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1. Introduction

The most well known theorem of motivic homotopy theory is Voevodsky’s proof of 
the Beilinson–Lichtenbaum and Bloch–Kato conjectures [13]. In one form ([13], Theo-
rem 6.17), this result states that for a pointed smooth simplicial scheme X, the natural 
homomorphism

H̃p
Mot(X,Z/�(q)) → H̃p

ét(X,Z/�(q)) (1)
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is an isomorphism for p ≤ q and a monomorphism for p = q + 1.
The purpose of the present note is to study the map (1) when X is an elliptic curve 

over Q, p = 2, q = 1. In this case, we know from Voevodsky’s theorem that (1) is a 
monomorphism.

Theorem 1. Let X = E be an elliptic curve defined over Q. Then the canonical homo-
morphism

H̃2
Mot(E,Z�(1)) → H̃2

ét(E,Z�(1))

where Z�(1) denotes the homotopy limit of Z/�k(1) in the category of motives (resp. étale 
motives) always has an uncountable cokernel.

The situation changes, however, if we work with finite models. For a large enough set 
S of primes in Z, an elliptic curve E over Q has a smooth projective model over Z[S−1], 
which we will denote by E[S−1].

Theorem 2. Let X = E be an elliptic curve defined over Q. Then the canonical homo-
morphism

lim
→
S

H̃2
Mot(E[S−1],Z�(1)) → lim

→
S

H̃2
ét(E[S−1],Z�(1))

is an isomorphism if and only if X(E)(�) is finite and rankQ(E) > 0.

Remark. Both direct limits in the statement of the Theorem are in fact eventually 
constant.

Here

X(E) =
⋂
ν

Ker(H1(Q, E) → H1(Qν , Eν))

(where the intersection is taken over all completions of Q) is the Tate–Shafarevich group, 
the finiteness of which (even at one prime) is equivalent to the vanishing of the discrep-
ancy between the rank of the group of rational points of E and its computable estimate 
(see, for example, [7] for an introduction).

We see easily (as reviewed in the next section) that for p = 2, q = 1, (1) is never an 
isomorphism for X = S0. Therefore, it would never be an isomorphism for an elliptic 
curve if we took unreduced instead of reduced cohomology. It is worthwhile noting that 
philosophically speaking, by taking reduced cohomology, the weight of the motive in 
question increases by 1. If it increased by 2, we would be back in the range of Voevodsky’s 
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isomorphism theorem. Consequently, we are investigating a cohomology group which is 
really “just over the isomorphism line”.

Let T�(E) be the �-adic Tate module of E, i.e. the inverse limit of its �n-torsion. 
At some point in the proof, Theorem 2 is rephrased as the following statement in pure 
arithmetic:

Theorem 3. Let E be an elliptic curve over Q. Let � be a prime. Then for a sufficiently 
large finite set of primes S in Z, the Kummer map

E(Z[S−1]) ⊗ Z� → H1
ét(Z[S−1], T�(E))

is an isomorphism if and only if X(E)(�) is finite and rankQ(E) > 0.

A reader interested only in arithmetic and not motivic cohomology can consider this 
statement only, and skip directly to Section 4. To the author, the motivic statement was 
the original motivation, which led to the observation. The author thanks J. Nekovář, 
C. Skinner and C. Weibel for discussions and for pointing out mistakes in earlier state-
ments of this simple but tricky result, and for helping to correct them.

The present note is organized as follows: We review some notation and fix some 
definitions in the next section, and we give a more definitive statement of Theorem 2. In 
Section 3, we prove the easier of the two main implications of the theorem. In Section 4, 
we prove the harder implication, and also Theorem 3. Finally, in Section 5, we give an 
example where the statement of the harder implication can be proved by more elementary 
means.

2. Basic definitions and the main theorem

Let E be a smooth projective variety over a Noetherian scheme Z. We will mostly be 
interested in the case where

Z = Spec(Q) or Z = Spec(Z[S−1]) where S is some finite set of primes. (2)

Let us begin with reviewing some notation. The Kummer short exact sequence of étale 
sheaves

0 �� Z/�k(1) �� Gm
�k �� Gm

�� 0 (3)

gives rise to a cofibration sequence in the derived category of étale sheaves

Gm
�k �� Gm

φk �� Z/�k(1)[1].

We then have the canonical homomorphism
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φk∗ : H1
ét(E,Gm) → H2

ét(E,Z/�k(1)).

In this paper, we will make use of the derived categories of motives and the derived 
category of étale motives DM−

Nis, DM−
ét ([14,6]). Constant sheaves, Gm, Z/�k(1) are 

examples of étale sheaves with transfers, thereby defining objects of DM−
Nis, DM−

ét . We 
will denote the corresponding objects of those categories by the same symbols. Smooth 
schemes over Z have well defined cohomology with coefficients in an object of DM−

Nis

or DM−
ét . If the object of DM−

Nis or DM−
ét comes from a homotopy invariant Nis-

nevich resp. étale sheaf with transfers, the cohomology with coefficients in the motive is 
the same as the corresponding Nisnevich (resp. étale) cohomology. Moreover, Nisnevich 
cohomology of smooth schemes with coefficients in homotopy invariant sheaves is the 
same as Zariski cohomology ([6], Proposition 13.9). We will refer to the latter simply 
as motivic cohomology. This justifies our identification of symbols, since we are solely 
interested in cohomology. We will decorate motivic resp. étale cohomology as HMot, Hét , 
thus eliminating the need to distinguish notations on the level of coefficients.

Next, in DM−
Nis, DM−

ét , we shall write

Z� = holim
←

Z/�k

Z�(1) = holim
←

Z/�k(1).
(4)

It is important to note that these are not the same objects as Z�, Z�(1), which mean 
the Nisnevich or étale constant sheaf and its tensor with Z(1) respectively (or the asso-
ciated Nisnevich or étale motive). For example, for Z = Spec(k) where k is a field, by 
Theorem 4.1 of [6],

H1(Spec(k),Z�(1)) = k× ⊗Z Z�,

which is in general not equal to

H1(Spec(k),Z�(1)) = lim
←

(k×/(k×)�
m

).

We have the usual lim 1 exact sequence

0 → lim 1Hi−1
ét (E,Z/�k(1)) → Hi

ét(E,Z�(1)) → lim
←

Hi
ét(E,Z/�k(1)) → 0. (5)

There is also a similar short exact sequence for the motivic groups. Étale cohomology 
groups with coefficients in Z�(n) were first introduced by U. Jannsen [3].
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We have a canonical diagram

H1
ét(E,Gm)

��������������

Φ �� H2
ét(E,Z�(1))

H1
ét(E,Gm) ⊗ Z�.

���������������
(6)

Lemma 4. We have the following isomorphisms both in DM−
Nis and DM−

ét:

Z(1) ⊗ Z�
� �� Z�(1). (7)

Proof. In the category of derived motives, Z(1) = Gm[−1] is an invertible and hence 
strongly dualizable object with dual Z(−1), so we have

Z(1) ⊗ Z� = Hom(Z(−1),Z�) =

holim
←

Hom(Z(−1),Z/�m) = holim
←

Z/�m(1) = Z�(1),

as claimed. �

But also a smooth projective variety is strongly dualizable in the stable motivic ho-
motopy category, and therefore its cohomology is equal to the homology of its dual. It 
follows that in the following comparison diagram, the top row (with notation analogous 
to the étale case) is an isomorphism in the case when E is an elliptic curve, and we 
have (2):

H1
Mot(E,Gm) ⊗ Z�

∼=
ΦMot

��

∼= ρ⊗Z�

��

H2
Mot(E,Z�(1))

ρ

��
H1

ét(E,Gm) ⊗ Z�
Φ �� H2

ét(E,Z�(1)).

(8)

(To see that ΦMot is an isomorphism in (8), note that the group of rational points E(Q)
is a finitely generated abelian group. We have

H2
Mot(E,Z/�m(1)) = E(Q)/�m

by the Kummer exact sequence, while H1
Mot(E, Z/�m(1)) is the �m-torsion subgroup of 

E(Q), which is finite and hence the lim 1 term vanishes in the motivic analogue of (5).)
On the other hand, the realization map

ρ : H1
Mot(E,Gm) → H1

ét(E,Gm)
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is well known to be an isomorphism (a version of Hilbert 90 theorem, see e.g. [8]). 
Therefore, the left column of diagram (8) is an isomorphism.

We must discuss another point. For a scheme X, one defines the Brauer group

Br(X) = H2
ét(X,Gm).

Define also

T�Br(X) = lim
← �kBr(X)

where nBr(X) is the n-torsion in Br(X) (i.e. the subgroup of elements x where nx = 0). 
One writes Br(R) instead of Br(Spec(R)).

As stated, there is no chance that the map ρ (or Φ) of diagram (8) would be an 
isomorphism. Let us consider the case of Spec(R) where R is a number field or Z[S−1]. 
Then

H1
Mot(Spec(R),Gm) = 0,

and hence

H2
Mot(Spec(R),Z�(1)) = 0, (9)

whereas by (5), we have a short exact sequence

0 → lim 1H1
ét(Spec(R),Z/�k(1)) → H2

ét(Spec(R),Z�(1))

→ lim
←

H2
ét(Spec(R),Z/�k(1)) → 0,

or, using (3),

0 → lim 1R×/R×�k → H2
ét(Spec(R),Z�(1)) → lim

← �RBr(R) → 0.

The first term is clearly 0 (since the maps are onto), so we get

H2
ét(R,Z�(1)) ∼= lim

← �kBr(R). (10)

The right hand side of (10) is non-zero by class field theory. However, if E has a point 
over k, the map ρ from (9) to (10) is a retract of the map ρ in (8), so the map ρ cannot 
be an isomorphism. As customary, we will denote by H̃ the kernel of either row of the 
diagram (8) to Z induced by a Z-point in E, and call this summand the corresponding 
reduced cohomology group.

Let � = 2, 3, 5, . . . be a prime and let E be an elliptic curve defined over Q. Denote 
by S the (finite) set of all primes in Z dividing the conductor of E. Note that by the 
criterion of Néron–Ogg–Shafarevich, T�(E) is unramified at all primes p /∈ S, and the 



JID:YJNTH AID:5837 /FLA [m1L; v1.222; Prn:26/09/2017; 12:11] P.7 (1-19)
I. Kriz / Journal of Number Theory ••• (••••) •••–••• 7
elliptic curve E has a smooth projective model over Z[S−1], which we will denote by 
E(Z[S−1]).

Theorem 5. The following are equivalent:

(a) X(E/Q) ⊗ Z(�) is finite and rankQ(E) > 0.
(b) The realization map of diagram (8)

ρ : H̃2
Mot(E(Z[S−1]),Z�(1)) → H̃2

ét(E(Z[S−1]),Z�(1)) (11)

is an isomorphism.
(c) The map ρ of (11) is onto.
(d) The map

Φ : H̃1
ét(E(Z[S−1]),Gm) ⊗ Z� → H̃2

ét(E(Z[S−1]),Z�(1)) (12)

is an isomorphism.
(e) The map Φ of (12) is onto.
(f) The map

T�Br(E(Z[S−1])) → T�Br(Z[S−1]) (13)

induced by the inclusion of 0 ∈ E is an isomorphism.

3. Proof of the main theorem – the easy implication

Consider diagram (8) and the fact that the maps Φ, ρ when reduced mod �k become 
(by definition) isomorphisms. Since the source of Φ is a finitely generated Z�-module, it 
has no infinite �-divisibility, which implies that Φ (and hence ρ) is injective. Therefore, 
we know that (b), (c), (d) and (e) of the statement are equivalent.

Let us prove that (b) implies the first statement of (a), i.e. that X(E/Q) ⊗ Z(�) is 
finite. We follow [7], Chapter IV.2. Consider the diagram
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E(Q)/�E(Q)
i1 �� S(�)(E/Q)

j1 �� H1(Q, �E)

E(Q)/�2E(Q)

π1

��

i2 �� S(�2)(E/Q)

α1

��

j2 �� H1(Q, �2E)

γ1

��

E(Q)/�3E(Q)

π2

��

i3 �� S(�3)(E/Q)

α2

��

j3 �� H1(Q, �3E)

γ2

��

...

π3

��

...

α3

��

....

γ3

��

(14)

Here, as usual, nE denotes the n-torsion in E, and S(n) denotes the Selmer group, i.e. 
the kernel of the map

H1(Q, nE) →
∏
p

H1(Qp, E).

The maps in, jn are inclusions, the πn are projections (hence onto), and the other vertical 
maps are induced by projections. Since X(E/Q)�n is a quotient of the finite group 
S(�n)(E/Q), it is finite, so finiteness of X(E/Q) ⊗ Z(�) is equivalent to the absence 
of infinitely �-divisible non-zero elements in X(E/Q). This, in turn, is equivalent to 
asserting that

i1 : E(Q)/�E(Q) →
⋂
n

Im(α1α2 . . . αn) is onto. (15)

Clearly, (15) follows from

j1i1 : E(Q)/�E(Q) →
⋂
n

Im(γ1γ2 . . . γn) is onto. (16)

We shall prove (16). We have

H2
Mot(E,Z(1)) ∼= Z⊕ E(Q)

where the first summand corresponds to the degree. More precisely, there is a short exact 
sequence of the form

0 �� H2
Mot(E,Z(1))0 �� H2

Mot(E,Z(1))
deg �� Z �� 0, (17)

and there is a canonical isomorphism

H2
Mot(E,Z(1))0 ∼= E(Q).
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We shall also be interested in the �-adic version of (17):

0 �� H2
Mot(E,Z�(1))0 �� H2

Mot(E,Z�(1))
deg �� Z�

�� 0.

Now consider the diagram

H2(E(Z[S−1]),Z/�Z(1)) r �� H̃2
ét(E(Z[S−1]),Z/�Z(1))0

u �� H1
ét(Z[S−1], �E)

E(Q)/�E(Q)

⊆

��

r′
�� H̃2

ét(E(Z[S−1],Z�(1))0/(�)

q

��

u′
�� H1

ét(Z[S−1], T�(E))/(�)

⊆ s

��

H2
Mot(E(Q),Z�(1))0

��
π′

��

r �� H̃2
ét(E(Z[S−1]),Z�(1))0

γ′ ∼=

��

u �� H1
ét(Z[S−1], T�(E)).

��
γ

��

(18)

To explain this, first note that we have

H2
Mot(E,Z�(1))0/(�) = E(Q)/�E(Q).

Next, the étale group with subscript 0 is defined in analogy with the corresponding 
motivic group, i.e. as the kernel of the degree map. The maps π′, γ′, γ are reductions 
mod �, so they are onto. The map r is étale realization, and is an isomorphism by our 
assumption (b). The maps s, q are inclusions coming from the Bockstein long exact 
sequence associated with

0 �� T�(E) � �� T�(E) ��
�E �� 0

where T�(E) is the Tate module, i.e.

lim
← �kE,

which is non-canonically isomorphic to Z2
� . Now the map u comes from the Hochschild–

Serre spectral sequence

E2 = Hp
ét(Z[S−1], Hq

ét(E(K),Z�(1))) ⇒ Hp+q
ét (E(Z[S−1]),Z�(1)) (19)

where K is the maximal extension of Q over which all the primes outside of S are 
unramified. We have

T�(E) = H1
ét(E(K),Z�(1)),
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so the p = q = 1 term is the target of u. Note (using purity) that the p = 0, q = 2 term 
is

H0
ét(Z[S−1],Z�) = Z�,

and the edge map in p + q = 2 is the degree map. Note also that the p = 2, q = 0 term 
is

H2
ét(Z[S−1],Z�(1));

the canonical map of the right hand side to H2
ét(E(Z[S−1]), Z�(1)) is the edge map. 

Therefore, since E contains a point over Z[S−1], the projection given by the spectral 
sequence

H2
ét(E(Z[S−1]),Z�(1))0 → H1

ét(Z[S−1], T�(E))

factors through an injection

u : H̃2
ét(E(Z[S−1]),Z�(1))0 → H1

ét(Z[S−1], T�(E)).

The map u is defined as the corresponding map for the analogous spectral sequence E
r

pq

with coefficients reduced mod �.
At this point, let us first assume that � 	= 2. Then u is onto since the only possible 

differential of (19) originating at p = q = 1 has target

H3
ét(Z[S−1], H0

ét(E(K),Z�(1))) = 0.

Next, observe that by the Bockstein spectral sequence,

Im(sγ) =
⋂
n

γ1 . . . γn, (20)

while

su′r′ = j1i1. (21)

In effect, to prove (21), let us spell out the definition of j1i1: Take x ∈ E(Q), and set

y = �
√
x ∈ E. (22)

Then define a 1-cocycle on Gal(Q) by setting

g �→ g(y)
. (23)
y
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Now the analogue E
r

p,q of (19) with coefficients reduced mod � has a motivic ana-
logue MotE

r

p,q (although we do not know whether it converges). Nevertheless, we have a 
realization map of exact couples, and hence spectral sequences

MotE
r

p,q → E
r

p,q. (24)

On r = 2, p = q = 1, and r = 2, p = 0, q = 2, the map (24) is an isomorphism. Now 
on the level of mod � motivic cohomology, the definition corresponding to (22) and 
(23) is equal to ur by the definition of the exact couple which produces MotE

r

p,q, which 
proves (21).

Now since u, γ are onto and r is an isomorphism, u′r′ is onto, and so is γ, so

Im(sγ) = Im(su′s′) = Im(s).

Therefore, (20) and (21) imply (16).
Now let us treat the case � = 2. We see that all that remains to show is that u is onto, 

which follows from the following Lemma.

Lemma 6. In the Hochschild–Serre spectral sequence (19), we have

H1
ét(Z[S−1], H1

ét(E(K),Z2(1))) = H1
ét(Z[S−1], T2(E))

d2=0
��

H3
ét(Z[S−1], H0

ét(E(K),Z2(1))) = H3
ét(Z[S−1],Z2(1)).

(25)

Proof. We have a restriction comparison diagram

H1
ét(Z[S−1], H1

ét(E(K),Z2(1)))

��

d2 �� H3
ét(Z[S−1], H0

ét(E(K),Z2(1)))

∼=
��

H1(R, H1
ét(E,Z2(1)))

d2 �� H3(R, H0
ét(E,Z2(1)))

where the right hand column is an isomorphism by Theorem B, p. 108 of [10]. Thus, we 
may replace Q by R in (25).

Then, however, we are dealing with a spectral sequence isomorphic to the Borel coho-
mology spectral sequence for the Z/2Z-action by complex conjugation on a (complexified) 
real elliptic curve, i.e. EC = C×/qZ, q ∈ R, 0 < q < 1. We see then that topologically 
Z/2Z-equivariantly, we have

E ∼= S1 × Sα (26)

where α is the sign representation and SV is the one point compactification of a repre-
sentation V . But stably (i.e. after taking suspension spectra), (26) splits as
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S0 ∨ S1 ∨ Sα ∨ S1+α,

and hence the Borel cohomology spectral sequence collapses. �

4. The hard implication

Thus, we have shown that (b) implies the first statement of (a) To complete the 
proof, we will show that (a) implies (e), and that (e) together with the finiteness of 
X(E/Q) ⊗ Z(�) implies rankQ(E) > 0.

We shall make use of the following

Lemma 7. Let E be an elliptic curve defined over Q. Let �, p be primes. Then

H1(Qp, T�(E)) ⊗Z�
Q�

∼=
{

0 if p 	= �

Qp ⊕Qp if p = �
(27)

Proof. Let

V�(E) = T�(E) ⊗Z�
Q�.

We can use the Euler characteristic formula for local Galois cohomology [10] 5.7, Theo-
rem 5 together with the fact that

V�(E)Gal(Q�) = 0, (28)

and that

HomQ�
(V�(E),Q�)(1) ∼= V�(E) (29)

as Galois representations.
(To prove (28), note that the same claim holds for every extension of Qp, and we will 

prove it in this case. By semi-stable reduction we may reduce to the cases, by taking 
a finite extension of the base field, if it is necessary, when E has either good or split 
multiplicative reduction. In the first case by p-adic Hodge theory the claim fails then 
the rigid cohomology of degree 1 of the reduction of E mod p has a trivial factor as an 
F-isocrystal. This is not possible by the Weil conjectures [2]. In the other case one can 
use the Tate uniformisation (cf. [11] Section V.2) of E to describe the Tate module of E
as a non-trivial extension of Qp(1) by Qp, and hence there are no invariants in this case 
either.)

The Euler characteristic formula is stated for finite modules in [10], but one can look 
at T�(E)/(�m) and pass to the limit to get a statement about ranks. For any continuous 
Z�[Gal(Qp)]-module T satisfying (28) and (29), V = T ⊗Zp

(Qp), the rank of H1(Qp, V )
over Q� is 0 for � 	= p and is equal to rankQp

(V ) for � = p and 0 otherwise. �
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Now the inverse limit of the short exact sequences

0 �� E�k
�� E

�k �� E �� 0 (30)

has the form

0 → T�(E) → lim
←

E → E → 0. (31)

(Again, there is no lim1 since the maps are onto.) Observe now that the first map factors 
as follows:

T�(E) ��

�������������
lim
←

E

T�(E) ⊗Z�
Q�

��

(32)

Therefore, Lemma 7 has the following

Corollary 8. The connecting map of (31)

δ = δp : E(Qp) → H1(Qp, T�(E)) (33)

is onto for p 	= � and for p = �, if xp ∈ Im(δ) with x ∈ H1(Qp, Tp(E)), then x ∈ Im(δ).

Proof. For p = �, if x /∈ Im(δ), then x maps to a non-zero element of H1(Qp, lim← E), so 

xp maps to a non-zero element of H1(Qp, lim← E), contradicting xp ∈ Im(δ). �

We also note that Coker(δ�) is equal to T�H
1(Q�, E), which is torsion-free (in fact, 

isomorphic to Z�).
Now by our earlier discussion of the Hochschild–Serre spectral sequence (19), (e) is 

equivalent to the statement that

δQ : E(Q) ⊗ Zp → H1
ét(Z[S−1], Tp(E)) (34)

(which is injective) is onto, and to the statement of Theorem 3.

Lemma 9. The inclusion of a �-decomposition subgroup in Gal(Q/Q) induces a homo-
morphism

H1
ét(Z[S−1], V�(E)) → H1(Q�, V�(E)) (35)

whose image is isomorphic to Q�.
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Proof. Again, it is true more generally for any continuous Z�[Gal(K/Q)]-module T , 
V = T ⊗Zp

Qp, satisfying (28) and (29) that for p = �, (35) is an inclusion whose image 
has Qp-rank equal to rankQp

(V )/2. The Poitou–Tate exact sequence [12,9] is usually 
stated for a finite continuous Gal(K/Q)-module M :

0 �� H0
ét(Z[S−1],M) �� ∏

p∈S H0(Qp,M) �� H2
ét(Z[S−1],M ′)∗

��
H1

ét(Z[S−1],M ′)∗

��

∏′
p∈S H1(Qp,M)		 H1

ét(Z[S−1],M)		

H2
ét(Z[S−1],M) �� ⊕

p∈S H2(Qp,M) �� H0
ét(Z[S−1],M ′)∗ �� 0

(36)

where M ′ denotes the Pontrjagin dual and 
∏′ the restricted product (of course, in the 

present case, they are the same thing, since S is finite). Our statement can be proved 
by replacing T with T/(�m) and passing to the limit, also considering the fact that the 
Tate module is self-dual. �

Since the groups

H0
ét(Z[S−1], E�k)

are finite, there is no lim 1 term, and we have

H1
ét(Z[S−1], T�(E)) = lim

←
H1

ét(Z[S−1], E�k).

Therefore, for (34), it suffices to prove that the connecting map of (30)

E(Q) → Im(H1
ét(Z[S−1], T�(E)) → H1

ét(Z[S−1], E�k)) (37)

is onto. Take an element x ∈ H1
ét(Z[S−1], T�(E)). By Corollary 8, the image of x in 

H1(Q�, T�(E)) is in the image of the connecting map (33) if and only if this is true 
rationally, i.e. if

The image of every element x ∈ H1
ét(Z[S−1], V�(E)) in H1(Q�, V�(E))

is in the image of the connecting map

δ : E(Q�)⊗̂Q� → H1(Q�, V�(E)).

(38)

If rankQ(E) > 0, then certainly (38) is true: By Lemma 9, the image of H1
ét(Z[S−1],

V�(E)) in H1(Q�, V�(E)) is a 1-dimensional (over Q�) subspace of H1(Q�, V�(E)) and if
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rankQ(E) > 0,

then a 1-dimensional Qp-subspace of the target of δ in (38) comes from the connecting 
map (34).

If (38) holds, noting that p = �, then the reduction xm of our element x mod �m is 
in the image of the connecting map. This means that

xm ∈ S(�m)(E/Q). (39)

Therefore, assuming X has no �-divisibility beyond �s, we see from (39) that xk = xk+s+1
mod �k is in the image of the connecting map (34), as claimed.

(Note that, in general, an element x ∈ H1
ét(Z[S−1], T�(E)) lies in the �-adic Selmer 

group S� = lim← S(�m) if and only if x� /∈ Im(δ�) (provided � 	= 2). Furthermore, 
S�/Im(δQ) = T�X(E/Q), which means that S� = Im(δQ) if and only if X(E/Q) ⊗Z(�)
is finite.)

This completes the proof that (a) implies (e).
To prove that (e) implies that rankQ(E) > 0, note that we can assume X(E)(�) < ∞, 

since we already proved that (e) implies it. Therefore, we have an isomorphism

E(Q) ⊗Q�

∼= �� H1
ét(Z[S−1], V�E). (40)

On the other hand, the right hand side of (40) has non-zero Q�-rank, since by Lemma 9, 
its image in (35) has Q�-rank 1.

The following proof that (f) is equivalent to (b) was pointed out to me by C.Weibel: 
We have

H2
ét(E(Z[S−1]),Z/�k(1)) = Pic(E)/�k, (41)

H2
ét(E(Z[S−1]),Z/�k(1)) = Pic(E)/�k ⊕ �kBr(E(Z[S−1]) (42)

(by the long exact sequence in cohomology associated with the short exact sequence of 
sheaves (3)). Also, we have

H1
ét(E(Z[S−1]),Z/�k(1)) =

Q∗/Q∗�k ⊕ �kPic(E) ∼= H1
ét(E(Z[S−1]),Z/�k(1)).

Now consider the diagram

0 �� lim
←

1H1(E(Z[S−1],Z/�k(1))

∼=
��

�� H2(E(Z[S−1]),Z�(1))

��

�� lim
←

H2
ét(E(Z[S−1]),Z/�k(1)) ��

��

0

0 �� lim
←

1H1
ét(E(Z[S−1]),Z/�k(1)) �� H2

ét(E(Z[S−1]),Z�(1)) �� lim
←

H2
ét(E(Z[S−1]),Z/�k(1)) �� 0.
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Using (41) and (42), we obtain

Coker(H2(E(Z[S−1]),Z�(1)) → H2
ét(E(Z[S−1),Z�(1)))

= T�Br(E(Z[S−1])).

Of course, one can make the same calculation with E replaced by Spec(Q), and naturality 
then gives that (f) is equivalent to (b). �

Finally, let us see why these arguments do not work with

H1
ét(Z[S−1], Tp(E))

replaced by the global Galois cohomology group H1(Q, Tp(E)). First, we note that (36)
in fact holds for a finite module M without assuming that S is finite. Thus, we may 
replace S by the set of all primes in Q, which amounts to replacing Z[S−1] by Q. Going 
even further, we see that the relevant lim←

1-terms in this case are also 0, so even (36)
remains valid with Z[S−1] replaced by Q.

The problem, however, is that the cohomology group H1(Q, Tp(E)) is huge: for S
equal to the set of all primes in Q, M = T�(E)/(�k), we can find infinitely many primes 
p for which E(Qp) has �k-torsion: By Chebotarev density theorem, it suffices to choose 
primes p at which T�(E) is unramified, and for which the Frobenius acts trivially on the 
field obtained by attaching the �k-E-torsion to Q. In the inverse limit of the middle term 
(36) in the case when S contains all primes in Q, then, the inverse limit of these infinite 
products of �k-torsion modules over diminishing sets of primes will create an uncountable 
non-torsion submodule, which must come from an uncountable torsion submodule of 
H1(Q, T�(E)) by the exactness of the limit of (36). In view of the above discussion, 
this also proves Theorem 1. We remark that this argument is similar to the method of 
Kolyvagin [5].

5. An example

In this Section, we give an example where we can show for an elliptic curve that 
(38) is false directly. In the example, the conclusion can be made by Galois cohomology 
computations, thus in particular showing directly that rankQ(E) = 0 for any elliptic 
curve over Q with the same Galois data.

The elliptic curve over Q given by the equation

y2 = x3 + x2 − 117x− 541

has conductor N = 24 ·112, CM (0 rank), torsion 1 and ordinary good reduction at 3 (see 
the Cremona tables at http :/ /johncremona .github .io /ecdata/). Looking at the smallest 
number field K over which E has Z/9 × Z/9 torsion, one sees that

G = Gal(K/Q) ∼= Z/6 × Σ3.

http://johncremona.github.io/ecdata/
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The 3-decomposition subgroup of G is the normal subgroup

G3 = Z/6 × Z/3.

The representation of G on T3(E)/(9) can be described (up to isomorphism) as follows: 
the generator of the Z/6-factor acts by

(
2 0
0 2

)
,

the generator of the Z/3-subgroup of Σ3 acts by

(
4 0
0 7

)
,

the generator σ of a Z/2-subgroup of Σ3 acts by

(
0 1
1 0

)
.

(The author obtained these results using SAGE.) Let Γ = Gal(Q), and let Γ(3) ∼=
Gal(Q3) be a 3-decomposition subgroup. Let also Γ3 be the pullback of Γ by G3 → G. 
Then we have inclusions

Γ(3) ⊂ Γ3 ⊂ Γ.

Lemma 10. The restriction

H1(Γ3, T3(E)/(9)) → H1(Γ(3), T3(E)/(9)) ∼= Z/9 × Z/9

is an isomorphism.

Proof. Once again, we know that the group H1(Γ(3), T3(E)/(9)) is isomorphic to 
Z/9 ×Z/9 by the Euler characteristic formula ([10], 5.7, Theorem 5). The corresponding 
cohomology group of Γ3 can be computed in the following way: let Q be the Γ-module 
coinduced from the Γ3-module T3(E)/(9). Then |Q| = 94, so by the Poitou–Tate exact 
sequence (36),

H1(Γ, Q) ∼= H1(Γ3, T3(E)/(9)) ∼= (Z/9)2.

To see that the restriction is an isomorphism, pick a G3-equivariant section
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T3(E)/(9)

Id 

����������
�� Q

��
T3(E)/(9)

and consider the commutative diagram

H1(Γ, Q)

∼=
��

�� H1(Γ(3), Q)

H1(Γ3, T3(E)/(9)) �� H1(Γ(3), T3(E)/(9))

��

and the Poitou–Tate exact sequence (36). �

Note that T3(E)/(9) as a G3-module actually splits as

T3(E)/(9) ∼= M ⊕M ′

where both M, M ′, as abelian groups, are isomorphic to Z/9. The first cohomologies of 
both Γ(3) and Γ3 on M and M ′ are therefore isomorphic to Z/9.

Now the image of

Z/9 ∼= H1(Γ, T3(E)/(9)) ⊂ H1(Γ3, T3(E)/(9)) ∼= Z/9 ⊕ Z/9

is, by the Hochschild–Serre spectral sequence, invariant under the action of the involution 
σ. We see that neither of the subgroups H1(Γ3, M) nor H1(Γ3, M ′) satisfies this property, 
since σ switches them.

This describes an obstruction modulo 3, but it lifts to a non-torsion obstruction. 
In fact, Kato [4] in Chapter 16 (cf. [1]) relates Lp to the p-adic L-function in case of 
newforms with ordinary good reduction. In our case, the Galois cohomology calculation 
shows that the 3-adic L-function is non-zero mod 3. It is interesting, however, that 
the calculation is elementary, giving hope that non-vanishing of the obstruction can be 
shown in contexts where modularity is not known, for example over more general number 
fields or for abelian varieties.
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