
Journal of Number Theory 218 (2021) 180–208
Contents lists available at ScienceDirect

Journal of Number Theory

www.elsevier.com/locate/jnt

General Section

On fourth and higher moments of short exponential 
sums related to cusp forms

Anne-Maria Ernvall-Hytönen 1, Esa V. Vesalainen ∗,1

Mathematics and Statistics, Åbo Akademi University, Domkyrkotorget 1, 20500 
Åbo, Finland

a r t i c l e i n f o a b s t r a c t

Article history:
Received 20 September 2019
Received in revised form 7 July 2020
Accepted 8 July 2020
Available online 14 August 2020
Communicated by S.J. Miller

Keywords:
Holomorphic cusp forms
Exponential sums
Moments
Large values
Truncated Voronoi identity

We obtain upper bounds for the fourth and higher moments 
of short exponential sums involving Fourier coefficients of 
holomorphic cusp forms twisted by rational additive twists 
with small denominators. We obtain the conjectured best 
possible bound in the case of the fourth moment.

© 2020 Elsevier Inc. All rights reserved.

1. Introduction

Let us consider a fixed holomorphic cusp form F for SL(2, Z) of weight κ ∈ Z+. Then 
it will have the usual Fourier expansion which we will normalize so that
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F (z) =
∞∑

n=1
a(n)n(κ−1)/2 e(nz)

for all z ∈ C with �z > 0. With this normalization Deligne’s estimate [2] says that 
a(n) � d(n) � nε, for positive integers n, and the Rankin–Selberg estimate [19,21] says 
that, for M ∈ [1,∞[,

∑
n≤M

|a(n)|2 = AM + O(M3/5),

where A is a positive real constant only depending on F .
It is of great interest to study exponential sums weighted by Fourier coefficients. 

However, typically it is very difficult to get good pointwise bounds. Therefore, bounding 
different means and moments is of great importance. We consider the fourth and the 
higher moments of short exponential sums involving Fourier coefficients of cusp forms. 
In the case of the fourth moment, the results we obtain are exactly what is conjectured 
to be best possible. We will now briefly explain the history of various estimates before 
explaining the details of these bounds.

Wilton [25] proved essentially square root cancellation for long linear sums and Jutila 
[16] removed the logarithm in Wilton’s estimate leading to the best possible upper bound

∑
n≤M

a(n) e(nα) � M1/2,

uniformly true for M ∈ [1,∞[ and α ∈ R. The case where α is a reduced fraction h/k
with a small denominator k is very interesting, and provides an interesting analogue to 
the classical problems of studying the error terms in the Dirichlet divisor problem or the 
circle problem, see e.g. [15]. Jutila [15] proved the pointwise upper bound � k2/3 M1/3+ε. 
When M1/10 � k � M5/18, this has been improved to k1/4 M3/8+ε in [12,24], based on 
short sum estimates from [6].

Jutila [15] also obtained a mean square result analogous to a twisted mean square 
result for the divisor function in [14], which in turn was in the spirit of earlier work of 
Cramér [1] for the divisor problem without twists. Crudely speaking, when k � M1/2−ε, 
the size of the sum is proportional to k1/2 M1/4 on average. More precisely,

2M∫
M

∣∣∣∣∣∣
∑
n�x

a(n) e
(
n
h

k

)∣∣∣∣∣∣
2

dx = CF kM3/2 + O(k2 M1+ε) + O(k3/2 M5/4+ε),

where CF is a positive real constant depending on F only. When k � M1/6−ε, it was 
proved in [24] following [23] and especially [10] that the sum is of the same average order 
of magnitude in the sense of fourth moments also:
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2M∫
M

∣∣∣∣∣∣
∑
n�x

a(n) e
(
n
h

k

)∣∣∣∣∣∣
4

dx = C ′
F k2 M2 + O(k11/4 M15/8+ε) + O(k13/6 M23/12+ε),

where again C ′
F is a positive real constant only depending on the underlying cusp form.

We are interested here in the properties of the short linear sums
∑

M≤n≤M+Δ

a(n) e(nα),

where M ∈ [1,∞[, Δ ∈ [1,M ] and α ∈ R. The best known upper bounds for such sums 
are due to the first author and Karppinen [6] with a minor improvement by Jääsaari and 
the second author [12]. We will specifically study the case of a rational α with a small 
denominator. The study of these short exponential sums is a natural analogue of short 
interval considerations of error terms in classical analytic number theory. We note that 
estimates for short sums can also sometimes be used to reduce smoothing error in other 
arguments, as is done in [16,3,6,24,12].

Jutila [13] considered the mean square of the error term in the Dirichlet divisor prob-
lem in short intervals. The method also applies to short sums of Fourier coefficients with 
Δ � M1/2, leading to square root cancellation on average, see Ivić [9] and Wu and 
Zhai [26]. The second moment of short sums of Fourier coefficients with rational additive 
twists was studied in [4,24]. The square root cancellation still holds on average as long 
as k � Δ1/2−ε. More precisely, when 1 ≤ Δ � M1/2 and k � Δ1/2−ε, we have

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n) e
(
n
h

k

)∣∣∣∣∣∣
2

dx � M Δ.

The second moment of longer short sums was estimated in [5]. The moment estimates 
give rise to the conjecture that

∑
M�n�M+Δ

a(n) e
(
n
h

k

)
� min

(
Δ1/2 Mε, k1/2 M1/4+ε

)
.

Ivić [9] considered the fourth moment of the error term in the Dirichlet divisor problem 
in short intervals and obtained the expected upper bound when the interval was not too 
short. Wu and Zhai [26] observed that the same technique works for sums of Fourier 
coefficients. Our first goal here is to consider the fourth moment of short exponential 
sums with rational additive twists with small denominators in the spirit of [9]. Tanigawa 
and Zhai [22] extracted a main term in the case of divisor function, but we do not attempt 
this.

Our second goal is to estimate general higher moments through large value estimates. 
This follows the consideration of large values of the error term in the Dirichlet divisor 
problem in short intervals in [11] and the study of higher moments of rationally additively 
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twisted moments of long sums of holomorphic cusp form coefficients in [24], which in turn 
followed similar study for the moments of the error term in the Dirichlet divisor problem 
in [8].

2. Notation

We use standard asymptotic notation. If f and g are complex-valued functions defined 
on some set, say Ω, then we write f � g to signify that |f(x)| ≤ C |g(x)| for all x ∈ Ω for 
some implicit constant C ∈ R+. The notation O(g) denotes a quantity that is � g, and 
f � g means that both f � g and g � f . The letter ε denotes a positive real number, 
whose value can be fixed to be arbitrarily small, and whose value can be different in 
different instances in a proof. All implicit constants are allowed to depend on ε, on the 
implicit constants appearing in the assumptions of theorem statements, and on anything 
that has been fixed. When necessary, we will use subscripts �α,β,..., Oα,β,..., etc. to 
indicate when implicit constants are allowed to depend on objects α, β, . . .

The numbers a(1), a(2), . . . will always denote the Fourier coefficients of a fixed 
holomorphic cusp form F of even weight κ ∈ Z+ for the full modular group SL(2, Z). 
The Fourier coefficients are normalized so that the Fourier expansion of the cusp form is

F (z) =
∞∑

n=1
a(n)n(κ−1)/2 e(nz)

for z ∈ C with �z > 0. All implicit constants are allowed to depend on F .
The function w(x) is a particular kind of smooth weight function, the details of which 

are given in Definition 11 below. To be precise, all implicit constants are allowed to 
depend on the L∞-norms of w and all its derivatives.

When splitting summation ranges dyadically, we will write
∑

L≤N/2,
dyadic

. . . ,

when the summation over L is to be over the values N/2, N/4, N/8, . . . , where N
is a positive real. These sums will always be finite because the summands will vanish 
identically for small L. Analogous notation will also be used for various subsums of 
dyadic sums.

When h ∈ Z and k ∈ Z+ are coprime, then h denotes an integer such that hh ≡ 1
(mod k).

3. The results

Let us fix a holomorphic cusp form F of an even weight κ ∈ Z+ for the full modular 
group SL(2, Z). Then F has a Fourier expansion
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F (z) =
∞∑

n=1
a(n)n(κ−1)/2 e(nz),

where, as usual, z ∈ C with �z > 0. Our main theorem on fourth moments is as follows.

Theorem 1. Let M ∈ [1,∞[, let Δ ∈ [1,M ], and let h ∈ Z and k ∈ Z+ be coprime. If 
k � M−1/2 Δ and k � M1/4, then

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n) e
(
n
h

k

)∣∣∣∣∣∣
4

dx � k2 M2+ε.

If k 	 M−1/2 Δ and k � M−1/4 Δ2/3, then we have

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n) e
(
n
h

k

)∣∣∣∣∣∣
4

dx � M1+ε Δ2.

In the proof we shall mostly, but not entirely, argue analogously to the proof of 
Theorem 4 in [9].

We wish to detect cancellation in higher moments of short exponential sums. For this 
purpose, we will estimate the rarity of large values of short exponential sums as follows.

Theorem 2. Let M, V ∈ [1,∞[, let Δ ∈ [1,M ], let δ ∈ R+ be fixed, and let h and k
be coprime integers with 1 ≤ k ≤ M , and assume that kM2δ � V � kM1/2+δ. Let 
x1, x2, . . . , xR ∈ [M, 2M ], where R ∈ Z+, and assume that |xi − xj | ≥ V for i, j ∈
{1, 2, . . . , R} with i �= j. Fix an exponent pair 〈p, q〉 ∈ ]0, 1/2] × [1/2, 1]. If

∑
xi≤n≤xi+Δ

a(n) e
(
n
h

k

)
	 V

for each i ∈ {1, 2, . . . , R}, and k2/3 Δ2/3 M−1/3+δ � V � Δ M δ, then

R � k2 M1+7δ Δ2 V −5 + k2q/p Δ2+2/p M1+q/p+δ(6+5/p+2q/p) V −2q/p−4−3/p.

Remark. Naturally, the sums in question are always � Δ Mε and �
√
M , so the con-

dition V � kM1/2+ε will certainly be satisfied in any reasonable application of the 
result.

Theorem 3. Let M ∈ [1,∞[ and Δ ∈ [1,M ], and let h and k be coprime integers with 
1 ≤ k ≤ M . Let α, β, γ ∈ R be fixed so that

∑
a(n) e

(
n
h

k

)
� kα Δβ Mγ
x≤n≤x+Δ
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for x ∈ [M, 2M ]. Let V0 ∈ [1,∞[ be a parameter such that k � V0 � kα Δβ Mγ and 
V0 	 k2/3 Δ2/3 M−1/3. Also, let A ∈ [2,∞[ be fixed and let 〈p, q〉 ∈ ]0, 1/2] × [1/2, 1] be 
a fixed exponent pair. Then,

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n) e
(
n
h

k

)∣∣∣∣∣∣
A

dx � M1+ε V A
0 + Φ + Ψ,

where

Φ =
{

k2 M1+ε Δ2 V A−4
0 if A ≤ 4, and

kαA−4α+2 ΔβA−4β+2 MγA−4γ+1+ε if A ≥ 4,

and

Ψ =
{
k2q/p Δ2+2/p M1+q/p+ε V

A−2q/p−3−3/p
0 if A ≤ 2q/p + 3 + 3/p,

k2q/p Δ2+2/p M1+q/p+ε
(
kα Δβ Mγ

)A−2q/p−3−3/p otherwise.

It is of course not immediately obvious what exactly this implies. Possible inter-
esting choices for 〈α, β, γ〉 are the estimate via absolute values 〈0, 1, ε〉 made possible 
by Deligne’s famous work [2], the estimate for short sums 〈0, 1/6, 1/3 + ε〉 due to [6, 
Theorem 5.5] which holds when Δ � M2/3 [12, Theorem 3], the classical pointwise esti-
mate 〈2/3, 0, 1/3 + ε〉 [15, Corollary on p. 30], as well as the improved pointwise bound 
〈1/4, 0, 3/8 + ε〉 which holds for M1/10 � k � M1/4 [24, Theorem 1] as well as for 
M1/4 � k � M5/18 [12, Corollary 5].

Let us consider as an example large values of A and k with sums of length Δ � M5/12. 
We obtain the following upper bound.

Theorem 4. Let M ∈ [1,∞[ and let Δ ∈ [1,∞[ with Δ � M5/12. Furthermore, let 
A ∈ [11,∞[ be fixed, and let h and k be coprime integers with k positive and assume that 
M1/9 � k � M7/18. Then

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n) e
(
n
h

k

)∣∣∣∣∣∣
A

dx � k2 M11/6+29(A−4)/72+ε.

As another example, let us consider moments with A ≤ 11 and k = 1 of sums of 
length � M4/9. In the following theorem, some of the ranges are treated using similar 
moment results for long sums from [24].

Theorem 5. Let M, Δ ∈ [1,∞[ with M1/5 � Δ � M4/9 and let A ∈ [4, 11] be fixed. 
Then we have
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2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n)

∣∣∣∣∣∣
A

dx �

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

MA/11+1+ε Δ6A/11 when A ≤ 8 and Δ � M7/24,

MA/4+1+ε when A ≤ 8 and Δ 	 M7/24,

MA/11+1+ε Δ6A/11 when A ≥ 8 and Δ � M4/9−11/(9A),

M (A+1)/3+ε when A ≥ 8 and Δ 	 M4/9−11/(9A).

4. Some useful theorems, lemmas and corollaries

4.1. The truncated Voronoi identity for cusp forms

As is to be expected, the proofs use a truncated Voronoi type identity for cusp forms. 
The following is contained in Theorem 1.1 in [15].

Theorem 6. Let x ∈ [1,∞[ and N ∈ R+ with 1 � N � x, and let h and k be coprime 
integers such that 1 ≤ k ≤ x. Then

∑
n≤x

a(n) e
(
n
h

k

)
= k1/2 x1/4

π
√

2

∑
n≤N

a(n) e
(
−n

h̄

k

)
n−3/4 cos

(
4π

√
nx

k
− π

4

)

+ O(k x1/2+ε N−1/2).

Strictly speaking, Theorem 1.1 in [15] assumes that N ≥ 1 instead of N 	 1. However, 
if N ∈ [c, 1[, where c ∈ ]0, 1[ is fixed, then the identity still holds as stated, for the left-
hand side is � x1/2 by the Wilton–Jutila estimate, and the right-hand side reduces to 
the O-term O(k x1/2+ε).

4.2. Spacing of square roots

The truncated Voronoi identity leads to exponential sums involving cusp form coeffi-
cients with square root phase factors. When expanding a fourth power of such sums we 
obtain summation over quadruples 〈a, b, c, d〉. Individual terms will have phase factors 
involving 

√
a +

√
b −

√
c −

√
d, and so we will need a result on the spacing of square 

roots. The following is contained in Theorem 2 of [20].

Theorem 7. Let ω ∈ ]1,∞[ be fixed, let δ ∈ R+ and let L ≥ 2 be an integer. Then the 
number of quadruples 〈a, b, c, d〉 of integers with a, b, c, d ∈ ]L, 2L], and

∣∣a1/ω + b1/ω − c1/ω − d1/ω∣∣ < δ L1/ω,

is

� δ L4+ε + L2+ε.
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We shall actually use the special case ω = 2 and δ = kMε−1/2 L−1/2 for some M ∈
[1,∞[ and k ∈ Z+ with L � M . It is convenient to observe that in fact real values 
L ∈ [2,∞[ are admissible, for if L is not an integer, then we may apply Theorem 7 with 
�L� and �L�. The quadruples not covered by these two cases must feature �L� + 1 and 
at least one of the two numbers 2 �L�−1 and 2 �L�, so that there are at most � L2 such 
quadruples. Finally, when L is smaller, say L ∈ [1/2, 2], then the number of quadruples 
is certainly � L4 � 1 � L2. Thus we have access to the following corollary.

Corollary 8. Let M ∈ [1,∞[, L ∈ [1/2,∞[, ϑ ∈ R+ and k ∈ Z+. Then the number of 
quadruples 〈a, b, c, d〉 of integers with a, b, c, d ∈ ]L, 2L] and

∣∣√a +
√
b−

√
c−

√
d
∣∣ < kMϑ−1/2

is

� L7/2+ε kMϑ−1/2 + L2+ε.

4.3. Plain exponential sums

Our large value estimate depends on estimating certain plain exponential sums. We 
will do so by employing the machinery of exponent pairs. If 〈p, q〉 ∈ [0, 1/2] × [1/2, 1] is 
known to be an exponent pair, then

∑
M≤n≤M+Δ

e(A
√
n) � Ap Mq−p/2 + A−1 M1/2,

for M ∈ [1,∞[, Δ ∈ [1,M ], and A ∈ R+. A good reference for the theory of exponent 
pairs is [7].

We also need the following result which allows us to separate Fourier coefficients from 
the exponential sums. It is a lemma of Bombieri, and appears as Lemma 1.5 in [18].

Theorem 9. Let H be a complex Hilbert space with inner product 〈·|·〉 and norm ‖·‖. Also, 
let ξ, ϕ1, ϕ2, . . . , ϕR ∈ H, where R ∈ Z+. Then

R∑
r=1

|〈ξ|ϕr〉|2 ≤ ‖ξ‖2 max
1≤r≤R

R∑
s=1

|〈ϕr|ϕs〉| .

We shall apply this theorem with H = CN for some N ∈ Z+ with the usual inner 
product and norm, which for vectors z = 〈z1, . . . , zN 〉 , w = 〈w1, . . . , wN 〉 ∈ CN are given 
by

〈z|w〉 =
N∑

z
 w
 and ‖z‖2 =
N∑

|z
|2 .


=1 
=1
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4.4. Exponential integrals

We will need a lemma for estimating exponential integrals. The following is Lemma 
6 in [17].

Lemma 10. Let a, b ∈ R+ and a < b, let g ∈ C∞
c (R+) with supp g ⊆ [a, b], and let 

G0, G1 ∈ R+ be such that

g(ν)(x) �ν G0 G
−ν
1

for all x ∈ R+ for each nonnegative integer ν. Also, let f be a holomorphic function 
defined in D ⊂ C, which consists of all points in the complex plane with distance smaller 
than ρ ∈ R+ from the interval [a, b] of the real axis. Assume that f is real-valued on [a, b]
and let F1 ∈ R+ be such that

|f ′(z)| 	 F1

for all z ∈ D. Then, for all positive integers P ,

b∫
a

g(x) e(f(x)) dx �P G0 (G1 F1)−P

(
1 + G1

ρ

)P

(b− a) .

We remark that, when f is holomorphic in {z ∈ C|�z > 0}, we may choose ρ so that 
ρ � a. In particular, in our applications of the lemma, we have a � b � G1 and the 
factor (1 + G1/ρ)P is always �P 1.

In the proof of the fourth moment estimate, we will introduce to our integrals a smooth 
weight function w. For definiteness, we define it here:

Definition 11. In the following, w will denote a function in C∞
c (R+), depending on M ∈

[1,∞[, taking values only from the interval [0, 1], and satisfying suppw ⊆ [M/2, 5M/2], 
w ≡ 1 on [M, 2M ], and

w(ν)(x) �ν M−ν

for all x ∈ R+, for every ν ∈ Z+ ∪ {0}.

The following lemma will be used to estimate several exponential integrals:

Lemma 12. Let n, k ∈ Z+, let Δ ∈ R+, assume that n � k2 M Δ−2, and write

S(n) = sin
(

2π
√
n

k

(√
x + Δ −

√
x
))

.

Also, let M and w(x) be as in Definition 11. Then
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∂ν

∂xν
(w(x)S(a)S(b)S(c)S(d)) �ν

(abcd)1/2 Δ4

k4 M2+ν

for all a, b, c, d ∈ Z+ with max(a, b, c, d) � k2 M Δ−2 and x ∈ R+, for every ν ∈
Z+ ∪ {0}.

Proof. Since w(x) vanishes outside the interval [M/2, 5M/2], it is enough to consider 
the case x ∈ [M/2, 5M/2]. Notice first that we have

∂ν

∂xν
(w(x)S(a)S(b)S(c)S(d)) =

∑
α1+α2+α3
+α4+α5=ν

ν!
α1!α2!α3!α4!α5!

·
(

∂α1

∂xα1
S(a)

)(
∂α2

∂xα2
S(b)

)(
∂α3

∂xα3
S(c)

)(
∂α4

∂xα4
S(d)

)(
∂α5

∂xα5
w(x)

)
,

where the summation is over quintuples 〈α1, α2, α3, α4, α5〉 of nonnegative integers sat-
isfying α1 + α2 + α3 + α4 + α5 = ν. Now

S(n) = sin
(

2π
√
n

k
(
√
x + Δ −

√
x)
)

�
√
n

k
(
√
x + Δ −

√
x) �

√
nΔ

k
√
x
,

and when α ∈ Z+ ∪ {0}, we have

∂α

∂xα
S(n) �α

√
nΔ

k x(2α+1)/2 .

Putting everything together, we obtain

∂ν

∂xν
(w(x)S(a)S(b)S(c)S(d)) =

∑
α1+α2+α3
+α4+α5=ν

ν!
α1!α2!α3!α4!α5!

·
(

∂α1

∂xα1
S(a)

)(
∂α2

∂xα2
S(b)

)(
∂α3

∂xα3
S(c)

)(
∂α4

∂xα4
S(d)

)(
∂α5

∂xα5
w(x)

)

�ν

∑
α1+α2+α3
+α4+α5=ν

√
aΔ

k x(2α1+1)/2 ·
√
bΔ

k x(2α2+1)/2 ·
√
cΔ

k x(2α3+1)/2 ·
√
dΔ

k x(2α4+1)/2 · x−α5

�ν
(abcd)1/2 Δ4

k4 M2+ν
. �

Before embarking on the proofs of Theorems 1, 2 and 3, we introduce one final lemma 
on the mean square of the kind of exponential sums which arise from the truncated 
Voronoi identity.
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Lemma 13. Let M ∈ [1,∞[, L ∈ [1/2,∞[ and T ∈ [0,∞[ with T � M and let h ∈
Z and k ∈ Z+ be coprime. Furthermore, let w(x) be a smooth weight function as in 
Definition 11. Then we have

5M/2∫
M/2

w(x)

∣∣∣∣∣∣
∑

L<n≤2L
a(n)n−3/4 e

(
−n

h

k

)
e

(
±2

√
n(x + T )
k

)∣∣∣∣∣∣
2

dx

� M L−1/2 + Lε kM1/2+ε,

and if we further assume that L � M1−ϑ k−2 for some fixed positive real number ϑ that 
can be chosen to be arbitrarily small, then we have

5M/2∫
M/2

w(x)

∣∣∣∣∣∣
∑

L<n≤2L
a(n)n−3/4 e

(
−n

h

k

)
e

(
±2

√
n(x + T )
k

)∣∣∣∣∣∣
2

dx � M L−1/2.

Proof. Here we expand the square as |Σ|2 = Σ Σ and separate the diagonal terms from 
the off-diagonal terms, leading to

5M/2∫
M/2

w(x)

∣∣∣∣∣∣
∑

L<n≤2L
a(n)n−3/4 e

(
−n

h

k

)
e

(
±2

√
n(x + T )
k

)∣∣∣∣∣∣
2

dx

�
∑

L<n≤2L

|a(n)|2

n3/2

5M/2∫
M/2

w(x) dx

+
∑

L<m<n≤2L

|a(m) a(n)|
(mn)3/4

∣∣∣∣∣∣∣
5M/2∫
M/2

w(x) e
(
±2 (

√
m−√

n)
√
x + T

k

)
dx

∣∣∣∣∣∣∣ .

The diagonal terms contribute � M L−1/2, and by Lemma 10, the off-diagonal terms 
contribute, for arbitrary P ∈ Z+,

�P

∑
L<m<n≤2L

|a(m) a(n)|
(mn)3/4

·
(

kM−1/2
√
n−√

m

)P

·M.

When kM−1/2 |√n−√
m|−1 � M−ε′ , for some constant ε′ ∈ R+, the bound above can 

be made as small as desired by choosing P to be sufficiently large (depending on ε′). Let 
us now choose ε′ ∈ ]0, ϑ/2[. The condition

k
1/2 √ √ � M−ε′
M | n− m|
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holds when |n −m| 	 kM−1/2+ε′
√
L. Therefore, when L � M1−ϑ k−2, we have

kM−1/2+ε′
√
L � k1−1 M−1/2+ε′+1/2−ϑ/2 = o(1),

and hence, when m �= n and so |m− n| � 1, we have

k

M1/2 |√n−√
m| � M−ε′ ,

and thus, in particular, only the contribution from diagonal terms counts when L �
M1−ϑ k−2.

Let us now estimate the contribution coming from the off-diagonal terms for which 
|n−m| � kM−1/2+ε′

√
L, when L 	 M1−ϑ k−2. For each value of n, there are �√

LkM−1/2+ε′ values of m, and for all of these values, we estimate the integral by 
absolute values. We thus obtain from the off-diagonal terms

�
∑

L<n≤2L
Lε−3/2

√
LkM−1/2+εM � Lε kM1/2+ε′ . �

4.5. Moments of long linear sums

The following is Theorem 2.3 from [24].

Theorem 14. Let M ∈ [1,∞[, let us fix an exponent pair 〈p, q〉 ∈ ]0, 1/2] × [1/2, 1]
satisfying q ≥ (p + 1)/2, and let h and k be coprime integers with 1 ≤ k � M1/2−ε. 
Furthermore, let α, β, γ, δ, A ∈ [0,∞[ be fixed exponents so that

∑
n≤x

a(n) e
(
n
h

k

)
� kα xβ+ε

for x ∈ [1,∞[ and for k satisfying xγ � k � xδ. Then, for Mγ � k � M δ,

2M∫
M

∣∣∣∣∣∣
∑
n≤x

a(n) e
(
n
h

k

)∣∣∣∣∣∣
A

dx � kA/2 MA/4+1 + Φ + Ψ,

where

Φ =
{

kαA+2(1−α) MβA+(1−2β)+ε if A ≥ 2,
kA/2+1 MA/4+1/2+ε if A ≤ 2,

and

Ψ =
{

kαA−α−α/p+(1−α)2q/p MβA+1−β−β/p+(1−2β)q/p+ε if A ≥ 1 + (1 + 2q) /p,
kA/2−1/2−1/(2p)+q/p MA/4+3/4−1/(4p)+q/(2p)+ε if A ≤ 1 + (1 + 2q) /p.
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5. Proof of Theorem 1

Proof of Theorem 1. We let ε0 ∈ R+ be arbitrary. Our goal is to prove an estimate 
� M2+ε0 k2 or � M1+ε0 Δ2. Some exponents in the proof will depend on the desired 
final value of ε0. We assume throughout the proof that k � M−1/2 Δ and k � M1/4, or 
that k 	 M−1/2 Δ and k � M−1/4 Δ2/3.

We begin by applying the truncated Voronoi identity for cusp form coefficients to get, 
for N ∈ R+ satisfying 1 � N � M ,

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n) e
(
n
h

k

)∣∣∣∣∣∣
4

dx

�
2M∫
M

∣∣∣∣∣k1/2
∑
n≤N

a(n)n−3/4 e

(
−n

h

k

)(
(x + Δ)1/4 cos

(
4π

√
n(x + Δ)

k
− π

4

)

−x1/4 cos
(

4π
√
nx

k
− π

4

))∣∣∣∣∣
4

dx + M3+ε N−2 k4,

where we applied the elementary inequality |A + B|4 � |A|4 + |B|4, which holds uni-
formly for all A, B ∈ C.

Let us now choose N in the following way:

N =
{
M1/2 k, when k � ΔM−1/2,

k2 M Δ−1, otherwise.

Thus, when k � Δ M−1/2, we have trivially N ≥ 1, and we have N � M since k �
M1/2. When k 	 Δ M−1/2, we have again trivially N 	 1, and we have N � M since 
k � M−1/4 Δ2/3 � Δ2/3−1/4 = Δ5/12 � Δ1/2.

Hence the error from the error term of the truncated Voronoi identity becomes

M3+ε N−2 k4 �
{
M2+ε k2, when k � ΔM−1/2,

M1+ε Δ2, otherwise.

Since the integrand is nonnegative, we may introduce the weight function w(x) of Def-
inition 11 to the integral involving the main terms from the truncated Voronoi identity, 
and extend the region of integration to be over the interval [M/2, 5M/2]:

2M∫
|. . .|4 dx �

5M/2∫
w(x) |. . .|4 dx.
M M/2
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Next, we split the sum 
∑

n dyadically into 
∑

L≤N/2
∑

L<n≤2L, where L ranges over the 
values N/2, N/4, N/8, . . . There will be � 1 + logM such values of interest, and so we 
may continue the estimations by applying Hölder’s inequality to get

� (1 + logM)3
∑

L≤N/2
dyadic

5M/2∫
M/2

w(x)

·

∣∣∣∣∣∣k1/2
∑

L<n≤2L
a(n)n−3/4 e

(
−n

h

k

)(
(x + Δ)1/4 cos(. . .) − x1/4 cos(. . .)

)∣∣∣∣∣∣
4

dx,

where of course (1 + logM)3 � Mε. The sum over L is split into three parts: those terms 
with L large, the terms with L so small, that there is very little oscillation, but there 
is cancellation in the main terms of the truncated Voronoi identity, and the remaining 
terms in the middle:

∑
L≤N/2
dyadic

=
∑
L�Y
dyadic

+
∑

Y�L�X
dyadic

+
∑

X�L≤N/2
dyadic

.

When k � Δ M−1/2 we choose

Y = 1 and X =
√
M,

and certainly 1 � Y � X � N . In particular, the first sum over L � Y will be empty.
When k 	 Δ M−1/2, we choose

Y = k2 M Δ−2 and X = min
(
Δ4 M−1 k−6, N

)
.

We will trivially have 1 � Y � N . Also, we always have Y � Δ4 M−1 k−6 since this 
is equivalent with k � M−1/4 Δ3/4 and this holds since we have k � M−1/4 Δ2/3 �
M−1/4 Δ3/4. When Δ 	 M2/5 k8/5, we have X � N and the sum over L 	 X will be 
empty. The rest of the proof consists of working through each of these cases separately.

5.1. The high-frequency terms L 	 X

For these values of L, we may estimate by the truncated Voronoi identity that for any 
x ∈ [M/2, 5M/2] and each T ∈ {0,Δ},

k1/2 (x + T )1/4
∑

L<n≤2L
a(n)n−3/4 e

(
−n

h

k

)
cos

(
4π

√
n

k

√
x + T − π

4

)

= k1/2 (x + T )1/4
∑

. . .− k1/2 (x + T )1/4
∑

. . .

n≤2L n≤L
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= π
√

2
∑

n≤x+T

a(n) e
(
n
h

k

)
+ O(kM1/2+ε L−1/2)

− π
√

2
∑

n≤x+T

a(n) e
(
n
h

k

)
−O(kM1/2+ε L−1/2) � kM1/2+ε L−1/2,

so that

∣∣∣∣∣∣k1/2
∑

L<n≤2L
a(n)n−3/4 e

(
−n

h

k

)(
(x + Δ)1/4 cos(. . .) − x1/4 cos(. . .)

)∣∣∣∣∣∣
2

� k2 M1+ε L−1.

The contribution from the high-frequency terms involving 
√
x + T , where T ∈ {0,Δ}, 

can be estimated by

� k3 M3/2+ε
∑
±

∑
X�L≤N/2

dyadic

L−1

·
5M/2∫
M/2

w(x)

∣∣∣∣∣∣
∑

L<n≤2L
a(n)n−3/4 e

(
−n

h

k

)
e

(
±2

√
n

k

√
x + T

)∣∣∣∣∣∣
2

dx.

We may use Lemma 13 to bound the expression on the second line. The contribution 
coming from this is � M L−1/2 + Lε kM1/2+ε, and if L � M1−ε0/2 k−2, then the 
contribution is � M L−1/2.

The contribution coming from the diagonal terms M L−1/2 is

� k3 M3/2+ε
∑

X�L≤N/2
dyadic

L−1 M L−1/2 � k3 M5/2+ε X−3/2.

When k � Δ M−1/2, we have X = M1/2, and hence the contribution will be

� k3 M5/2+ε M−3/4 = k3 M7/4+ε � k2 M2+ε,

since k � M1/4. When k 	 Δ M−1/2, we have X � N , in which case there are no 
high-frequency terms to consider, or X = Δ4 M−1 k−6. In the latter case we obtain

� k3 M5/2+ε X−3/2 � k3 M5/2+ε(Δ4 M−1 k−6)−3/2

� k12 M4+ε Δ−6 � M1+ε Δ2,

since k � Δ2/3 M−1/4.
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Finally, let us compute the contribution of the term Lε kM1/2+ε. This term exists 
only for L 	 M1−ε0/2 k−2, and we thus obtain

� k3 M3/2+ε
∑

M1−ε0/2 k−2�L≤N/2
dyadic

Lε−1 kM1/2+ε

� k4 M2+ε
(
M1−ε0/2 k−2

)ε−1
� M1+ε0/2+ε k6.

In the case k � Δ M−1/2 this is � k2 M2+ε0 since k � M1/4. In the case k 	 Δ M−1/2

this is � M1+ε0 Δ2, provided that k � Δ1/3. But this holds since M−1/2 Δ � k �
M−1/4 Δ2/3, so that Δ � M3/4, and therefore k � M−1/4 Δ2/3 � Δ−1/3 Δ2/3 � Δ1/3.

5.2. The low-frequency terms L � Y

Let us recall first that these terms need to be considered only in the case k 	 Δ M−1/2

in which Y = k2 M Δ−2.
For low-frequency terms we want to get the sums to partially cancel each other, and 

therefore, we want to replace the factor (x + Δ)1/4 by x1/4:

k1/2
∑

L<n≤2L

a(n)
n3/4 e

(
−n

h

k

)(
(x + Δ)1/4 − x1/4

)
cos

(
4π

√
n(x + Δ)

k
− π

4

)

� k1/2 L1/4 ΔM−3/4 � k1/2 (k2 M Δ−2)1/4 ΔM−3/4 � kM−1/2 Δ1/2.

Hence the total contribution coming from replacing (x + Δ)1/4 by x1/4 is

� M1+ε
(
kM−1/2 Δ1/2

)4
� k4 M−1+ε Δ2 � Δ2 M1+ε,

which holds since k � M−1/4 Δ2/3 � M2/3−1/4 = M5/12 � M1/2. We may now use 
the elementary trigonometric identity

cos
(
2ξ − π

4

)
− cos

(
2η − π

4

)
= 2 sin (ξ − η) cos

(
ξ + η + π

4

)
,

which holds for any ξ, η ∈ R. Applying this with

ξ = 2π
√
n

k

√
x + Δ and η = 2π

√
n

k

√
x,

the contribution from the terms with L � Y is



196 A.-M. Ernvall-Hytönen, E.V. Vesalainen / Journal of Number Theory 218 (2021) 180–208
� k2 M1+ε
∑
±

∑
L�Y
dyadic

·
5M/2∫
M/2

w(x)

∣∣∣∣∣∣
∑

L<n≤2L

a(n)
n3/4 e

(
−n

h

k

)
S(n) e

(
±
√
n

k
(
√
x + Δ +

√
x )

)∣∣∣∣∣∣
4

dx

� k2 M1+ε
∑
L�Y
dyadic

∑
L<a≤2L

∑
L<b≤2L

∑
L<c≤2L

∑
L<d≤2L

∣∣∣a(a) a(b) a(c) a(d)∣∣∣
(abcd)3/4

·

∣∣∣∣∣∣∣
5M/2∫
M/2

w(x)S(a)S(b)S(c)S(d) e
(α
k

(
√
x + Δ +

√
x )

)
dx

∣∣∣∣∣∣∣ ,

where the factors S(n) are given by

S(n) = sin
(

2π
√
n

k
(
√
x + Δ −

√
x)
)
,

the coefficient α is the square root expression

α =
√
a +

√
b−

√
c−

√
d,

and w is as in Definition 11.
Let us first consider the terms of 

∑
a

∑
b

∑
c

∑
d with α 	 Mε0/2−1/2 k. Using 

Lemma 12, we have, for each ν ∈ Z+ ∪ {0},

dν

dxν
(w(x)S(a)S(b)S(c)S(d)) �ν

(abcd)1/2 Δ4

k4 M2+ν
.

Therefore, in the terms under consideration, the integral 
∫ 5M/2
M/2 . . .dx may be estimated 

using Lemma 10 to be, for any P ∈ Z+,

�P
(abcd)1/2 Δ4

k4 M2

(
M αM−1/2 k−1

)−P

M � (abcd)1/2 Δ4

k4 M2 M1−Pε0/2

� (abcd)1/2 M1−Pε0/2.

Fixing P to be sufficiently large (depending on ε0), the contribution from the terms 
under consideration will be

� k2 M1+ε
∑
L�Y

∑
a

∑
b

∑
c

∑
d

|a(a) a(b) a(c) a(d)|
(abcd)1/4

M1−Pε0/2
dyadic
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� k2 M2+ε−Pε0/2
∑
L�Y
dyadic

L3 � M6+ε−Pε0/2 � 1.

Finally, by Corollary 8, the number of terms in the sum 
∑

a

∑
b

∑
c

∑
d with α �

kMε0/2−1/2 is

� L7/2+ε kMε0/2−1/2 + L2+ε,

and so we conclude, estimating everything by absolute values, and sine factors by sinx �
x, that the rest of the low-frequency terms with L � Y contribute

� k2 M1+ε
∑
L�Y
dyadic

(
L7/2+ε kMε0/2−1/2 + L2+ε

)
Lε−3 M

(
L1/2 ΔM−1/2 k−1

)4

� k2 Δ4 Mε
∑
L�Y
dyadic

(
L5/2+ε k−3 Mε0/2−1/2 + L1+ε k−4

)

� Δ4 Mε
((

k2 M Δ−2)5/2+ε
k−1 Mε0/2−1/2 +

(
k2 M Δ−2)1+ε

k−2
)

� Δ−1 M2+ε0/2+ε k4 + Δ2 M1+ε � M1+ε0 Δ2,

since k � Δ2/3 M−1/4 � Δ3/4 M−1/4.

5.3. The terms in the middle with Y � L � X

The contribution from the terms with Y � L � X and involving 
√
x + T , where 

T ∈ {0,Δ}, is

� k2 M1+ε
∑
±

·
∑

Y�L�X
dyadic

5M/2∫
M/2

w(x)

∣∣∣∣∣∣
∑

L<n≤2L
a(n)n−3/4 e

(
−n

h

k
± 2

√
n

k

√
x + T

)∣∣∣∣∣∣
4

dx

� k2 M1+ε
∑

Y�L�X
dyadic

∑
L<a≤2L

∑
L<b≤2L

∑
L<c≤2L

∑
L<d≤2L

∣∣a(a) a(b) a(c) a(d)∣∣
(abcd)3/4

·

∣∣∣∣∣∣∣
5M/2∫
M/2

w(x) e
(

2α
√
x + T

k

)
dx

∣∣∣∣∣∣∣ ,

where the coefficient α is again the square root expression
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α =
√
a +

√
b−

√
c−

√
d.

In those terms of 
∑

a

∑
b

∑
c

∑
d in which α 	 kMε0/2−1/2, we may estimate the 

integral 
∫ 5M/2
M/2 by Lemma 10 for any P ∈ Z+ by

�P (M αk−1 M−1/2)−P M � M1−Pε0/2.

Thus, these terms contribute, taking P fixed and sufficiently large (depending on ε0),

� k2 M1+ε
∑

Y�L�X
dyadic

L1+ε M1−Pε0/2 � k2 M2+ε−Pε0/2 X1+ε � 1.

Finally, the number of terms in 
∑

a

∑
b

∑
c

∑
d in which α � kMε0/2−1/2 is by Corol-

lary 8

� L7/2+ε kMε0/2−1/2 + L2+ε,

and so the contribution from these terms, estimating by absolute values, is

� k2 M1+ε
∑

Y�L�X
dyadic

(
L7/2+ε kMε0/2−1/2 + L2+ε

)
Lε−3 M

� k2 M2+ε
∑

Y�L�X
dyadic

(
L1/2 kMε0/2−1/2 + L−1

)
.

The contribution from the second term L−1 is

�
{
k2 M2+ε if k � ΔM−1/2

Δ2 M1+ε otherwise.

Let us now move to considering the first term. In the case k � Δ M−1/2, we have 
X = M1/2, and thus obtain

� k3 M3/2+ε0/2+ε X1/2 � k3 M3/2+ε0 M1/4 � k3 M7/4+ε0 � k2 M2+ε0 ,

since k � M1/4.
In the case k 	 Δ M−1/2, we have X � Δ4 M−1 k−6, and hence, the contribution is

� k3 M3/2+ε0/2+ε X1/2 � k3 M3/2+ε0(Δ4 M−1 k−6)1/2 � Δ2 M1+ε0 . �
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6. Proof of Theorem 2

Proof of Theorem 2. We begin by observing that we may assume M to be larger than 
a fixed large constant, because when M � 1, we also have k � Δ � V � 1 � M and the 
desired estimate for R reduces to R � 1, which would hold as certainly R � 1 +M/V �
1 in this case. Also, in the following all implicit constants are allowed to depend on δ
and 〈p, q〉. We also make the simple observation that we may assume that V �

√
M for 

the sums in question cannot obtain larger values by the Wilton–Jutila estimate.
Let x ∈ [M, 2M ], and let N ∈ R+ with 1 � N � M . We will choose N later. The 

truncated Voronoi identity says that

∑
x≤n≤x+Δ

a(n) e
(
n
h

k

)

= k1/2

π
√

2

∑
n≤N

a(n)n−3/4 e

(
−n

h

k

)

·
(

(x + Δ)1/4 cos
(

4π
√
n(x + Δ)

k
− π

4

)
− x1/4 cos

(
4π

√
nx

k
− π

4

))

+ O(kM1/2+δ N−1/2).

If x happens to be an integer, then the term a(x) e(xh/k) is certainly � xδ by Deligne’s 
estimate, and this is certainly � kM1/2+δ N−1/2. Replacing the factor (x + Δ)1/4 by 
x1/4 causes the error

� k1/2
∑
n≤N

|a(n)|n−3/4 ΔM−3/4 � k1/2 N1/4 ΔM−3/4.

Also, the difference of the cosines may be replaced by a sine integral:

cos
(

4π
√

n(x + Δ)
k

− π

4

)
−cos

(
4π

√
nx

k
− π

4

)
= −

x+Δ∫
x

2π
√
n

k
√
t

sin
(

4π
√
nt

k
− π

4

)
dt.

Combining the facts above gives

∑
x≤n≤x+Δ

a(n) e
(
n
h

k

)

= −
√

2 k−1/2 x1/4
∑
n≤N

a(n)n−1/4 e

(
−n

h

k

) x+Δ∫
x

sin
(

4π
√
nt

k
− π

4

)
dt√
t

+ O(k1/2 N1/4 ΔM−3/4) + O(kM1/2+δ N−1/2).
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We will split the interval [M, 2M ] into � 1 + M/M0 closed subintervals of length 
at most M0 ∈ R+ which we allow to have only endpoints in common. We shall choose 
the precise value of M0 later. Also, we shall focus on one of the subintervals, say J =
[M, 2M ] ∩ [α, α + Λ], where α ∈ [M, 2M ] and Λ ∈ ]0,M0], which we assume to contain 
exactly R0 ∈ Z+ of the original points x1, . . . , xR. Without loss of generality, we may 
assume these points to be x1, . . . , xR0 , ordered so that x1 < x2 < . . . < xR0 . Once we 
have estimated R0 from above as � Υ, where Υ does not depend on J but only on k, 
M , Δ, δ and V , we can estimate R from above by

R � Υ
(

1 + M

M0

)
.

Of course, if the subinterval contains none of the original points, then it trivially contains 
� Υ points.

Let us consider the choice of N in the truncated Voronoi identity. Provided that

N � M3 V 4 Δ−4 k−2 and N 	 k2 M1+2δ V −2,

where the former implicit constant needs to be sufficiently small and the latter sufficiently 
large, the two error terms can be absorbed to the left-hand side, which in turn is 	 V , 
and we get for each r ∈ {1, . . . , R0} the estimate

V �
∑

xr≤n≤xr+Δ

a(n) e
(
n
h

k

)

� k−1/2 M−1/4
xr+Δ∫
xr

∣∣∣∣∣∣
∑
n≤N

a(n)n−1/4 e

(
−n

h

k

)
sin

(
4π

√
nt

k
− π

4

)∣∣∣∣∣∣dt.

We shall actually choose N to be as small as possible, namely N = c k2 M1+2δ V −2

with a fixed constant c ∈ R+, though dependent on δ, and sufficiently large so that 
we can indeed absorb the term kM1/2+δ N−1/2 to the left-hand side. We will have 
N � M3−δ V 4 Δ−4 k−2 since V 	 k2/3 Δ2/3 M−1/3+δ, and so N � M3 V 4 Δ−4 k−2

with a very small implicit constant, provided that M is sufficiently large. The requirement 
N � M is satisfied thanks to the condition V 	 kM2δ. Similarly, the requirement 
N 	 1 is satisfied thanks to the condition V � kM1/2+δ. Also, we point out that, 
assuming that M is sufficiently large, we may assume that N ≥ 1 for if N < 1, then 
V 	 kM1/2+δ, and we would have

kM1/2+δ � V �
∑

x1�n�x1+Δ

a(n) e
(
n
h

k

)
� M1/2,

which is not possible for large M .
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Next we cover the interval J with consecutive semiclosed intervals

I1 = [α, α + V [ , I2 = [α + V, α + 2V [ , . . . , Iν = [α + (ν − 1)V, α + νV [ ,

where the number of intervals ν ∈ Z+ is chosen so that it satisfies simultaneously the 
conditions ν ≥ 2 R0, ν > (M + Δ) /V + 1 as well as ν � M/V . Let us temporarily 
simplify notation by writing

Σ(t) =
∑
n≤N

a(n)n−1/4 e

(
−n

h

k

)
sin

(
4π

√
nt

k
− π

4

)
.

Let us consider integers

1 ≤ a1 < a2 < a3 < . . . < aR0 ≤ ν

such that

x1 ∈ Ia1 , x2 ∈ Ia2 , . . . , xR0 ∈ IaR0
,

and let L = 1 + �Δ/V � so that

[xr, xr + Δ] ⊆ Iar
∪ Iar+1 ∪ . . . ∪ Iar+L,

for each r ∈ {1, 2, . . . , R0}. Furthermore, let t1 ∈ I1, t2 ∈ I2, . . . , tν ∈ Iν be points such 
that

|Σ(t
)| = max
t∈I�

|Σ(t)|

for each � ∈ {1, 2, . . . , ν}. Now we may continue by estimating

V � k−1/2 M−1/4
ar+L∑

=ar

∫
I�

|Σ(t)|dt � k−1/2 M−1/4
ar+L∑

=ar

V |Σ(t
)| .

Next, let us pick odd indices

1 ≤ v1 < v2 < . . . < vR0 ≤ ν

and even indices

2 ≤ w1 < w2 < . . . < wR0 ≤ ν

so that the absolute values |Σ(tv�)| for � ∈ {1, 2, . . . , R0} are the R0 largest, counting 
multiplicities, among
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|Σ(t1)| , |Σ(t3)| , |Σ(t5)| , . . . ,

and similarly, so that the absolute values |Σ(tw�
)| are the R0 largest, counting multiplic-

ities, among

|Σ(t2)| , |Σ(t4)| , |Σ(t6)| , . . .

Then we may continue our estimations by

R0 � k−1/2 M−1/4
R0∑
r=1

ar+L∑

=ar

|Σ(t
)|

� k−1/2 M δ−1/4 ΔV −1
R0∑

=1

|Σ(tv�)| + k−1/2 M δ−1/4 ΔV −1
R0∑

=1

|Σ(tw�
)| ,

where the last estimate follows straightforwardly from the fact that the sums over �
intersect by at most L + 1 terms and L + 1 � M δ Δ V −1 thanks to the condition 
V � Δ M δ. Without loss of generality and to simplify notation, we may assume that 
the term involving v
 is larger, and we therefore can strike out here the terms involving 
w
, at the price of an extra constant factor 2. Now, by the Cauchy–Schwarz inequality,

R0 � k−1/2 M δ−1/4 ΔV −1
√
R0

√√√√ R0∑

=1

|Σ(tv�)|
2
,

so that

R0 � k−1 M2δ−1/2 Δ2 V −2
R0∑

=1

|Σ(tv�)|
2
.

We split the sum Σ(·) dyadically, and write sin in terms of e(± . . .). Then we continue 
by applying Bombieri’s lemma, and estimating logM � M δ,

R0 � k−1 M2δ−1/2 Δ2

V 2

R0∑
r=1

∣∣∣∣∣∣
∑
n≤N

a(n)
n1/4 e

(
−n

h

k

)
sin

(
4π

√
ntvr
k

− π

4

)∣∣∣∣∣∣
2

� k−1 M3δ−1/2 Δ2

V 2

∑
±

∑
r≤R0

∑
U≤N/2
dyadic

∣∣∣∣∣∣
∑

U<n≤2U

a(n)
n1/4 e

(
−n

h

k

)
e

(
±2√ntvr

k

)∣∣∣∣∣∣
2

� k−1 M4δ−1/2 Δ2

V 2

∑
±

max
U≤N/2

∑ ∣∣∣∣∣∣
∑ a(n)

n1/4 e

(
−n

h

k

)
e

(
±2√ntvr

k

)∣∣∣∣∣∣
2

r≤R0 U<n≤2U
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� k−1 M4δ−1/2 Δ2

V 2 max
U≤N/2

U1/2 max
r≤R0

R0∑
s=1

∣∣∣∣∣∣
∑

U<n≤2U
e

(
2
√
n (√tvr −

√
tvs)

k

)∣∣∣∣∣∣ .
The terms with s = r are easily seen to contribute

� k−1 M4δ−1/2 Δ2 V −2 N3/2 � k2 M1+7δ Δ2 V −5.

To estimate the remaining terms, those with s �= r, we first observe that

∣∣√tvr −
√

tvs
∣∣ �

tvr∫
tvs

dt√
t
� |tvr − tvs |

M1/2 � M0

M1/2 ,

and so we may use the theory of exponent pairs to estimate

∑
U<n≤2U

e

(
2
√
n (√tvr −

√
tvs)

k

)

� k−p
∣∣√tvr −

√
tvs

∣∣p Uq−p/2 + k U1/2

|√tvr −
√
tvs |

� k−p Mp
0 M−p/2 Uq−p/2 + k U1/2 M1/2

|tvr − tvs |
.

Thus, the remaining terms contribute, estimating again logM � M δ and remembering 
that q ≥ 1/2 ≥ p so that 1/2 + q − p/2 > 0,

� k−1 M4δ−1/2 Δ2 V −2

· max
U≤N/2

U1/2

⎛
⎝R0 k

−p Mp
0 M−p/2 Uq−p/2 + max

r≤R0

∑
s �=r

k U1/2 M1/2

|tvr − tvs |

⎞
⎠

� k−1 M4δ−1/2 Δ2 V −2 Nq+1/2−p/2 R0 k
−p Mp

0 M−p/2

+ k−1 M5δ−1/2 Δ2 V −2 N kM1/2 V −1

� R0 · k2q−2p Δ2 Mp
0 Mq−p+δ(5+2q−p) V p−2q−3 + k2 M1+7δ Δ2 V −5.

We shall choose M0 to be as large as possible so that the first term on the right-hand 
side will be � R0 with a small implicit constant and can therefore be absorbed to the 
left-hand side. That is, we shall choose

M0 � k2−2q/p Δ−2/p M1−q/p+δ(1−2q/p−5/p) V 2q/p−1+3/p.

Thus, we have estimated R0 as

� k2 M1+7δ Δ2 V −5.
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The total estimate for R is therefore

R � k2 M1+7δ Δ2 V −5
(

1 + M

M0

)

� k2 M1+7δ Δ2 V −5

+ k2 M1+7δ Δ2 V −5 M k2q/p−2 Δ2/p M−1+q/p+δ(5/p+2q/p−1) V −2q/p+1−3/p

� k2 M1+7δ Δ2 V −5 + k2q/p Δ2+2/p M1+q/p+δ(6+5/p+2q/p) V −2q/p−4−3/p. �
7. Proof of Theorem 3

Proof of Theorem 3. To estimate the integral

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n) e
(
n
h

k

)∣∣∣∣∣∣
A

dx,

we estimate it separately in the regions where the integrand is ≤
(
M2δ V0

)A and 

≥
(
M2δ V0

)A, where δ ∈ R+ is small and fixed. The former values contribute �
M1+2δA V A

0 . To estimate the contribution from the latter values, we split the remaining 
value range dyadically into intervals of the shape [V, 2V ] with V ∈

[
V0 M

2δ,∞
[
. If neces-

sary, we extend the last interval, losing at most a constant factor in the estimations. The 
number of subintervals is � logM � Mε. For each value interval, we choose a maximal 
number of points x1, . . . , xR(V ) from the interval [M, 2M ] so that

∣∣∣∣∣∣
∑

xr≤n≤xr+Δ

a(n) e
(
n
h

k

)∣∣∣∣∣∣ ∈ [V, 2V ]

for each r ∈ {1, . . . , R(V )} and that |xr − xs| ≥ V for all r, s ∈ {1, . . . , R(V )} with 
r �= s. We recall that we certainly have R(V ) = 0 if V 	

√
M or V 	 Δ M δ or 

V 	 kα Δβ Mγ+2δ. Now the contribution from the large values of the integrand is 
bounded by

�A

∑
V

V ·R(V )V A,

where the summation over V is dyadic. Using Theorem 2, this is

�δ

∑
V

(
k2 M1+7δ Δ2 V −5 + k2q/p Δ2+2/p M1+q/p+δ(6+5/p+2q/p) V −2q/p−4−3/p)V A+1.

In each term V is estimated from below by V0 or from above by kα Δβ Mγ+2δ, depending 
on whether the final exponent of V is negative or positive. Upon letting δ have smaller 
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and smaller values, the first term in the parentheses gives rise to Φ and the second 
to Ψ. �
8. Proof of Theorem 4

Proof of Theorem 4. We choose p = q = 1/2. By Theorem 5.5 in [6]

∑
x≤n≤x+Δ

a(n) e
(
n
h

k

)
� Δ1/6 M1/3+ε � M5/(12·6) M1/3+ε � M29/72+ε.

Notice that when k 	 M1/9, this bound is superior to k1/4 M3/8+ε from [24]. Hence 
using Theorem 3, we obtain, for any V0 ∈ [1,∞[ with k � V0 � M29/72 and V0 	
k2/3 Δ2/3 M−1/3, that

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n) e
(
n
h

k

)∣∣∣∣∣∣
A

dx

� M1+ε V A
0 + k2 M11/6+29(A−4)/72+ε + k2 M9/2+29(A−11)/72+ε.

The term V0 does not appear anywhere else except in the main term, so we can choose it 
to be as small as possible, namely k. For this choice, we also have V0 	 k2/3 M−1/18 =
k2/3 Δ2/3 M−1/3. The contribution of the main term is kAM1+ε. The three terms satisfy

k2 M11/6+29(A−4)/72+ε 	 k2 M9/2+29(A−11)/72+ε,

and

k2 M11/6+29(A−4)/72+ε 	 kA M1+ε,

and we get the claimed bound. �
9. Proof of Theorem 5

Proof of Theorem 5. We will first apply Theorem 14 with the exponent pair p = 4/18
and q = 11/18 and the parameters α = γ = δ = 0, k = 1 and β = 1/3. Now the 
main term becomes MA/4+1. The term Φ becomes M (A+1)/3+ε and the term Ψ becomes 
MA/4+1+ε. Since (A + 1) /3 < A/4 + 1 exactly when A < 8, we have now derived

2M∫ ∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n)

∣∣∣∣∣∣
A

dx �
{
MA/4+1+ε when A ≤ 8,
M (A+1)/3+ε when A ≥ 8.
M
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We will now apply Theorem 3 with exponent pair p = q = 1/2. By the trivial estimate 
and by the estimate for a long sum, we know that

∑
x≤n≤x+Δ

a(n) � min
(
ΔMε,M1/3+ε

)
.

Using these bounds we obtain

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n)

∣∣∣∣∣∣
A

dx

�
{
M1+ε V A

0 + ΔA−2 M1+ε + Δ6 M2+ε V A−11
0 when Δ � M1/3,

M1+ε V A
0 + Δ2 M (A−1)/3+ε + Δ6 M2+ε V A−11

0 when Δ 	 M1/3.

Let us now choose V0 so that the first and the last term are the same (up to an 
epsilon):

M V A
0 = Δ6 M2 V A−11

0 ,

which is equivalent with V0 = Δ6/11 M1/11. Clearly, this choice satisfies V0 	 1 = k and 
is easily seen to satisfy V0 	 Δ2/3 M−1/3. It also satisfies V0 � Δ Mε and V0 � M1/3+ε

since M1/5 � Δ � M4/9. The estimate becomes now

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n)

∣∣∣∣∣∣
A

dx �
{
M1+A/11+ε Δ6A/11 + ΔA−2 M1+ε when Δ � M1/3,
Δ2 M (A−1)/3+ε + M1+A/11+ε Δ6A/11 when Δ 	 M1/3.

When Δ � M1/3, we have Δ5A/11−2 � MA/11 and hence MA/11 Δ6A/11 	 ΔA−2. 
Thus, M1+A/11+ε Δ6A/11 	 ΔA−2 M1+ε.

When Δ 	 M1/3, we have Δ 	 M1/3 	 M (4A−22)/(9A−33), so that Δ2 M (A−1)/3+ε �
Δ6A/11M1+A/11+ε. We have now derived

2M∫
M

∣∣∣∣∣∣
∑

x≤n≤x+Δ

a(n)

∣∣∣∣∣∣
A

dx � M1+A/11+ε Δ6A/11.

Finally, the proof is completed by comparing the above bounds separately in the cases 
A ≥ 8 and A ≤ 8. �
CRediT authorship contribution statement

Anne-Maria Ernvall-Hytönen: Conceptualization, Formal analysis, Investigation, 
Methodology, Validation, Writing - original draft, Writing - review & editing. Esa 



A.-M. Ernvall-Hytönen, E.V. Vesalainen / Journal of Number Theory 218 (2021) 180–208 207
V. Vesalainen: Conceptualization, Formal analysis, Investigation, Methodology, Vali-
dation, Writing - original draft, Writing - review & editing.

Declaration of competing interest

None.

Acknowledgments

The first author was funded by the Academy of Finland project 138337, by the Finnish 
Cultural Foundation, and by the Ruth och Nils-Erik Stenbäcks stiftelse. The second 
author was funded by the Academy of Finland through the Finnish Centre of Excellence 
in Inverse Problems Research and the projects 276031, 282938, 283262 and 303820, by the 
Magnus Ehrnrooth Foundation, by the Finnish Cultural Foundation, by the Foundation 
of Vilho, Yrjö and Kalle Väisälä, and by the Basque Government through the BERC 
2014–2017 program and by Spanish Ministry of Economy and Competitiveness MINECO: 
BCAM Severo Ochoa excellence accreditation SEV-2013-0323.

References

[1] H. Cramér, Über zwei Sätze von Herrn G.H. Hardy, Math. Z. 15 (1922) 200–210.
[2] P. Deligne, La conjecture de Weil: I, Publ. Math. Inst. Hautes Études Sci. 43 (1974) 273–307.
[3] A.-M. Ernvall-Hytönen, On the error term in the approximate functional equation for exponential 

sums related to cusp forms, Int. J. Number Theory 4 (2008) 747–756.
[4] A.-M. Ernvall-Hytönen, On the mean square of short exponential sums related to cusp forms, Funct. 

Approx. Comment. Math. 45 (2011) 97–104.
[5] A.-M. Ernvall-Hytönen, Mean square estimate for relatively short exponential sums involving Fourier 

coefficients of cusp forms, Ann. Acad. Sci. Fenn., Math. 40 (2015) 385–395.
[6] A.-M. Ernvall-Hytönen, K. Karppinen, On short exponential sums involving Fourier coefficients of 

holomorphic cusp forms, Int. Math. Res. Not. (2008) 1–44, rnn022.
[7] S.W. Graham, G. Kolesnik, Van der Corput’s Method of Exponential Sums, London Mathematical 

Society Lecture Note Series, vol. 126, Cambridge University Press, 1991.
[8] A. Ivić, Large values of the error term in the divisor problem, Invent. Math. 71 (1983) 513–520.
[9] A. Ivić, On the divisor problem and the Riemann zeta-function in short intervals, Ramanujan J. 19 

(2009) 207–224.
[10] A. Ivić, P. Sargos, On the higher moments of the error term in the divisor problem, Ill. J. Math. 81 

(2007) 353–377.
[11] A. Ivić, W. Zhai, On the Dirichlet divisor problem in short intervals, Ramanujan J. 33 (2014) 

447–465.
[12] J. Jääsaari, E.V. Vesalainen, Exponential sums related to Maass forms, Acta Arith. 190 (2019) 1–48.
[13] M. Jutila, On the divisor problem for short intervals, Ann. Univ. Turku. Ser. A I 186 (1984) 23–30.
[14] M. Jutila, On exponential sums involving the divisor function, J. Reine Angew. Math. 355 (1985) 

173–190.
[15] M. Jutila, Lectures on a Method in the Theory of Exponential Sums, Lectures on Mathematics, 

vol. 80, Tata Institute of Fundamental Research, 1987.
[16] M. Jutila, On exponential sums involving the Ramanujan function, Proc. Indian Acad. Sci. 97 (1987) 

157–166.
[17] M. Jutila, Y. Motohashi, Uniform bound for Hecke L-functions, Acta Math. 195 (2005) 61–115.
[18] H.L. Montgomery, Topics in Multiplicative Number Theory, Lecture Notes in Mathematics, vol. 227, 

Springer-Verlag, 1971.

http://refhub.elsevier.com/S0022-314X(20)30228-6/bib3410EDF141C6FDDCC196BE7ED00C528Ds1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibBDB12CC9EC925D37B85F2091E0DCC63Fs1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib9CB6FC4951E8D790B8164B2E1E8FC908s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib9CB6FC4951E8D790B8164B2E1E8FC908s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib7732EDEA73A154FAA3A0199282C29B7As1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib7732EDEA73A154FAA3A0199282C29B7As1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib71A03CB59C8820348E140C18D2A006FDs1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib71A03CB59C8820348E140C18D2A006FDs1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib1447E1951166C50DA2F8ECA9A97EE02Es1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib1447E1951166C50DA2F8ECA9A97EE02Es1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibB39CA91954D6D31143F39AF2D9FE5D54s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibB39CA91954D6D31143F39AF2D9FE5D54s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib77853F06FE10EACB56284E8D23C9E5D3s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibD9804EC3767AEAF233D441AD30E8FFD9s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibD9804EC3767AEAF233D441AD30E8FFD9s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib58C5E79952A69D31CB9D2005DD454A4Fs1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib58C5E79952A69D31CB9D2005DD454A4Fs1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibE254826B0F4D6701A4CCDED5D5E5BD5Ds1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibE254826B0F4D6701A4CCDED5D5E5BD5Ds1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibCA619FBBCE2FEE02620193D9FBC7E707s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibF2DFCA5F7F2EA627C438F16EECD25683s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib857020120A69C03BB99A1C5EF3102675s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib857020120A69C03BB99A1C5EF3102675s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibA2DBA7B90266F082F4DA9C83158ACBE9s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibA2DBA7B90266F082F4DA9C83158ACBE9s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib24E6BEE8284F264AA56C34D1152B7959s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib24E6BEE8284F264AA56C34D1152B7959s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib877B7B9760515DCF39E675566574EE03s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib92B1B337ECE1ED158A00B88E96952CBEs1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib92B1B337ECE1ED158A00B88E96952CBEs1


208 A.-M. Ernvall-Hytönen, E.V. Vesalainen / Journal of Number Theory 218 (2021) 180–208
[19] R.A. Rankin, Contributions to the theory of Ramanujan’s function τ(n) and similar arithmetical 
functions II. The order of Fourier coefficients of integral modular forms, Math. Proc. Camb. Philos. 
Soc. 35 (1939) 357–372.

[20] O. Robert, P. Sargos, Three-dimensional exponential sums with monomials, J. Reine Angew. Math. 
591 (2006) 1–20.

[21] A. Selberg, Bemerkungen über eine Dirichletsche Reihe, die mit der Theorie der Modulformen nahe 
verbunden ist, Arch. Math. Naturvidensk. 43 (1940) 47–50.

[22] Y. Tanigawa, W. Zhai, On the fourth power moment of Δ(x) and E(x) in short intervals, Int. J. 
Number Theory 5 (2009) 355–382.

[23] K.-M. Tsang, Higher-power moments of Δ(x), E(t) and P (x), Proc. Lond. Math. Soc. 65 (1992) 
65–84.

[24] E.V. Vesalainen, Moments and oscillations of exponential sums related to cusp forms, Math. Proc. 
Camb. Philos. Soc. 162 (2017) 479–506.

[25] J.R. Wilton, A note on Ramanujan’s function τ(n), Math. Proc. Camb. Philos. Soc. 25 (1929) 
121–129.

[26] J. Wu, W. Zhai, Distribution of Hecke eigenvalues of newforms in short intervals, Q. J. Math. 64 
(2013) 619–644.

http://refhub.elsevier.com/S0022-314X(20)30228-6/bib409F34AD72AE544436AA1E5F2394FD38s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib409F34AD72AE544436AA1E5F2394FD38s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib409F34AD72AE544436AA1E5F2394FD38s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibA14E24DDED8D981DEC76EAE4EE921D49s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibA14E24DDED8D981DEC76EAE4EE921D49s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibBFE2164302522C2DBC37CC28115D530Ds1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibBFE2164302522C2DBC37CC28115D530Ds1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibB1B447CB04EFE6CB9955A24B65F99CF7s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bibB1B447CB04EFE6CB9955A24B65F99CF7s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib966C4E6451334065C5BD5B946BBE605As1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib966C4E6451334065C5BD5B946BBE605As1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib33BAB113CE53951A3C0E0B83BB6847AFs1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib33BAB113CE53951A3C0E0B83BB6847AFs1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib45AF792BCFB2BAFF9D9967DEA115C952s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib45AF792BCFB2BAFF9D9967DEA115C952s1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib7B26E2B1FAABB61180FAC45C2827C22As1
http://refhub.elsevier.com/S0022-314X(20)30228-6/bib7B26E2B1FAABB61180FAC45C2827C22As1

	On fourth and higher moments of short exponential sums related to cusp forms
	1 Introduction
	2 Notation
	3 The results
	4 Some useful theorems, lemmas and corollaries
	4.1 The truncated Voronoi identity for cusp forms
	4.2 Spacing of square roots
	4.3 Plain exponential sums
	4.4 Exponential integrals
	4.5 Moments of long linear sums

	5 Proof of Theorem 1
	5.1 The high-frequency terms L≫X
	5.2 The low-frequency terms L≪Y
	5.3 The terms in the middle with Y≪L≪X

	6 Proof of Theorem 2
	7 Proof of Theorem 3
	8 Proof of Theorem 4
	9 Proof of Theorem 5
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	References


