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Let K be the composite field of an imaginary quadratic field QðoÞ of conductor d

and a real abelian field L of conductor f distinct from the rationals Q; where ðd; f Þ ¼
1: Let ZK be the ring of integers in K: Then concerning to Hasse’s problem we

construct new families of infinitely many fields K with the non-monogenic

phenomena (1), (2) which supplement (J. Number Theory 23 (1986), 347–353; Publ.

Math. Fac. Sci Besançon, Theor. Nombres (1984) 25pp) and with monogenic (3).

(1) If QðoÞathe Gau� field QðiÞ; then ZK is of non-monogenesis.

(2) If QðoÞ ¼ QðiÞ; then for a sextic field K; ZK is of non-monogenesis except for two

fields K of conductors 28 and 36.

(3) Let QðoÞ ¼ QðiÞ: If ZK has a power basis, then ZL must have a power basis.

Conversely, let L be the maximal real subfield kþ
f of a cyclotomic field kf ; namely K be the

maximal imaginary subfield of k4f of conductor 4f : Then ZK has a power basis. # 2002
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1. INTRODUCTION

Let K be an algebraic number field over the rationals Q: If the ring
ZK ¼ Z½a� of integers in K is generated by an integer a over the ring Z of
rational integers, it is said that ZK has a power basis, ZK is monogenic or of
monogenesis, otherwise ZK is said to be non-monogenic or of non-
monogenesis.

Let kn be an nth cyclotomic field QðznÞ over Q and kþ
n the maximal real

subfield of kn; where zn be a primitive nth root of unity. Gras [4, 5] showed
the non-monogenesis of the ring ZK of integers in cyclic fields K over Q of
prime degrees ‘55 except for K ¼ kþ

2lþ1; where 2‘þ 1 is a prime, and
subsequently, she proved that there exist only finitely many abelian
extensions K over Q of degrees m55; ðm; 6Þ ¼ 1; whose ZK have a power
basis using the prime decomposition of Gau� sum by Leopoldt [9].

In Theorem 1, we shall give a new family of infinitely many imaginary
abelian fields K of degrees m > 2 whose rings ZK are of non-monogenesis
applying some evaluation of the different of a number in K [Lemma 1].
In Theorem 2, we shall characterize infinitely many imaginary abelian
fields K of degrees m > 2 whose rings ZK are of monogenesis using
Lemma 2.

As is well known, Hasse’s problem to characterize whether the ring ZK of
integers in a field K is of monogenesis or not is treated by Dummit and
Kisilevsky [1], Gras [4], Huard et al. [7], Robertson [10], Schertz [13],
Thérond [15] and others. Gaál et al. and Gy +oory gave algorithm for
determining the power bases of the rings in certain algebraic number fields
and several monogenic examples [2, 3, 6]. A survey of researches for integral
power bases is given in [6, Remark].

2. NON-MONOGENIC PHENOMENA FOR ABELIAN
EXTENSIONS

The following lemma is fundamental for us.

Lemma 1. Let f be the conductor of a cyclotomic field kf ;
Q

p pe be its

canonical decomposition and s be an element of the Galois group G of kf over

Q which generates the Galois subgroup of kpe over Q: Then for any integer R

of kf ; R � Rs is divisible by a prime element pp in kpe for pp ¼ 1 � zpe :

Proof. Since pe and f =pe are prime to each other, there exist primitive
roots zpe and zf =pe such that zf ¼ zpezf =pe : Then zsf ¼ zspezf =pe : Now a number
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R in Zkf
is represented by a form

P
14j4n ajz

j
f with aj 2 Z; where n is equal

to the value of the Euler function fðf Þ: Then R � Rs ¼
P

14j4n aj

ðzj
pe � zjs

peÞzj

f =pe : Since zj
pe � zjs

pe is divisible by pp for any R 2 G; R � Rs is
divisible by pp: ]

Theorem 1. Let K be the composite field of an imaginary quadratic field

QðoÞ and a real abelian field L distinct from the rationals Q; whose conductors

are prime to each other.

(1) If QðoÞaQðiÞ with i2 ¼ �1; then ZK is of non-monogenesis.

(2) If QðoÞ ¼ QðiÞ; then for a sextic field K ; ZK is of non-monogenesis

except for two fields of conductors 28 and 36.

Proof. Let t be the generator of Galois group of QðoÞ over Q and
H the Galois group of L over Q: Let dðKÞ and dðxÞ be the field
discriminant of K and the discriminant of a number x in K ; respectively.
Then a ring ZK is of monogenesis if and only if there exists a number x
in K such that jdðxÞj ¼ jdðKÞj: Now put Hn ¼ H =feg; where e is the
identity in H: Since the Galois group of K over Q is generated by t and H;
we have

jdðxÞj ¼ NK

Y
s2Hn

ðx� xsÞ
 !

ðNKðx� xtÞÞ NK

Y
s2Hn

ðx� xtsÞ
 !�����

�����
¼ jdðKÞjjNKaj NK

Y
s2Hn

ðx� xtsÞ
�����

�����
for some integer a in K: Therefore if ZK is of monogenesis, jNK

Q
s2Hn

ðx� xtsÞj ¼ 1 should be held. We assume that such x exists. Let
Q

p pe

be the canonical decomposition of the conductor f of L: Then an f th
root zf of unity can be written as

Q
p zpe for some peth root zpe of unity.

Let A be the subgroup of the Galois group Gf of kf over Q;
which corresponds to the subfield L of kf : The group H is isomorphic to
the factor group Gf =A: Denote the Galois group of kpe over Q by Ap with a
generator sp: Then we have a direct product decomposition

Q
p Ap of Gf :

Every sp is not contained in A; namely %ssp 2 Hn: Because if the group A

contains some sp; we have H ffi Gf =A ffi ðGf =hspiÞ=ðA=hspiÞ; where hRi for
R 2 G denotes the subgroup of G generated by R: This contradicts to the
conductor f of L:

First, we consider the case where QðoÞ has an odd conductor m: Then
QðoÞ ¼ Qð

ffiffiffiffiffiffiffiffi
�m

p
Þ and fo;otg for o ¼ ð�1 þ

ffiffiffiffiffiffiffiffi
�m

p
Þ=2 is an integral basis of
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ZQðoÞ: Since we can put x ¼ oR þ otS for some R;S 2 ZL by [8], it holds
that for s ¼ sp;

ðx� xtsÞðxt � xsÞ ¼ foðR � SsÞ þ otðS � RsÞgfoðS � RsÞ þ otðR � SsÞg

¼ootðs2
s þ t2sÞ þ fo2 þ ðotÞ2gssts

¼ 1 þ m

4
ðs2

s þ t2sÞ �
m � 1

2
ssts;

where ss ¼ R � Ss; ts ¼ S � Rs: If ts ¼ 0; then we have x� xts ¼ oðR �
Rs2Þ; which is divisible by a prime factor pp of p in L by Lemma 1. Thus
jdðxÞj > jdðKÞj holds. If ss ¼ 0; we have the same conclusion. Next, assume
sstsa0: Then it follows that

1 þ m

4
ðs2

s þ t2sÞ �
m � 1

2
ssts ¼ jsstsj

1 þ m

4

ss

ts

����
����þ ts

ss

����
����

� 	
� m � 1

2


 �

5 jsstsj
1 þ m

2
� m � 1

2


 �

5 jsstsj;

where each equality holds if and only if ss ¼ ts: Then we obtain jNLððx�
xtsÞðxt � xsÞÞj5jNLsstsj: If ssats; we have jNLððx� xtsÞðxt � xsÞÞj > 1;
namely jdðxÞj > jdðKÞj: If ss ¼ ts; then we have x� xts ¼ ðoþ otÞðR �
SsÞ ¼ �ðR � SsÞ ¼ �ðS � RsÞ ¼ �1

2
fðR þ SÞ � ðR þ SÞsg which contains a

prime factor pp of p: Then jdðxÞj > jdðKÞj:
Secondly, we treat the case where QðoÞ has an even conductor m > 1:

Then QðoÞ ¼ Qð
ffiffiffiffiffiffiffiffi
�m

p
Þ and f1;og for o ¼

ffiffiffiffiffiffiffiffi
�m

p
is an integral basis of

ZQðoÞ: Since we can put x ¼ R þ oS for some R;S 2 ZL; it holds that x�
xt ¼ 2oS: Then a number S should be a unit of L: By x� xts ¼ R � Rs þ
oðS þ SsÞ; if S þ Ss ¼ 0; then x� xts is divisible by a prime factor pp of p:
Hence jdðxÞj > jdðKÞj: If S þ Ssa0; then ðx� xtsÞðxt � xsÞ5mðS þ SsÞ2:
Thus we have

jNKðx� xtsÞj5jNLmðS þ SsÞ2j5m½L : Q� > 1:

Then jdðxÞj > jdðKÞj:
Finally, we consider the case where QðoÞ coincides with the Gau� field

QðiÞ and L is a cubic subfield of kf of an odd conductor f :
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Then we have H ¼ fe; s; s2g: For R 2 H; it holds that

ðx� xtRÞðxt � xRÞ ¼ ðR � RRÞ2 þ ðS þ SRÞ2:

If S þ SR ¼ 0; then R � RR is divisible by a prime factor pp in L; where
pe is a prime power factor of f : Here we can consider a representative R as an
automorphism ae of kpe over Q: Then we may assume S þ SRa0: If
R � RRa0 for some R 2 H; then it holds that ðR � RRÞ2 þ ðS þ SRÞ25
2jðR � RRÞðS þ SRÞj: Then it follows that jNKðx� xtRÞj5jNL2ðR�
RRÞðS þ SRÞj58: Next, let R � RR ¼ 0 for any R 2 H; namely R 2 Z: Then
x� xtR ¼ iðS þ SRÞ: Hence if a number x generates a power basis of ZK ; the
number S þ SR should be a unit of L; that is

NLðS þ SRÞ ¼ ðS þ SRÞðSR þ SR2ÞðSR2 þ SÞ ¼ �1:

On the other hand, as the same evaluation as in the second case, NLS ¼
SSRSR2 ¼ �1 holds. Put s1 ¼ S þ SR þ SR2

; s2 ¼ SSR þ SRSR2 þ SR2

S: Then
it holds that

NLðS þ SRÞ ¼ ðs1 � SR2Þðs1 � SÞðs1 � SRÞ

¼ s3
1 � s2

1s1 þ s1s2 � 1 ¼ s2s1 � 1 ¼ �1:

Then we have two cases of (i) s1s2 ¼ 0 or (ii) s1s2 ¼ �2:
(i) If s1 ¼ 0; then a number S is a solution of x3 þ s2x � 1 ¼ 0:

Thus �dðSÞ ¼ 4s3
2 þ 27: Since the field discriminant dðLÞ is equal to f 2; we

have ðfaÞ2 ¼ �4s3
2 � 27; namely ð4faÞ2 ¼ ð�4s2Þ3 � 432: By the transforma-

tion x ¼ 12
uþv

; y ¼ 36ðu�vÞ
uþv

; the diophantine equation y2 ¼ x3 � 432 is
birationally equivalent to the Fermat curve u3 þ v3 ¼ 1; whose solutions
are of ð�36Þ2 ¼ 123 � 432 [14]. Then f ¼ 32; s2 ¼ �3: Thus the solutions
of the equation x3 � 3x þ 1 ¼ 0 are S ¼ z9 þ z�1

9 and its conjugates.
If s2 ¼ 0; the numbers �1=S are solutions of the same equation as
in the case of s1 ¼ 0: Therefore, the field L coincides with the maximal
real subfield kþ

9 of conductor 32: Then we obtain ZK ¼ Z½iS� for
S ¼ z9 þ z�1

9 :
(ii) If s1s2 ¼ �2; noting the signature of NLðS þ SsÞ coincides with the

product of ones of s1 and s2; a number S is a solution of one of the following
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eight cases:

x3 � x2 þ 2x � 1 ¼ 0; dðSÞ ¼ �23; x3 � x2 � 2x þ 1 ¼ 0; dðSÞ ¼ 49;

x3 þ x2 þ 2x þ 1 ¼ 0; x3 þ x2 � 2x � 1 ¼ 0;

x3 � 2x2 þ x � 1 ¼ 0; x3 � 2x2 � x þ 1 ¼ 0;

x3 þ 2x2 þ x þ 1 ¼ 0; x3 þ 2x2 � x � 1 ¼ 0:

Each of the latter six equations is obtained from one of the former two ones
by a linear fractional transformation. Since the discriminant dðSÞ of a
number S in a cyclic cubic field L must be square, we have a solution
S ¼ z7 þ z�1

7 of x3 þ x2 � 2x � 1 ¼ 0; which generates the maximal real
subfield kþ

7 of conductor 7: Then we obtain ZK ¼ Z½iS�: Therefore we have
proved the theorem. ]

Remark 1. In two cases of the maximal imaginary sextic subfields K of
conductors 28 and 36 in k28 and k36; the proof of Theorem 1(2) involves that
there are generators �iS;�i=S and their conjugates only for ZK except for
the parallel transformations of them by rational integers. For the cases of
cyclotomic fields kp of the prime conductor p; p423; pa17; Robertson
completely determined the generators of Zkp

in [10].

Remark 2. Let p be an odd prime number greater than three, n ¼ 3pm

and kn be an nth cyclotomic field QðznÞ over the rationals Q; where zn be a
primitive nth root of unity. Let K� be the imaginary subfield of kn with
½kn : K�� ¼ 2; which is different to kn=3: Then it has been shown that the ring
ZK� of integers has no power basis [12].

By Shah [11], it is given a necessary and sufficient condition ZK having a
power basis for a cyclic sextic field K of a prime conductor, and a problem
and a conjecture are proposed as follows:

Problem. Is there no cyclic sextic field K of a prime conductor p �
1 ðmod 6Þ whose ring ZK of integers is monogenic except for the cyclotomic
field k7 of conductor 7 and the maximal real subfield of k13 of conductor 13?

Conjecture. Let p be a prime number and put m ¼ 3p ðpa3Þ; 4p ðpa7Þ
or ma36: Then there exists a subfield K of km with ½K : Q� ¼ 6 whose ring
ZK of integers does not have a power basis.

The conjecture above has been solved in general by Theorem 1.



MOTODA, NAKAHARA, AND SHAH332
3. MONOGENIC PHENOMENA FOR ABELIAN EXTENSIONS

Let K be the composite field of QðiÞ and any real subfield L distinct from
Q of an odd conductor f > 1 of kf : Assume that the ring ZK of integers in K

has a power basis, that is jdðxÞj ¼ jdðKÞj for some x ¼ R þ iS 2 ZK ; where
R;S 2 ZL: Then we can see that R 2 Z; and S; S þ SR are units of L for
R 2 Hn: We have x� xR ¼ iðS � SRÞ: Hence by assumption, it holds that

NK

Y
R2Hn

ðx� xRÞ
�����

����� ¼ jNLðS � SRÞj2 ¼ dðLÞ2:

Then ZL ¼ Z½S�; namely ZL has a power basis. Especially, if the extension
degree of the field L over Q is a prime ‘55; then by Gras [5], f should be a
prime of 2l þ 1; namely L is the maximal real subfield kþ

f of kf :
Conversely, suppose that a field kþ

f is the maximal real subfield of kf of an
odd conductor f > 1 and let K be the composite field of QðiÞ and kþ

f : Then it
follows that the maximal real subfield Kþ of K coincides with kþ

f : Put x ¼ iS

for units S ¼ zþ z�1; z ¼ zf in kþ
f : Let H be the Galois group of kþ

f over Q:
Then we have for an element s 2 Hn; zsaz�1: Thus it follows that

x� xts ¼ iðS þ SsÞ

ffi zþ z�1 þ zs þ ðz�1Þs

¼ zð1 þ zs�1Þ þ z�sð1 þ zs�1Þ

¼ z�sð1 þ zsþ1Þð1 þ zs�1Þ;

where a ffi b for a; b 2 K means that ðaÞ ¼ ðbÞ holds as ideals.

Lemma 2. Let g be an odd number > 1 and ða; gÞ ¼ 1: Then for a

primitive gth root z of unity, 1 þ za is a unit in a cyclotomic field kg:

Proof. Let FgðXÞ ¼
Q

djgðX d � 1Þmðg=dÞ be the cyclotomic polynomial of
degree fðgÞ; where fð�Þ and mð�Þ means the Euler function and the Möbius
one, respectively. Let

Q
p pe be the canonical decomposition of g: Then by

FgðX Þ ¼ Fg=peðY pÞ � Fg=peðYÞ�1; Y ¼ X pe�1

;

we obtain Fgð�1Þ ¼ 1; because of Fg=peð�1Þa1: Then a number 1 þ za
g is a

unit in kg for ða; gÞ ¼ 1: ]
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By Lemma 2, each of 1 þ zsþ1 and 1 þ zs�1 is a unit in a cyclotomic field
kg for gjf and g > 2: Thus jNK

Q
s2Hn iðS þ SsÞj ¼ 1: Therefore ZK is of

monogenesis. Then we obtain the theorem.

Theorem 2. Let K be the composite field of the Gauß field QðiÞ and a real

subfield L of an odd conductor f > 1 of kf : Assume that the ring ZK of integers

in K has a power basis, then the ring ZL of integers in L has also a power basis.

Conversely, let L be the maximal real subfield of kf of an odd conductor f > 1
and K be the composite field of QðiÞ and L: Then the ring ZK of integers in K

has a power basis.

As an application of Theorem 2 to [4] we obtain

Corollary 1. Let ‘ be a prime number congruent to 7 modulo 30 and

‘ > 7: Then there exist infinitely many abelian fields K of conductor 4‘ whose

integer rings ZK have no power basis.

Proof. Choose a proper subfield aQ of kþ
‘ as a field L in the above

theorem and K be the composite field of QðiÞ and L: Then by Theorem 2
and [4], the ring ZK has no power basis. ]

Remark 3. On the former part of Theorem 2, by [4] if the conductor f of
L is a prime such that f ¼ 2‘þ 1; where ‘ is also a prime 55 and ½L : Q�55;
then the field L coincides with the maximal real subfield kþ

f :
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