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Let K be the composite field of an imaginary quadratic field @(w) of conductor d
and a real abelian field L of conductor f distinct from the rationals Q, where (d,f) =
1. Let Zg be the ring of integers in K. Then concerning to Hasse’s problem we
construct new families of infinitely many fields K with the non-monogenic
phenomena (1), (2) which supplement (J. Number Theory 23 (1986), 347-353; Publ.
Math. Fac. Sci Besangon, Theor. Nombres (1984) 25pp) and with monogenic (3).

(1) If Q(w)#the Gau$ field Q(i), then Zg is of non-monogenesis.

(2) If Q(w) = Q(i), then for a sextic field K, Zg is of non-monogenesis except for two
fields K of conductors 28 and 36.

(3) Let Q(w) = Q(i). If Zx has a power basis, then Z; must have a power basis.
Conversely, let L be the maximal real subfield kf of a cyclotomic field ky, namely K be the

maximal imaginary subfield of k4s of conductor 4f. Then Zx has a power basis. © 2002
Elsevier Science (USA)
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1. INTRODUCTION

Let K be an algebraic number field over the rationals Q. If the ring
Zk = ZJo] of integers in K is generated by an integer o over the ring Z of
rational integers, it is said that Zg has a power basis, Zg is monogenic or of
monogenesis, otherwise Zg is said to be non-monogenic or of non-
monogenesis.

Let k, be an nth cyclotomic field Q((,) over @ and k; the maximal real
subfield of k,, where (, be a primitive nth root of unity. Gras [4, 5] showed
the non-monogenesis of the ring Zx of integers in cyclic fields K over Q of
prime degrees ¢>5 except for K = k3, ,, where 20+ 1 is a prime, and
subsequently, she proved that there exist only finitely many abelian
extensions K over Q of degrees m=>5, (m,6) =1, whose Zx have a power
basis using the prime decomposition of Gaufl sum by Leopoldt [9].

In Theorem 1, we shall give a new family of infinitely many imaginary
abelian fields K of degrees m > 2 whose rings Zg are of non-monogenesis
applying some evaluation of the different of a number in K [Lemma 1].
In Theorem 2, we shall characterize infinitely many imaginary abelian
fields K of degrees m > 2 whose rings Zx are of monogenesis using
Lemma 2.

As is well known, Hasse’s problem to characterize whether the ring Zg of
integers in a field K is of monogenesis or not is treated by Dummit and
Kisilevsky [1], Gras [4], Huard et al. [7], Robertson [10], Schertz [13],
Thérond [15] and others. Gaal et al and Gyory gave algorithm for
determining the power bases of the rings in certain algebraic number fields
and several monogenic examples [2, 3, 6]. A survey of researches for integral
power bases is given in [6, Remark].

2. NON-MONOGENIC PHENOMENA FOR ABELIAN
EXTENSIONS

The following lemma is fundamental for us.

LEMMA 1. Let f be the conductor of a cyclotomic field ky, Hp p° be its
canonical decomposition and o be an element of the Galois group G of ky over
QO which generates the Galois subgroup of ky. over Q. Then for any integer R
of kr, R — R° is divisible by a prime element m, in kpe for m, =1 — (.

Proof. Since p° and f/p¢ are prime to each other, there exist primitive
roots {,c and (s, such that {; = {,{;/,. Then C}’ = C;e {r/pe- Now a number
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Rin Zj, is represented by a form >, _; , q,c_“,j} with a; € Z, where n is equal
to the value of the Euler function ¢(f). Then R—R* =3}, ., q
(& = G%) j,/pe. Since . — (¢ is divisible by m, for any ¢ € G, R— R’ is
divisible by m,.

THEOREM 1. Let K be the composite field of an imaginary quadratic field
O(w) and a real abelian field L distinct from the rationals Q, whose conductors
are prime to each other.

(1) If Q(w)#Q(i) with i = —1, then Z is of non-monogenesis.

(2) If Q(w) = Q(i), then for a sextic field K, Zx is of non-monogenesis
except for two fields of conductors 28 and 36.

Proof. Let 7 be the generator of Galois group of Q(w) over Q and
H the Galois group of L over Q. Let d(K) and d(¢) be the field
discriminant of K and the discriminant of a number ¢ in K, respectively.
Then a ring Zg is of monogenesis if and only if there exists a number &
in K such that |d(¢)| = |d(K)|. Now put H* = H\{e}, where e is the
identity in H. Since the Galois group of K over Q is generated by 7 and H,
we have

|d<f>|=‘<NK 11 <f—é“>)<NK<é—éf))<NK 11 <é—éw>>'

oeH* oeH*

=|d(K)||Nko|

Ne I (€-¢9)

ocH*

for some integer « in K. Therefore if Zg is of monogenesis, |Ng [[,cp+
(¢ —¢%)[ =1 should be held. We assume that such ¢ exists. Let [],p°
be the canonical decomposition of the conductor f of L. Then an fth
root {y of unity can be written as Hp {pe for some p°th root {,. of unity.
Let A be the subgroup of the Galois group Gy of kr over 0,
which corresponds to the subfield L of k. The group H is isomorphic to
the factor group Gy/A4. Denote the Galois group of k. over Q by 4, with a
generator o,. Then we have a direct product decomposition [, 4, of Gy.
Every o, is not contained in A4, namely 6, € H*. Because if the group 4
contains some o, we have H = G;/A = (Gy/(0,))/(A/(0,)), where (o) for
0 € G denotes the subgroup of G generated by ¢. This contradicts to the
conductor f of L.

First, we consider the case where Q(w) has an odd conductor m. Then

O(w) = O(y/—m) and {w, w*} for v = (=1 + /—m)/2 is an integral basis of
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Zo(w)- Since we can put { = wR + »*S for some R, S € Z; by [8], it holds
that for o = g,

(E=ENE =) ={o(R-S8")+ (S — R)Hw(S— R") + o' (R— S7)}
— 00" (52 + 1) + {0* + () }sot,

m—1
2

l+m
T3

(Srzi + ti) - Solo,
wh?ere s =R—S8° t,=S—R°. If t, =0, then we have ¢ — £ = w(R —
R?"), which is divisible by a prime factor m, of p in L by Lemma 1. Thus
|d(&)| > |d(K)| holds. If s, = 0, we have the same conclusion. Next, assume
Sot;#0. Then it follows that
m—1
S

1+m m—1 14+m
— (si + ti) — Tsat(; = |sgtg|{4<

So
lg

lg

S

where each equality holds if and only if s, = #,. Then we obtain |Np((¢ —
ENE = &)= |Nissts|. If ss#1t,, we have |NL((E—E7)(E —¢&%)) > 1,
namely |d(¢)| > |d(K)|. If s, =t,, then we have & — &7 = (0 + ") (R —
S§7)=—(R-8%) =—(S—R") = —3{(R+S) — (R+ S)"} which contains a
prime factor m, of p. Then |d(¢)| > |d(K)|.

Secondly, we treat the case where @(w) has an even conductor m > 1.
Then Q(w) = Q(v/—m) and {1,w} for v =/—m is an integral basis of
Zo(w)- Since we can put ¢ = R+ wS for some R, S € Z, it holds that £ —
" = 2wS. Then a number S should be a unit of L. By é — ¢ = R— R’ +
o(S+87),if S+ 87 =0, then & — £ is divisible by a prime factor n, of p.
Hence |d(&)] > |d(K)|. If S+ S°#0, then (& — E)(E° — &) =m(S + S°)°.
Thus we have

INk (&= &) = |Npm(S + )| =mlt 2 > 1.
Then [d(¢)] > [d(K)|.

Finally, we consider the case where Q(w) coincides with the Gauf field
O(i) and L is a cubic subfield of k; of an odd conductor f.
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Then we have H = {e, o, 6*}. For ¢ € H, it holds that

(&= E9)(E — &) = (R— R + (S + 59)%.

If S+ 8¢ =0, then R— R? is divisible by a prime factor m, in L, where
p°¢ is a prime power factor of /. Here we can consider a representative ¢ as an
automorphism #e of k, over Q. Then we may assume S+ 8S2#0. If
R—Re#0 for some g € H, then it holds that (R — R?)* + (S + S¢)*>
2|(R—R%)(S+ S?|. Then it follows that |Ng(&—E™)|= (R—
RY)(S+ 89 |= =0 for any ¢ € H, namely R € Z. Then
& — £ =i(S+ S§?). Hence if a number ¢ generates a power basis of Z, the
number S + S¢ should be a unit of L, that is

NL(S + 8%) = (S + S9)(5¢ + S¢) (S + ) = £1.

On the other hand, as the same evaluatig)n as in the secon7d case, N.S =
SS¢5%° = +1 holds. Put s; = S + S¢ + S, 5, = SS¢ + S¢S¢° + S¢S. Then
it holds that

NL(S +82) = (51 = 87)(s1 = S)(s1 — )
:S? _S%Sl +siFl =55 F1==x1

Then we have two cases of (i) 5155 = 0 or (ii) 515, = £2.

(i) If s, =0, then a number S is a solution of x> +sHx+1=0.
Thus —ng) = 452 + 27. Since the ﬁeld dlscrlmmant d(L) is equal to f?, we
have (fa)* = —4s3 — 27, namely (4fa)* = (—4s,)* — 432. By the transforma—
tion x= %, y= %ﬂb), the diophantine equatlon Y2 =x3—432 is
birationally equlvalent to the Fermat curve u? 4 v* = 1, whose solutions
are of (+36)> = 123 — 432 [14]. Then f = 32,5, = —3. Thus the solutions
of the equation x* —3x+1=0 are S={o+ C;l and its conjugates.
If s, =0, the numbers +1/S are solutions of the same equation as
in the case of s; = 0. Therefore, the field L coincides with the maximal
real subﬁeld ky of conductor 3°. Then we obtain Zg = Z[iS] for
S=0+G"

(ii) If 5152 = £2, noting the signature of N, (S + S?) coincides with the
product of ones of s; and s,, a number S is a solution of one of the following
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eight cases:

- xr+2x—1=0, d(S)=-23, xX*-x*-2x+1=0, d(S)=49,

XX 4+2x+1=0, X +xr—2x—1=0,
X =2 +x—-1=0, X =2 —x+1=0,
X2 +x+1=0, X 4+2x* —x—1=0.

Each of the latter six equations is obtained from one of the former two ones
by a linear fractional transformation. Since the discriminant d(S) of a
number S in a cyclic cubic field L must be square, we have a solution
S={ 4" of ¥¥+x>—2x—1=0, which generates the maximal real
subfield k7 of conductor 7. Then we obtain Zx = Z[iS]. Therefore we have
proved the theorem. 1

Remark 1. In two cases of the maximal imaginary sextic subfields K of
conductors 28 and 36 in kyg and k3¢, the proof of Theorem 1(2) involves that
there are generators +iS, +i/S and their conjugates only for Zg except for
the parallel transformations of them by rational integers. For the cases of
cyclotomic fields k, of the prime conductor p, p<23, p#17, Robertson
completely determined the generators of Z;, in [10].

Remark 2. Let p be an odd prime number greater than three, n = 3p™
and k, be an nth cyclotomic field Q({,) over the rationals Q, where {, be a
primitive nth root of unity. Let K~ be the imaginary subfield of k, with
[k, : K~] = 2, which is different to k,,/3. Then it has been shown that the ring
Z- of integers has no power basis [12].

By Shah [11], it is given a necessary and sufficient condition Zg having a
power basis for a cyclic sextic field K of a prime conductor, and a problem
and a conjecture are proposed as follows:

Problem. Is there no cyclic sextic field K of a prime conductor p =
1 (mod 6) whose ring Z of integers is monogenic except for the cyclotomic
field k7 of conductor 7 and the maximal real subfield of k3 of conductor 13?

Conjecture. Let p be a prime number and put m = 3p (p#3), 4p (p#7)
or m#36. Then there exists a subfield K of k,, with [K : Q] = 6 whose ring

Z of integers does not have a power basis.

The conjecture above has been solved in general by Theorem 1.
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3. MONOGENIC PHENOMENA FOR ABELIAN EXTENSIONS

Let K be the composite field of Q(i) and any real subfield L distinct from
0 of an odd conductor f* > 1 of kr. Assume that the ring Zx of integers in K
has a power basis, that is |d(&)| = |d(K)| for some & = R+ iS € Zk, where
R, S € Z;. Then we can see that R€ Z, and S, S + S? are units of L for
0 € H*. We have ¢ — £ = i(S — S?). Hence by assumption, it holds that

Ne I (6-¢)

oEH*

= [NL(S — S9)]* = d(L)*.

Then Z; = Z[S], namely Z; has a power basis. Especially, if the extension
degree of the field L over Q is a prime ¢>5, then by Gras [5], / should be a
prime of 2/ + 1, namely L is the maximal real subfield k;-r of k.
Conversely, suppose that a field &/ is the maximal real subfield of k; of an
odd conductor f > 1 and let K be the composite field of Q(i) and k* Then 1t
follows that the maximal real subfield K* of K coincides with k. Put &=
for units S =+ (7!, (= {rin k+ Let H be the Galois group of k+ over Q
Then we have for an element G 6 H*, (°#{*!. Thus it follows that

E— &0 =i(S+5°)
=4 (Y
{1+ Y+ 07+

=71+ DA+,
where « = f§ for o, f € K means that («) = (f) holds as ideals.

LEMMA 2. Let g be an odd number > 1 and (a,g) = 1. Then for a
primitive gth root { of unity, 1 + (" is a unit in a cyclotomic field k,.

Proof. Let ¢,(X) = Hd‘g(Xd — 1" 19/9) be the cyclotomic polynomial of
degree ¢(g), where ¢(-) and u(-) means the Euler function and the Mobius
one, respectively. Let Hp p¢ be the canonical decomposition of g. Then by

e—1

By(X) = Py (Y7) - By (V) 7, Y =Xx"",

we obtain @,(—1) = 1, because of @,,.(—1)#1. Then a number 1 + (7 is a
unit in k, for (a,g) =1. 1
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By Lemma 2, each of 1 + (°"! and 1 4+ (°~! is a unit in a cyclotomic field
ky for glf and g > 2. Thus [Nk [[, ey i(S+ S%)| = 1. Therefore Zg is of
monogenesis. Then we obtain the theorem.

THEOREM 2. Let K be the composite field of the Gaufs field Q(i) and a real
subfield L of an odd conductor f > 1 of ky. Assume that the ring Zg of integers
in K has a power basis, then the ring Z of integers in L has also a power basis.
Conversely, let L be the maximal real subfield of ky of an odd conductor f > 1
and K be the composite field of Q(i) and L. Then the ring Zx of integers in K
has a power basis.

As an application of Theorem 2 to [4] we obtain

COROLLARY 1. Let ¢ be a prime number congruent to 7 modulo 30 and
¢ > 7. Then there exist infinitely many abelian fields K of conductor 4¢ whose
integer rings Zx have no power basis.

Proof. Choose a proper subfield #Q of k; as a field L in the above
theorem and K be the composite field of Q(i) and L. Then by Theorem 2
and [4], the ring Zg has no power basis. 1

Remark 3. On the former part of Theorem 2, by [4] if the conductor f of
L is a prime such that f = 2¢ + 1, where £ is also a prime >5 and [L: Q] =5,
then the field L coincides with the maximal real subfield k}’.

REFERENCES

1. D. S. Dummit and H. Kisilevsky, Indices in cyclic cubic fields, in “Number Theory and
Algebra,” pp. 29-42, Collection of Papers Dedicated to H. B. Mann, A. E. Ross and
O. Taussky-Todd, Academic Press, New York/San Francisco/London, 1977.

2. 1. Gaal, Computing all power integral bases in orders of totally real cyclic sextic number
fields, Math. Comp. 65 (1996), 801-822.

3. 1. Gaal, A. Peth6, and M. Pohst, On the resolution of index form equations in biquadratic
number fields, J. Number Theory 38 (1991), 18-34.

4. M.-N. Gras, Non monogénéité de I'anneau des entiers des degré premier /=5, J. Number
Theory 23 (1986), 347-353.

5. M.-N. Gras, Non monogénéité de I’'anneau des entiers de certaines extensions abéliennes de
Q, Publ. Math. Fac. Sci. Resangon, Théor. Nombres 1983-1984, Exp. No. 5, (1984), 25pp.

6. K. Gyory, Discriminant form and index form equations, in ““Algebraic Number Theory and
Diophantine Analysis” (F. Halter-Koch, and R. F. Tichy, Eds.), pp. 191-214, Walter de
Gruyter, Berlin/New York, 2000.

7. J. G. Huard, B. K. Spearman, and K. S. Williams, Integral bases for quartic fields with
quadratic subfields, J. Number Theory 51 (1995), 87-102.

8. S. Lang, “Algebraic Number Theory,” Addison-Wesley Publishing Company, Inc.,
Reading, MA, 1970.



334 MOTODA, NAKAHARA, AND SHAH

9.

10.

H.-W. Leopoldt, Uber die Hauptordnung der ganzen Elemente eines abelschen
Zahlkorpers, J. Reine Angew. Math. 201 (1959), 119-149.

L. Robertson, Power bases for cyclotomic integer rings, J. Number Theory 69 (1998), 98—
118.

. S. I. A. Shah, Monogenesis of the ring of integers in a cyclotomic sextic field of a prime

conductor, Rep. Fac. Sci. Eng. Saga Univ. Math. 29 (2000), 1-9.

. S. I. A. Shah and T. Nakahara, Monogenesis of the ring of integers in certain imaginary

abelian field, Nagoya Math. J. 168 (2002), to appear.

. R. Schertz, Konstruktion von Potenzganzheitsbasen in Strahlklassenkdrpern iiber

imagindr-quadraticshen Zahlkorpern, J. Reine Angew. Math. 398 (1989), 105-129.

. J. H. Silverman and J. Tate, “Rational Points in Elliptic Curves,” Undergraduate Texts in

Mathematics,” Springer/Verlag, Berlin, 1992.

. J.-D. Thérond, Existence d’une extension cyclique monogéne de discriminant donné, 4rch.

Math. 41(1983), 243-255.



	1. INTRODUCTION
	2. NON-MONOGENIC PHENOMENA FOR ABELIAN EXTENSIONS
	3. MONOGENIC PHENOMENA FOR ABELIAN EXTENSIONS
	REFERENCES

