| consisting of those
n with

/2" <n<z/2Y and 220DV < < g 2UFV,
Thus,

82 N [1,33} = U SQ(U, V)
U,v=>0

If n € S2(U,V), then
2Vl < s=mn/t <2V

Since each n € Sy has s < YZ| the set So(U,V) is empty unless 21 < YZ and so
we will assume this condition on V. To bound #85(U, V), we first fix the large-primes
component ¢t and count the number of corresponding n. List these as

ny = s1t, no =s2t, ..., njg=sjt.
Then for each 1 <i <k,
fi(s1) = fi(s2) = -+ = fi(s);
otherwise, some of ny,...,n; would belong to S;. In particular, every n € S3(U, V)

corresponding to this particular ¢ has
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f1 (S) = d

for a fixed d. By a theorem of Haldsz, the number of positive integers S < 2V with

f1 (S) =d is
< 2V E(2V+1) (3)

with an absolute implied constant, where E(T) is defined for real values of T by

E(T)= Y
<T

p
fi(p)#£1

(To deduce this from the main theorem of [7], apply that result to the additive function
log|f1(n)|.) Our hypothesis that f; is nonclustering implies that the unrestricted sum

Zp: F1(p)# il% diverges: Otherwise, the set of squarefree n divisible only by primes p
with f1(p) = £1 has density

0, () ()

p: fi(p)#+£L p: fi(p)==%1

which forces f; to cluster around one of +1. Hence, the denominator in (3) tends to
infinity with V. Thus, there is a positive integer V = Vj(¢€) such that whenever V' > Vj,
the number of S < 2V*+1! satisfying f1(S) = d is at most € - 2V 1. (We could also have
reached this conclusion by applying [3, Theorem IV] instead of [7].) We conclude that,
for each fixed ¢, the number of corresponding n = st € Sy(U, V) is

2V+H1 always,
e-2V+tl  when V > V.

On the other hand, since t < z/2Y*" and has no prime factors in [2,Y], inclusion-
exclusion shows that the number of possibilities for ¢ is

T 1 T
< 1—-— My< — 2¥).
— QU+V pl:{/( p) +O( )— 2U+V10gy +O( )

Combining these upper bounds, we deduce that

#S2(U, V) < W%ﬁ +0@2V*TY)  always,
T gy roev ) for V2 g

Finally we sum over U and V. Let S2(U) = |y, S2(U, V). Since we need only consider
V with 2V~ < YZ, we have
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#S:(U) < Z (2[]?;;}, + O(2V+Y)) + Z (2[]2125;}/ + O(2V+Y))

0<V <V V>V,
v<iEr o V<o
A T

< 22 4 4eZ-—+0(2Y - YY)

~ logY 2V 2U ( )

Now we sum on all nonnegative U with 2U < z to find that

#S: N[ x] < o x4+ 8Z-x+012Y -YZ logx).
logY

It follows that Sy has upper density at most

4V

Z.
logY 8

2.6. Denouement

Putting everything together, we see that the upper density of solutions to (1) is at
most

4V

Cexp(—cZ) + 2¢ + g Y

+ 8¢Z,

where C' and c¢ are absolute positive constants. We now fix our choices of parameters
6,Y,Z. Given any n > 0, we first fix Z large enough to make Cexp(—cZ) < /3, then
fix € > 0 small enough to make 2¢ + 8¢Z < n/3, and then finally fix Y large enough to
make 4V /logY < n/3. Our arguments then show that for a suitable of choice of § > 0,
the set of n satisfying (1) has upper density < 7.

3. s vs s4: Proof of Theorem 2

We begin with a result of independent interest.

Proposition 3. Fiz a nonzero real number R. Then F(n) = @ + R@ possesses a

continuous distribution function.

Proof that a (possibly discontinuous) distribution function exists. We argue via the
method of moments. The argument is very similar to one described in detail in [11, §4],
and so we only sketch the proof. For each positive integer k, define

= Jim 23 (‘W+R¢§m)k

n<zx

To see that uy exists, it suffices to note that
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ot/ + Ron/n)* =Y () R omyion)t=
§=0

and that each of the functions o(n)’¢(n)*=7/n* possesses a finite mean value, by a
straightforward application of Wintner’s mean value theorem [12, Theorem 1, p. 138].
Since

k . .
)=z and oot < o/ < /o),
we can use the estimation of the moments of n/¢(n) appearing in the proof of [11,
Proposition 4.3] to deduce that

i < exp(O(kloglog(3k))).

(Here we allow implied constants to depend on R.) In particular, the condition

lim sup ué,/fk/k < oo
k—o0
that is required for application of [2, Theorem 3.3.12, p. 123] is satisfied, and so F(n)
possesses a distribution function. O

Proof of continuity. We apply Theorem 1 with fi(n) = o(n)/n and fa(n) = ¢(n)/n. The
Erdés—Wintner theorem [4] (see also [12, §4.7]), applied to log f1, log fo, and log(f1/f2)
shows that all of fi1, fa, f1/f2 have continuous distribution functions, which immediately
implies conditions (i)-(iii). O

Remark 4. Results closely related to Proposition 3 can already be found in the literature.
For example, [9] contains a proof of the continuity of the distribution function of # +
@ in a strong form (a sharp estimate for the modulus of continuity). The strength of
Theorem 1 is its ease of applicability and wide generality. To illustrate with a random

example, an argument analogous to the above will prove that

¢(n) 1 a(n)A(n)
C1 o(n) + co exp % Tog p + c3 "

has a continuous distribution function for any nonzero ¢y, co, c3. Here o, ¢ are as usual,
and A is the Liouville function, the completely multiplicative function with A\(p) = —1 for
every prime p. (To estimate the moments in this case one should appeal to [15, Sétze I, I1]
in place of Wintner’s theorem.)

Proof of Theorem 2. Let u > 0. Writing s(n) = o(n) — n and s4(n) = n — ¢(n), the
inequality s(n)/s4(n) < u can be put in the form
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ﬂ+u®§l+u.
n n

By Proposition 3, o(n) 4 420 possesses a continuous distribution function, say D1 4. It

n n

follows that, for each u > 0,

1
lim —#{2<n<z:s(n)/se(n) <u}
T—00 I
exists and equals Dy ,, (1 +w). Since s(n)/sy(n) > 1, the same limit also exists for u < 0,
where it vanishes. We denote the value of this limit by Dy, (u).

We now check the boundary conditions necessary for D/, to qualify as a distribution
function. It is trivial that lim, o D/, (u) = 0. To see that lim, . Dy/s,(v) = 1,
suppose that s(n)/s4(n) > u, where u is large and positive. We can write this inequality
in the form

o(n)

n

71_M>u.

So either 2™ > 1 4 /5 or 2 > 1 — ﬁ Each of these inequalities holds on a set of

n n
density tending to 0 as u — oo, since and @ each have continuous distribution
functions (e.g., by the Erdés-Wintner theorem again). It follows that 1 — D,/ (u) — 0

as u — o0, and hence D/, (u) = 1 as u — oo, as desired.

a(n)

Now we show continuity of D/, (u). It is certainly sufficient to consider values of
u > 1. Given such a u, we will prove that the set of solutions n to

s(n)

Uu—0< —=<u+9
s¢(n)
comprise a set of upper density tending to 0 as § | 0. Therefore s/sy4 is nonclustering
(provided one extends this quotient to be defined at n = 1). Rearranging these inequal-
ities for s(n)/se(n) yields

MJruM§1+u+(5(1M) <l4u+9§
n n n

as well as

U§1m+u¢gl)21+u6<l¢gl)> >14u—24.

Now the desired result follows from the continuity of the distribution function Dy .

So far we have shown that s/s, has a continuous distribution function D It

s/s¢°
remains (only) to prove that D/, (u) is strictly increasing for u > 1.
We let a,b > 1 with a < b and aim to show that Dy, (a) < D/, (b). By [10], the

image of s/s, is dense in [1,00), and so we may fix an ng such that
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¢ :=s(ng)/se(no) € (a,b).

We now argue that a positive proportion of the multiples n of ng also satisfy s(n)/s¢(n) €
(a,b). It is easy to prove (see the start of [10, §3]) that

s(nom)/s¢(nom) = s(no)/s¢(no) > a

for all m, and so it suffices to show that s(ngm)/se(nem) < b holds a positive proportion

of the time.
Let y be a large, fixed real parameter be specified more precisely below. To begin with,

we assume y is so large that [[,., (1 —1/p) > 1/(2logy). (This is true for all large y by
Mertens’ theorem, since e” < 2.) Let P, be the product of the primes not exceeding y.

Then for all sufficiently large = (depending on y),

1
410gyx'

#{m <z :ged(m,Py) =1} > %1: H(l—l/p)> (4)

p<y

Moreover, recalling that J(m =2 dim L, we have that

B C RN D DD OF ERND DI D OF

m
m<x m<x d|m d: p|d = p>y m<ac
ged(m,Py)=1 ged(m,Py)=1d>1 d>1 d[m

S d—(H(——))

d: pld = p>y p>y
d>1

IN

The prime number theorem together with partial summation implies that

T (14 ++--) <exp<zp22>

P>y p>y

1 1
§exp(O< )>=1+O( )
ylogy ylogy

Hence,

2 (JEZ%) - 1) < yljgyx’

m<x
ged(m,Py)=1

so that the number of m < z with ged(m, Py) = 1 and % -1> logy is O(z/y).
Comparing with (4), we see that if y is fixed sufficiently large, then for all large x,

(5)

om) o Ly, 1,
’ logy 8logy
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Increasing y if necessary, we may assume that y exceeds the largest prime factor of ng.
Then for any m counted on the left-hand side of (5),

o(nom) 1= o(ng) o(m) 1< o(ngp) 1+ 1 1= o(no) 14 O’(’no)/n().
nom ng m o logy no logy
Since also
1 P(nom) > ¢(n0))
nom no
we find that
o(nogm) 1 o(no) 1
s(nom) _ Tnom_ T o(ng)/ng 1
3¢(n0m) 1— ¢(nom) — 1— ¢(no) (1 _ ¢("0)) ]ogy
nom no no
ey o(ng)/mg 1 .
(1 _ ¢(7l0)) logy
no

Increasing y if necessary, we can ensure that this last expression is smaller than b.

With y fixed as above, (5) implies that the set of m with s(nom)/se(nom) < b has
positive lower density. It follows that the corresponding values n = ngm also comprise
a set of positive lower density. Together with our earlier remarks, we conclude that
Dyys,(a) < Dy, (b), as desired. This completes the proof that D,/ is increasing as
well as the proof of Theorem 2. O

4. Concluding remarks on positive-valued multiplicative functions

Theorem 1 is well-suited to proving the continuity of a distribution function when
it exists. It is therefore natural to ask for a general condition guaranteeing that F =
c1f1+- - -+ck fr possesses a distribution function. We conclude by sketching a proof of the
following partial result in this direction. The argument is due essentially to Shapiro [13]
(see especially p. 63), but as the case we work in is much simpler than his general set-up,
it seems a relatively self-contained discussion is warranted.

Proposition 5. Let fi,..., fr be positive-valued multiplicative functions each possessing
a distribution function. Then for any ci,...,cp € R, the function c1fi1 + -+ + ¢k fr also
has a distribution function.

Note that this result applies, for instance, to the example considered in Proposition 3,
but not immediately to the one considered in Remark 4.

Let Y > 0. We keep the notation of §2, where n denotes a positive integer and s denotes
the Y-smooth part of n. (There will be no confusion with the sum-of-proper-divisors
function.) We say that an arithmetic function F is essentially determined by small primes
if for all € > 0,
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Yli_I}nooa{nz |F(n) — F(s)] > e} =0.

If F is an arithmetic function essentially determined by small primes, then F' has a
distribution function; this is contained in [13, Theorem 2.1], and also follows from [14,
Theorem 2.3, p. 427]. Moreover, the converse holds for all additive functions F' (see the
theorem stretching from pp. 719-720 in [4]).

To relate this back to Proposition 5, we recall that when a positive-valued multi-
plicative function possesses a limit law, either its distribution function is that of the
degenerate distribution at 0, or the additive function log f has a distribution function.
(See [1, Theorem 4], and note that the convergence of the three series in eq. (3) there
is exactly the Erdés—Wintner condition for log f to have a distribution function.) Now
given f1,..., fr as in Proposition 5, we may reorder the list so that fi,..., f; have
distributions degenerate at 0, and fyy1,..., fr do not. It is then easy to see that if
Co+1fo41 + - + cifr has a distribution function, then c¢; fi + -+ - + ¢ fr has the same
distribution function. Thus, we can (and do) assume that each of the log f; has a dis-
tribution function. As discussed in the previous paragraph, this means that each log f;
is essentially determined by small primes. We claim that each f; is also so determined.
Indeed, suppose that

|fi(n) — fi(s)] > e

Then, with 7 > 0 a parameter at our disposal, either f;(n) > 7, or

|fi(s)/ fi(n) = 1] > €/n.

This last inequality implies that

|log fi(n) —log fi(s)| >en 1;

since log f; is essentially determined by small primes, this estimate holds on a set of
upper density tending to 0 as Y — oco. On the other hand, if f;(n) > 7, then log f;(n) >
logn. That occurs on a set of upper density tending to 0 as n — oo, since log f; has
a (proper) distribution function. Letting ¥ — oo and then letting n — oo proves our
claim.

Since the f; are essentially by determined by small primes, so is any R-linear combi-
nation of the f;; thus, all such combinations possess distribution functions.
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