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A real-valued arithmetic function F is said to cluster about 
the point u ∈ R if the upper density of n with u− δ < F (n) <
u + δ is bounded away from 0, uniformly for all δ > 0. We 
establish a simple-to-check sufficient condition for a linear 
combination of multiplicative functions to be nonclustering, 
meaning not clustering anywhere. This provides a means of 
generating new families of arithmetic functions possessing 
continuous distribution functions. As a specific application, 
we resolve a problem posed recently by Luca and Pomerance.
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1. Introduction

Let F be a real-valued arithmetic function. We say that F clusters around the real 
number u if there is some ε > 0 such that, for every δ > 0, the solutions n to

u− δ < F (n) < u + δ
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form a set of upper density at least ε. If F does not cluster around any u, we say that 
F is nonclustering. The main result of this note is the following criterion for a linear 
combination of multiplicative functions to be nonclustering.

Theorem 1. Let f1, . . . , fk be multiplicative arithmetic functions taking values in the 
nonzero real numbers and satisfying the following conditions:

(i) f1 is nonclustering,
(ii) none of f1, . . . , fk cluster around 0,
(iii) for all i < j with i, j ∈ {1, 2, . . . , k}, the function fi/fj is nonclustering.

Then for all nonzero c1, . . . , ck ∈ R, the arithmetic function F := c1f1 + · · · + ckfk is 
nonclustering.

Theorem 1 has consequences for the study of limit laws of arithmetic functions (for 
background, see, e.g., [14, Chapters III.2 and III.4] and [12, Chapter 4]). It is easy to see 
that for an arithmetic function F possessing a limit law (i.e., possessing a distribution 
function), the distribution function is continuous precisely when F is nonclustering. Now 
it is often the case that one can prove a distribution function exists by some general 
principle, but that the proof does not offer any insight into whether that function is 
continuous. Theorem 1 sometimes provides a convenient way of establishing continuity.

We illustrate by proving a recent conjecture of Luca and Pomerance. Let s(n) be the 
sum-of-proper-divisors function, so that s(n) = σ(n) − n. Let sφ(n) = n − φ(n) denote 
the cototient function. In [10], Luca and Pomerance noted that s(n)/sφ(n) ≥ 1 for all 
n ≥ 2 and showed that the sequence {s(n)/sφ(n)}∞n=2 is dense in [1, ∞). We prove:

Theorem 2. The arithmetic function s(n)/sφ(n) possesses a continuous distribution func-
tion Ds/sφ . Moreover, Ds/sφ(u) is strictly increasing for u ≥ 1.

Theorem 2 was conjectured at the end of [10, §1].

2. Nonclustering of c1f1 + · · · + ckfk: Proof of Theorem 1

Our argument is modeled on work of Galambos and Kátai [6] concerning pairs of 
additive functions (generalizing an earlier result of Fein and Shapiro [5]).

2.1. Setup

Since f1 is nonclustering and c1 is nonzero, the theorem is obvious when k = 1. 
Proceeding inductively, we may assume that k ≥ 2 and that the theorem is already 
known to hold for all smaller values of k.

Let u ∈ R. We will show that by making a judicious choice of δ, the upper density of 
the set of n satisfying
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u− δ < F (n) < u + δ (1)

can be made arbitrarily small.
Let ε > 0. We let Y and Z be large, fixed real numbers (independent of n); their values 

will be specified more precisely in the course of the proof. To begin with, we assume that 
Y, Z ≥ 2.

For each solution n to (1), we split off the Y -smooth part of n, writing

n = st, where p | s =⇒ p ≤ Y, and p | t =⇒ p > Y.

(Here and below, p always refers to a prime.) We refer to this way of writing n as the 
‘basic decomposition’, and we reserve the letters s and t for this purpose. We sometimes 
make use of obvious modifications of this notation, e.g., using s′ and t′ for the components 
in the decomposition of n′.

For a set S of positive integers, we write d̄S for its upper density.

2.2. Those n with large smooth part

It is known that the upper density of n with Y -smooth part larger than Y Z is

� exp(−cZ),

where c > 0 is an absolute constant, and the implied constant is also absolute (see [8, 
Theorem 07, p. 4]). Hence, this same expression bounds the upper density of solutions 
n to (1) with s > Y Z .

2.3. Splitting the set of remaining n

Let S be the set of n satisfying (1) with s ≤ Y Z . We split S into two pieces, S1 and S2, 
where

S1 = {n ∈ S : there is an n′ ∈ S with t = t′ and with fi(s) �= fi(s′) for some i},

S2 = S \ S1.

We proceed to bound the upper densities of S1 and S2.

2.4. Bounding d̄S1

Let n ∈ S1, and choose n′ as in the definition of S1. Since n and n′ both satisfy (1),

|F (n) − F (n′)| =
∣∣ k∑

cifi(n) −
k∑

cifi(n′)
∣∣ < 2δ.
i=1 i=1
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Writing fi(n) = fi(s)fi(t), fi(n′) = fi(s′)fi(t′) and keeping in mind that t = t′, the 
preceding inequality becomes

∣∣ k∑
i=1

ci(fi(s) − fi(s′))fi(t)
∣∣ < 2δ.

Let r = r(n) be the largest index in {1, 2, . . . , k} with fr(s) �= fr(s′). Then

∣∣ r−1∑
i=1

ci(fi(s) − fi(s′))
fi
fr

(t) + cr(fr(s) − fr(s′))
∣∣ < 2

|fr(t)|
δ.

Since none of f1, . . . , fk cluster around 0, we may select ρ > 0 (depending on the fi, 
ε, Y , and Z) in such a way that the set T of positive integers m satisfying |fi(m)| < ρ

for some i has upper density less than εY −Z . If |fr(t)| < ρ, then t = n/s ∈ T , and so 
n ∈ sT . For each s,

d̄(sT ) = 1
s
d̄(T ) ≤ d̄(T ) < εY −Z .

But the number of possibilities for s is at most Y Z . Thus, the set of n ∈ S1 with 
|fr(t)| < ρ has upper density at most ε.

Suppose now that n ∈ S1 and that |fr(t)| ≥ ρ. Then continuing the above calculation,

∣∣ r−1∑
i=1

ci(fi(s) − fi(s′))
fi
fr

(t) + cr(fr(s) − fr(s′))
∣∣ < 2

ρ
δ. (2)

We enforce the condition that δ > 0 is small enough that

2
ρ
δ < min

1≤i≤k
min

S,S′≤Y Z

fi(S) �=fi(S′)

|ci(fi(S) − fi(S′))|.

Then (2) implies that there is at least one value of i ∈ {1, 2, . . . , r−1} with fi(s) �= fi(s′). 
We now apply the induction hypothesis to the list of functions fi/fr, where i runs over 
those indices not exceeding r−1 for which fi(s) �= fi(s′). (It is easy to see that condition 
(iii) for the original list f1, . . . , fk implies all of conditions (i)–(iii) for the new list of 
functions fi/fr.) This induction hypothesis implies that

r−1∑
i=1

ci(fi(s) − fi(s′))
fi
fr

does not cluster around −cr(fr(s) − fr(s′)). We may thus fix δr,s,s′ > 0 small enough to 
guarantee that the set Ur,s,s′ of positive integers m satisfying
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∣∣ r−1∑
i=1

ci(fi(s) − fi(s′))
fi
fr

(m) + cr(fr(s) − fr(s′))
∣∣ < 2

ρ
δr,s,s′

has upper density smaller than εY −2Zk−1. We make the further stipulation that our 
choice of δ > 0 satisfies

δ < min δr,s,s′

where the minimum runs over all of the (finitely many!) possible triples r, s, s′ that arise 
in this way.

With δ so restricted, whenever (2) holds, n ∈ sUr,s,s′ . Each set sUr,s,s′ has upper 
density smaller than εY −2Zk−1, while the number of possibilities for the triple r, s, s′

is at most kY 2Z . Hence, the set of n ∈ S1 with |fr(t)| ≥ ρ has upper density smaller 
than ε.

We conclude that S1 has upper density smaller than 2ε.

2.5. Bounding d̄S2

For each large real number x, we partition S2 ∩ [1, x] as follows. Given a pair of 
nonnegative integers U, V , we let S2(U, V ) be the subset of S2 ∩ [1, x] consisting of those 
n with

x/2U+1 < n ≤ x/2U and x/2(U+1)+V < t ≤ x/2U+V .

Thus,

S2 ∩ [1, x] =
⋃

U,V≥0
S2(U, V ).

If n ∈ S2(U, V ), then

2V−1 < s = n/t < 2V +1.

Since each n ∈ S2 has s ≤ Y Z , the set S2(U, V ) is empty unless 2V−1 < Y Z , and so 
we will assume this condition on V . To bound #S2(U, V ), we first fix the large-primes 
component t and count the number of corresponding n. List these as

n1 = s1t, n2 = s2t, . . . , nJ = sJ t.

Then for each 1 ≤ i ≤ k,

fi(s1) = fi(s2) = · · · = fi(sJ);

otherwise, some of n1, . . . , nJ would belong to S1. In particular, every n ∈ S2(U, V )
corresponding to this particular t has
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f1(s) = d

for a fixed d. By a theorem of Halász, the number of positive integers S < 2V +1 with 
f1(S) = d is

� 2V +1/
√

E(2V +1) (3)

with an absolute implied constant, where E(T ) is defined for real values of T by

E(T ) =
∑
p≤T

f1(p) �=±1

1
p
.

(To deduce this from the main theorem of [7], apply that result to the additive function 
log |f1(n)|.) Our hypothesis that f1 is nonclustering implies that the unrestricted sum ∑

p: f1(p) �=±1
1
p diverges: Otherwise, the set of squarefree n divisible only by primes p

with f1(p) = ±1 has density

∏
p: f1(p) �=±1

(
1 − 1

p

) ∏
p: f1(p)=±1

(
1 − 1

p2

)
> 0,

which forces f1 to cluster around one of ±1. Hence, the denominator in (3) tends to 
infinity with V . Thus, there is a positive integer V0 = V0(ε) such that whenever V ≥ V0, 
the number of S < 2V +1 satisfying f1(S) = d is at most ε · 2V +1. (We could also have 
reached this conclusion by applying [3, Theorem IV] instead of [7].) We conclude that, 
for each fixed t, the number of corresponding n = st ∈ S2(U, V ) is

≤
{

2V +1 always,
ε · 2V +1 when V ≥ V0.

On the other hand, since t ≤ x/2U+V and has no prime factors in [2, Y ], inclusion-
exclusion shows that the number of possibilities for t is

≤ x

2U+V

∏
p≤Y

(
1 − 1

p

)
+ O(2Y ) ≤ x

2U+V log Y + O(2Y ).

Combining these upper bounds, we deduce that

#S2(U, V ) ≤
{

2x
2U log Y

+ O(2V +Y ) always,
2εx

2U log Y
+ O(2V +Y ) for V ≥ V0.

Finally we sum over U and V . Let S2(U) =
⋃

V S2(U, V ). Since we need only consider 
V with 2V−1 < Y Z , we have
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#S2(U) ≤
∑

0≤V <V0

V < log(Y Z )
log 2 +1

(
2x

2U log Y
+ O(2V +Y )

)
+

∑
V≥V0

V < log(Y Z )
log 2 +1

(
2εx

2U log Y
+ O(2V +Y )

)

≤ 2V0

log Y
x

2U + 4εZ x

2U + O(2Y · Y Z).

Now we sum on all nonnegative U with 2U ≤ x to find that

#S2 ∩ [1, x] ≤ 4V0

log Y · x + 8εZ · x + O(2Y · Y Z · log x).

It follows that S2 has upper density at most

4V0

log Y + 8εZ.

2.6. Denouement

Putting everything together, we see that the upper density of solutions to (1) is at 
most

C exp(−cZ) + 2ε + 4V0

log Y + 8εZ,

where C and c are absolute positive constants. We now fix our choices of parameters 
ε, Y, Z. Given any η > 0, we first fix Z large enough to make C exp(−cZ) < η/3, then 
fix ε > 0 small enough to make 2ε + 8εZ < η/3, and then finally fix Y large enough to 
make 4V0/ log Y < η/3. Our arguments then show that for a suitable of choice of δ > 0, 
the set of n satisfying (1) has upper density < η.

3. s vs sφ: Proof of Theorem 2

We begin with a result of independent interest.

Proposition 3. Fix a nonzero real number R. Then F (n) = σ(n)
n + Rφ(n)

n possesses a 
continuous distribution function.

Proof that a (possibly discontinuous) distribution function exists. We argue via the 
method of moments. The argument is very similar to one described in detail in [11, §4], 
and so we only sketch the proof. For each positive integer k, define

μk = lim
x→∞

1
x

∑
n≤x

(
σ(n)
n

+ R
φ(n)
n

)k

.

To see that μk exists, it suffices to note that
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(σ(n)/n + Rφ(n)/n)k =
k∑

j=0

(
k

j

)
Rk−jσ(n)jφ(n)k−j/nk

and that each of the functions σ(n)jφ(n)k−j/nk possesses a finite mean value, by a 
straightforward application of Wintner’s mean value theorem [12, Theorem 1, p. 138]. 
Since (

k

j

)
≤ 2k and σ(n)jφ(n)k−j/nk ≤ (σ(n)/n)k ≤ (n/φ(n))k,

we can use the estimation of the moments of n/φ(n) appearing in the proof of [11, 
Proposition 4.3] to deduce that

μk � exp(O(k log log(3k))).

(Here we allow implied constants to depend on R.) In particular, the condition

lim sup
k→∞

μ
1/2k
2k /k < ∞

that is required for application of [2, Theorem 3.3.12, p. 123] is satisfied, and so F (n)
possesses a distribution function. �
Proof of continuity. We apply Theorem 1 with f1(n) = σ(n)/n and f2(n) = φ(n)/n. The 
Erdős–Wintner theorem [4] (see also [12, §4.7]), applied to log f1, log f2, and log(f1/f2)
shows that all of f1, f2, f1/f2 have continuous distribution functions, which immediately 
implies conditions (i)–(iii). �
Remark 4. Results closely related to Proposition 3 can already be found in the literature. 
For example, [9] contains a proof of the continuity of the distribution function of σ(n)

n +
φ(n)
n in a strong form (a sharp estimate for the modulus of continuity). The strength of 

Theorem 1 is its ease of applicability and wide generality. To illustrate with a random 
example, an argument analogous to the above will prove that

c1
φ(n)
σ(n) + c2 exp

⎛
⎝∑

p|n

1
log p

⎞
⎠ + c3

σ(n)λ(n)
n

has a continuous distribution function for any nonzero c1, c2, c3. Here σ, φ are as usual, 
and λ is the Liouville function, the completely multiplicative function with λ(p) = −1 for 
every prime p. (To estimate the moments in this case one should appeal to [15, Sätze I, II]
in place of Wintner’s theorem.)

Proof of Theorem 2. Let u > 0. Writing s(n) = σ(n) − n and sφ(n) = n − φ(n), the 
inequality s(n)/sφ(n) ≤ u can be put in the form
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σ(n)
n

+ u
φ(n)
n

≤ 1 + u.

By Proposition 3, σ(n)
n +uφ(n)

n possesses a continuous distribution function, say D1,u. It 
follows that, for each u > 0,

lim
x→∞

1
x

#{2 ≤ n ≤ x : s(n)/sφ(n) ≤ u}

exists and equals D1,u(1 +u). Since s(n)/sφ(n) ≥ 1, the same limit also exists for u ≤ 0, 
where it vanishes. We denote the value of this limit by Ds/sφ(u).

We now check the boundary conditions necessary for Ds/sφ to qualify as a distribution 
function. It is trivial that limu→−∞ Ds/sφ(u) = 0. To see that limu→∞ Ds/sφ(u) = 1, 
suppose that s(n)/sφ(n) > u, where u is large and positive. We can write this inequality 
in the form

σ(n)
n − 1

1 − φ(n)
n

> u.

So either σ(n)
n > 1 +

√
u or φ(n)

n > 1 − 1√
u
. Each of these inequalities holds on a set of 

density tending to 0 as u → ∞, since σ(n)
n and φ(n)

n each have continuous distribution 
functions (e.g., by the Erdős–Wintner theorem again). It follows that 1 −Ds/sφ(u) → 0
as u → ∞, and hence Ds/sφ(u) → 1 as u → ∞, as desired.

Now we show continuity of Ds/sφ(u). It is certainly sufficient to consider values of 
u ≥ 1. Given such a u, we will prove that the set of solutions n to

u− δ <
s(n)
sφ(n) < u + δ

comprise a set of upper density tending to 0 as δ ↓ 0. Therefore s/sφ is nonclustering 
(provided one extends this quotient to be defined at n = 1). Rearranging these inequal-
ities for s(n)/sφ(n) yields

σ(n)
n

+ u
φ(n)
n

≤ 1 + u + δ

(
1 − φ(n)

n

)
≤ 1 + u + δ

as well as

σ(n)
n

+ u
φ(n)
n

≥ 1 + u− δ

(
1 − φ(n)

n

)
≥ 1 + u− δ.

Now the desired result follows from the continuity of the distribution function D1,u.
So far we have shown that s/sφ has a continuous distribution function Ds/sφ . It 

remains (only) to prove that Ds/sφ(u) is strictly increasing for u ≥ 1.
We let a, b ≥ 1 with a < b and aim to show that Ds/sφ(a) < Ds/sφ(b). By [10], the 

image of s/sφ is dense in [1, ∞), and so we may fix an n0 such that
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c := s(n0)/sφ(n0) ∈ (a, b).

We now argue that a positive proportion of the multiples n of n0 also satisfy s(n)/sφ(n) ∈
(a, b). It is easy to prove (see the start of [10, §3]) that

s(n0m)/sφ(n0m) ≥ s(n0)/sφ(n0) > a

for all m, and so it suffices to show that s(n0m)/sφ(n0m) < b holds a positive proportion 
of the time.

Let y be a large, fixed real parameter be specified more precisely below. To begin with, 
we assume y is so large that 

∏
p≤y(1 − 1/p) > 1/(2 log y). (This is true for all large y by 

Mertens’ theorem, since eγ < 2.) Let Py be the product of the primes not exceeding y. 
Then for all sufficiently large x (depending on y),

#{m ≤ x : gcd(m,Py) = 1} >
1
2x

∏
p≤y

(1 − 1/p) > 1
4 log yx. (4)

Moreover, recalling that σ(m)
m =

∑
d|m

1
d , we have that

∑
m≤x

gcd(m,Py)=1

(
σ(m)
m

− 1
)

=
∑
m≤x

gcd(m,Py)=1

∑
d|m
d>1

1
d
≤

∑
d: p|d =⇒ p>y

d>1

1
d

∑
m≤x
d|m

1

≤ x
∑

d: p|d =⇒ p>y
d>1

1
d2 = x

(∏
p>y

(
1 + 1

p2 + 1
p4 + . . .

)
− 1

)
.

The prime number theorem together with partial summation implies that

∏
p>y

(
1 + 1

p2 + 1
p4 + . . .

)
< exp

(∑
p>y

2
p2

)

≤ exp
(
O

(
1

y log y

))
= 1 + O

(
1

y log y

)
.

Hence,

∑
m≤x

gcd(m,Py)=1

(
σ(m)
m

− 1
)

� 1
y log yx,

so that the number of m ≤ x with gcd(m, Py) = 1 and σ(m)
m − 1 ≥ 1

log y is O(x/y). 
Comparing with (4), we see that if y is fixed sufficiently large, then for all large x,

#
{
m ≤ x : gcd(m,Py) = 1, σ(m) − 1 <

1 }
>

1
x. (5)
m log y 8 log y
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Increasing y if necessary, we may assume that y exceeds the largest prime factor of n0. 
Then for any m counted on the left-hand side of (5),

σ(n0m)
n0m

− 1 = σ(n0)
n0

σ(m)
m

− 1 ≤ σ(n0)
n0

(
1 + 1

log y

)
− 1 = σ(n0)

n0
− 1 + σ(n0)/n0

log y .

Since also

1 − φ(n0m)
n0m

≥ 1 − φ(n0)
n0

,

we find that

s(n0m)
sφ(n0m) =

σ(n0m)
n0m

− 1

1 − φ(n0m)
n0m

≤
σ(n0)
n0

− 1

1 − φ(n0)
n0

+ σ(n0)/n0

(1 − φ(n0)
n0

)
1

log y

= c + σ(n0)/n0

(1 − φ(n0)
n0

)
1

log y .

Increasing y if necessary, we can ensure that this last expression is smaller than b.
With y fixed as above, (5) implies that the set of m with s(n0m)/sφ(n0m) < b has 

positive lower density. It follows that the corresponding values n = n0m also comprise 
a set of positive lower density. Together with our earlier remarks, we conclude that 
Ds/sφ(a) < Ds/sφ(b), as desired. This completes the proof that Ds/sφ is increasing as 
well as the proof of Theorem 2. �
4. Concluding remarks on positive-valued multiplicative functions

Theorem 1 is well-suited to proving the continuity of a distribution function when 
it exists. It is therefore natural to ask for a general condition guaranteeing that F =
c1f1+· · ·+ckfk possesses a distribution function. We conclude by sketching a proof of the 
following partial result in this direction. The argument is due essentially to Shapiro [13]
(see especially p. 63), but as the case we work in is much simpler than his general set-up, 
it seems a relatively self-contained discussion is warranted.

Proposition 5. Let f1, . . . , fk be positive-valued multiplicative functions each possessing 
a distribution function. Then for any c1, . . . , ck ∈ R, the function c1f1 + · · · + ckfk also 
has a distribution function.

Note that this result applies, for instance, to the example considered in Proposition 3, 
but not immediately to the one considered in Remark 4.

Let Y > 0. We keep the notation of §2, where n denotes a positive integer and s denotes 
the Y -smooth part of n. (There will be no confusion with the sum-of-proper-divisors 
function.) We say that an arithmetic function F is essentially determined by small primes
if for all ε > 0,
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lim
Y→∞

d̄{n : |F (n) − F (s)| > ε} = 0.

If F is an arithmetic function essentially determined by small primes, then F has a 
distribution function; this is contained in [13, Theorem 2.1], and also follows from [14, 
Theorem 2.3, p. 427]. Moreover, the converse holds for all additive functions F (see the 
theorem stretching from pp. 719–720 in [4]).

To relate this back to Proposition 5, we recall that when a positive-valued multi-
plicative function possesses a limit law, either its distribution function is that of the 
degenerate distribution at 0, or the additive function log f has a distribution function. 
(See [1, Theorem 4], and note that the convergence of the three series in eq. (3) there 
is exactly the Erdős–Wintner condition for log f to have a distribution function.) Now 
given f1, . . . , fk as in Proposition 5, we may reorder the list so that f1, . . . , f� have 
distributions degenerate at 0, and f�+1, . . . , fk do not. It is then easy to see that if 
c�+1f�+1 + · · · + ckfk has a distribution function, then c1f1 + · · · + ckfk has the same 
distribution function. Thus, we can (and do) assume that each of the log fi has a dis-
tribution function. As discussed in the previous paragraph, this means that each log fi
is essentially determined by small primes. We claim that each fi is also so determined. 
Indeed, suppose that

|fi(n) − fi(s)| > ε.

Then, with η > 0 a parameter at our disposal, either fi(n) > η, or

|fi(s)/fi(n) − 1| > ε/η.

This last inequality implies that

| log fi(n) − log fi(s)| 
ε,η 1;

since log fi is essentially determined by small primes, this estimate holds on a set of 
upper density tending to 0 as Y → ∞. On the other hand, if fi(n) > η, then log fi(n) >
log η. That occurs on a set of upper density tending to 0 as η → ∞, since log fi has 
a (proper) distribution function. Letting Y → ∞ and then letting η → ∞ proves our 
claim.

Since the fi are essentially by determined by small primes, so is any R-linear combi-
nation of the fi; thus, all such combinations possess distribution functions.
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