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Abstract

This paper obtains a result on the finiteness of the number of integer solutions to decom-
posable form inequalities. Lét be a number field and lefF (X1, ..., X,;) be a non-degenerate
decomposable form with coefficients in We prove that, for every finite set of placésof
containing the archimedean places koffor each real numbef < T£1 and for each constant
¢ >0, the inequality

O< [TIFGL ooy ) lly SCHG @1, ooy Xm) N (¥Ls ey 3m) € O 1)
ves

has only finitely many®%-non-proportional solutions.
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1. Introduction

Let k be a finitely generated (but not necessarily algebraic) extension field. of
Let F(X1,..., X;y) be a form (homogeneous polynomial) in>2 variables with co-
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efficients ink and suppose thd is decomposablei.e. it factorizes into linear factors
over some finite extension & Let b € k*, wherek* is the set of non-zero elements
of k, and consider the decomposable form equation

F(x1,...,xn)=b in (x1,...,x,) € R, (1.2)

where R is a subring ofk finitely generated ove#Z. Equations of this type are of
fundamental importance in the theory of Diophantine equations and have many ap-
plications in algebraic number theory. Important classes of such equations are Thue
equations (whem: = 2), norm form equations, discriminant form equations and index
form equations. The Thue equations are named after A. Thapwho proved, in the
casek = Q,R = 7Z,m = 2, that if F is a binary form having at least three pairwise
linearly independent linear factors in its factorization over the field of algebraic num-
bers, then (1.1) has only finitely many solutions. Later, Lghej] extended Thue’s
result to the general case whkris a finitely generated extension field @f andR is a
subring ofk finitely generated over. For the casen >2, after the works of Schmidt,
Schlickewei, Laurent and others (¢6ch1,Schli,LA), Evertse and GyorjEG1] finally
obtained a necessary and sufficient condition for (1.1) to have finitely many solutions,
independently of the choice df and R. In Section 3 of[EG1], Evertse and Gyory
gave an equivalent form of this condition in the case wherfactors into a product

of linear forms overk. The following is the statement of their result.

Theorem A (Evertse and Gjry). Let k be a finitely generated extension field @f

Let F(X1,..., X,,) be a decomposable form im > 2 variables with coefficients in.k
Assume that it factors into a product of linear forms overDenote byL a maximal

set of linear factors of F which are pairwise linearly independent. Then the following
two statements are equivalent:

(i) For everyb € k*, the equation
F(x1,...,xp)=b in(x1,...,xu) € R"

has only finitely many solutions for every, B subring of k finitely generated
over Z.

(i) The subspacé&l) of k[X1, ..., X,,] generated by £ has dimension m and that
for each proper non-empty subsét of £, the intersection (£1)N(£\£1) contains
a non-zero element of.

Note that the condition (ii) is independent of the choicefof

The purpose of this paper is to study decomposable form inequalities Wwhgn
assumed to be a number field. To state our result, we first recall some definitions.

Let k be a number field of degreg Denote byM (k) the set of places (equivalent
classes of absolute values) lofand writeM (k) for the set of archimedean places of
k. Forv € M (k) we choose the normalized absolute valud, such that] |, =| |
on @ (the standard absolute value)vifis archimedean, whereas fomon-archimedean
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Iply = p~Lif v lies above the rational prime. Denote byk, the completion ok with
respect tov and byd, = [k, : Q,] the local degree. We put |, = | |,)”/d. Let She
a finite subset oM (k) containingM (k). An elementx € k is said to be &-integer
if ||x|l, <1 for eachv € M (k)\S. Denote byOg the set ofSintegers. The units 0Oy
are calledSunits. The set of alS-units forms a multiplicative group which is denoted

by O¢. Forx = (x1, ..., x,) € k™, we put|x|l, = maxi<; <m llxily and we define the
height ofx by H(x) = 1_[ IIX|ly, and the logarithmic height of by 4 (x) = log H (X).
veM (k)

By the product formula,H(/x) = H(x) for all 1 € k*. For X = (x1,...,x,) € k™,
we also define th&height asHg(x) = l_[ Ix]ly. If x € O¢\{0}, then Hg(x)>1 and

ves
Hg(ax) = Hg(x) for all « € O
Let k be a number field, and lef (X4, ..., X,,) be a decomposable form in >2
variables with coefficients irk. For each finite set of placeS of k containing the
archimedean places &f and for given two positive real numbetcsand 4, we consider
the solutions of the inequality

0<[JIF@ ... xw)lly <cH (1, ... xm) iN (x1..... xm) € O (1.2)
ves
If (x1,...,x,) is & solution of (1.2), then so igx1,...,nx,) for everyn € Of.
Solution (yx1, ..., nx,) is said to beOg-proportional to(x1, ..., x,). To state our

result, we need the following definition.

Definition 1.1. Let k be a number field and leF (X1, ..., X,;) be a decomposable
form in m>2 variables with coefficients ikk. We say thatF is non-degenerate if it
satisfies the following conditions: there exists a finite algebraic extensiaf k such

that F factors into a product of linear forms ovéf and if we denote by a maximal

set of linear factors of which are pairwise linearly independent, then the subspace
(L) of K'[X1,..., X;y] generated byl over k' has dimensiorm and that, for each
proper non-empty subsel; of £, the intersection(£1) N (£\£1) contains a non-zero
element ofL.

Note that the above definition is independent of the choic€.oThe main result of
this paper is as follows.

Theorem 1.1.Let k be a number field and letf (X, ..., X,,) be a non-degenerate
decomposable form with coefficients inTkhen for every finite set of places S of k
containing the archimedean places qffr each real number i < ﬁ and for each
constantc > 0, the inequality

0<[JIF@L ... xw) o <cH(1, ... %) iN (k2. xm) € O

veS

has only finitely many);-non-proportional solutions.
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Theorem 1.1 implies in particular that, for eaele k*, the equationF (x1, ..., x,) =
b has finitely many solutiongxi, ..., x,) € Os™. Hence, it could be viewed as a
guantitative extension of the result of Evertse and Gyodry [EG1] in the number field
case. Consider a special case that Q and S = {oo, p1, ..., ps}, Whereps, ..., ps
are primes. Recall that in this cadel, is the standard absolute value, whilg|,, =
plfl fori =1,...,s. Further, every solutiox e O¢ of (1.2) is Of-proportional to a
solution (x1, ..., x,) € Z™ with gcd(xq, ..., x,;) = 1 which is unique up to a factor
—1. Moreover, for such a solutiofxy, ..., x,), Hs(X1, ..., Xn) = MaX1<i<m |Xil.
This leads us to the following consequence of Theorem 1.1.

Corollary 1.1. Let F(X3,..., X,,) be a decomposable form im>2 variables with
coefficients inQ. Assume that F is non-degenerate. Then each real numbe/ < ﬁ
and for each constant > 0, the inequality

<i<

<is<m

s A
O<|F(xl’--~»xm)|'l_!-|F(x1»~--axm)|p,-<c(lm X |xi|)
i—

has only finitely many solution&, . .., x,) € Z™ with gcd(x1, ..., x,) = 1.

Important examples of non-degenerate decomposable forms areRl&se. . ., X,,)
such that degF > 2(m — 1) and that anym linear factors ofF over Q are linearly
independent. In this case, K. Gydry and the second author proved a stronger result (cf.
[GR]) as follows.

Theorem B (Gybry and Ry. Let k be a number field and letF (X3, ..., X,;) be a
decomposable form im >2 variables with coefficients in.kAssume thatdeg F >
2m — 1) and 1 < deg F — 2(m — 1). Assume further that any m linear factors of F
are linearly independent oved . Then for each constant > 0, (1.2) has only finitely
many Og-non-proportional solutions.

Note that, if we take ded’ = 2(m — 1) + 1 in above, then the condition fot
becomesl < 1. Thus, we conjecture that the conditidn< ﬁ in Theorem 1.1 could
be improved tod < 1.

2. Generalization of Schmidt's subspace theorem

In this section, we prove a Schmidt’'s subspace-type theorem. In the theorem, we drop
the “in general position” assumption for linear forms appearing in Schmidt's subspace
theorem, only assuming that they are non-degenerate. Here, the meaning afskiat
of pairwise linearly independent linear forms is non-degeneratas follows.

Definition 2.1. Let k be a number field. A set of finitely many pairwise linearly
independent linear forms in + 1 variables with coefficients ik is said to benon-
degeneratdf the subspac€l) of k[Xo, ..., X,,] generated by has dimensiom + 1
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and that, for each proper non-empty subgetof £, the intersection(£1) N (£\L1)
contains a non-zero element @Gf

To state our result, we first recall the following statement of Schmidt's subspace
theorem, due to Vojta (se@/]).

Schmidt's Subspace TheoremLet k be a number field and let S be a finite set of
places of k Given linear formsLy, ..., L, € k[Xo, ..., X,] in general positioni.e.,
any n + 1 linear forms among them are linearly independent. THen everye > 0,

S5 o P B g (2.1)
S =PI 0l,

holds for all x € P" (k) outside a finite union of proper linear subspacesPdf(k).

Let L € k[Xp, ..., X,] be a linear form. Define, for every € P" (k) with L(x) £ 0,

e, 1) = Y log Il Il

s LGNy
and
Xl - IIL 11y
No b = g' TILeol,
Then, by the product formula,
m(x, L) + N(X, L) = h(X) + O(1) (2.2)

holds for allx with L(x) # 0, whereO (1) is a constant, independent »f Hence we
can rewrite (2.1) as

q
(g—n—1-8h()< Y NX Lj)+ 0. (2.3)
j=1

We prove the following result which might be interesting in itself.

Theorem 2.1. Let k be a number field and let S be a finite set of places bekl =
{L1,..., Ly} be a finite set of pairwise linearly independent linear forms: in 1 vari-
ables with coefficients in.lAssume that is non-degenerate. Thefor ¢ > 0, we have

q
(L—eh()<n- Y NX Lj)+ 0 (2.4)
j=1

for everyx e P" (k) with L;(x) #0 for j =1,...,¢q



Z. Chen, M. Ru/Journal of Number Theory 115 (2005) 58-70 63

Proof. Before proving Theorem 2.1, we first make two observations. First, we have
the following height inequality:

hlz:ixy:-- - xpmiyr:---oyl<hlzixy - ixpl+hlziyr:--- 0yl (2.5)
for z, x1, ..., Xm, y1, ...,y € k with z # 0. To show (2.5), we recall that, for every
[x0:--:x,] € P*k),

h(lxo: -+ :xa) =Y log max|ixolly, ... llxl}.

veM (k)
Hence
h(lzixy:ixpmeyr:iyl) = k(X x1/z -t xm/zyv1/2 0 2 yi/z))
< h([X:x1/z - xm/z])
+h([1:y1/z:---:y/z])
=h(z:xyz:-rxuD)+h(z:y1:--- oyl

This proves (2.5). The second observation is that the non-degeneracy is preserved by
restriction to the linear subspac®sof P such that none of the linear forms il
vanishes identically o. To show this, letV be a subspace d?* such that none of
the linear forms inC vanishes identically oW. For a linear formL € £ denote byLy
the restriction ofL to V. Let M be a maximal subset of pairwise linearly independent
linear forms from{Ly : L € £}. Then we claim thatM is non-degenerate. In fact,
since dimM(£) = n+1, dim(M) = dim V +1, where dimV is the projective dimension
of V. Next, let M; be a non-empty proper subset &fl. Let £ be the set of all
linear formsL e £ such thatL|y is proportional to a linear form in\;. Since L is
non-degenerate, there is a linear folme (£1) N (£L\L1) N L. Taking restrictions to/
we obtain a non-zero linear form igV1) N (M\M1) N M. So M is non-degenerate.
To continue, for a subset = {i1, ..., i} of {1,...,q}, we define

Prx = [Liy(X) -+ Li,(X)].

We prove by induction ors the following claim:
Claim. For every s with2<s<n + 1 there is a subset | ofl, ..., ¢} (independent of

x) with rank{L; : i € I} >s such that for everye¢ > 0, the inequality

q
A= h(P)<(s =D Y NX Lj)+ 0 (2.6)
j=1
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holds for everyx € P"(k) outside some finite union of proper linear subspaces of
P" (k).

To prove the Claim, we first settle the case- 2. Since£ is non-degenerate, there
is a linear relation

> el =0, (2.7)

iel’

where I’ is a subset of1, ..., ¢} of cardinality >3 and allc; # 0. By shrinking!’ if
needed, we may assume that each proper subdgét; ofi € I’} is linearly independent.
Further, the setfL; : i € I’} has rank at least 2. Without loss of generality, we assume
that I’ ={1,...,t+1}. Let I ={1,...,¢}. Then{L; : i € I} is linearly independent

and it also has rank at least 2. Applymg Schmidt’'s subspace theorem to the linear
forms L1 =c1X1,...,L;=c;X; and L, 41 = c1X1+ - + ¢ X, in P'~L(k), we have,

for everye > 0,

t+1
(1—eh(P)< Y _N(P. L) (2.8)
=1

for all P € P'~1(k) outside a finite union of proper linear subspaées. . ., Ty. Since
{L; :i € I} is linearly independent, the poinise P" (k) with P;x € U *,T, is con-
tained in some finite union of proper linear subspace$'tf). Hence outside some
finite union of proper linear subspaces Bt (k), we have

t+1
(1= a)h(Prx)< ) N(Prx, L. (2.9)
=1

For 1<i <z,

- 1Pl - Nl
N(Px. Li) = ) log ——* 20

S laLiol
Xy - Maxy < L;
< Z' X1l ”Ll(;,ngzll jllv
veS [ )
X L maxg < ; L;
_ Z og v 1=y IXIly - 1Lz 1y +Z|Og <)<t I A/||u.
veS ”Ll(X)HU vES ||Ll||n

Note that,

maxy < i< 1Ly

log
1Lzl
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vanishes for all, but finitely many, places so

ZIO maxi<j<r IILjlly

o 1Ll

is a constant, independent »f Therefore, we have, for4/<1,

whereO (1) is a constant,

+---+ ¢ L;(X)). Hence,

N(Prx, Li11)

Again, since

log

N

N(Prx, L)) = N(x, L)) + O(1),

65

(2.10)

independentxfFurther, by (2.7)¢;41L+1(X) = —(c1L1(X)

3" log I1Prxlly - I Lesally
T ILi+1(Prx) Iy

Zlog | Prxlly - maxi< < llcjllv
lerLa(X) + -+ Le (Xl

VES

Zlog [IXIly - maxe < j<r 1Ll - maxi<j<e llcjllv
lcira L1 (Xl

VES

Xllp - || L
3 log X1l - I Le4ally
e L1410 o

maxi<j<r ILjlly - maxa<j<s licjlly
+Z|Og J J J J

o ILevall - el

maxi < j<: IILjlly - maxa<j<s licjllv

I Letallo - lertally

vanishes for all, but finitely many, places

Zlog maxi< i</ ILjllv-maxa< i< licllo

vgS

I Lstallo - lerally

is a constant, independent »f Hence,

N(Prx, Liy1) = N(X, Liy1) + O(D).

(2.11)
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Combining (2.9)—(2.11), we have,

t+1 q
L= ah(P)< Y NG L)+ O0M< Y N Lj)+ 0 (2.12)
=1 j=1

for everyx € P"(k) outside some finite union of proper linear subspace® ).
Hence the claim is proved far = 2.

Now, let 2< s <n and assume that the claim holds ®ri.e., a subset of {1, ..., g}
(independent of) exists with rankL; : i € I}>s, such that, for every > 0, (2.6)
holds for everyx € P"(k) outside some finite union of proper linear subspaces of
P (k). If either ranKL; : i € I} > s or s = n, then the induction step is completed.
So we assume thatraflk; : i e I} =s <n. Let A={L e L:L e (L;:i € 1)},
where (L; : i € I) is the subspace of[Xo, ..., X, ] generated by the linear forms
L;,i € I. A is then a non-empty proper subset 6f By the non-degeneracy of,
there is a linear formL;, € (A) N (L\A) N L. ThenL;, = >, ;¢;L; for certain
¢; € k, while also there is a linearly independent subjdet : j € J} of £\.A such that
Liy=)_,c,d;L; for certaind; € k with d; # 0. Notice thatA, J are independent of
X. Sinceh(Pruiig),x) <h(Prx)+ O(1) and by the induction hypothesis, for every 0,

q
A—eh(PLO<(—1DY NXLj+ 0,
j=1

holds for everyx € P"(k) outside some finite union of proper linear subspaces of
P"(k), we have

q
(1= Dh(Pujigg) <(s =1 Y N, Lj) + O(D) (2.13)
j=1

for all x € P"(k) outside some finite union of proper linear subspace$'tf). On
the other hand, completely similar to (2.12) we have, for every0, the inequality

q
(1= h(Psuiig) < Y N, Lj) + O(1) (2.14)
j=1

for all x € P"(k) outside some finite union of proper linear subspace®tf). Now
let ] := {ig)UIUJ. ThenrankL; : i € I}>ranKL; : i € I}+1>s+1 since each form
L; with j € J is linearly independent of the linear forms i, hence ofL;,i € I.
Further, by (2.5),

h(P; ) <h(Prutio)x) + h(Prufio).x)-
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By combining this with (2.13) and (2.14) we obtain

q
(1—e)h(Pj,)<s - Z NX, Lj)+ 0
=1

for all x € P"(k) outside some finite union of proper linear subspace&’taf). This
completes the induction step, and thus proves the Claim.

We now continue the proof of Theorem 2.1. Lebe a subset ofl,..., ¢} as in
the Claim withs = n + 1. Then all linear forms im + 1 variablesXg, ..., X,, can
be expressed as linear combinations of the linear fokn($ € 7), so in particular the
forms Xo, ..., X,. Consequentlyh(x) <h(P;j,) + O(1) for x € P"(k). Fixing ¢ > O,
by our claim we have

q
L—oh()<n-Y N, Lj)+ 0D (2.15)
j=1

holds for allx € P" (k) outside some finite union of proper linear subspace®'ak).

We complete the proof of the theorem by induction mnFor n = 0 the theorem is
clearly true. Suppose that the theorem is true for projective spaces of dimension at most
n—1 for somen>1. Consider inequality (2.4) for dimension We know, from (2.15)

that (2.4) holds for alk € P" (k) outside some finite union of proper linear subspaces

of P*(k). Let V be one of these exceptional subspaces. Since we only consider those
points x with L(x) # O for every L € £, we only need to consider thod¢ such

that none of the linear forms fromd vanishes identically otv. Then, by our second
observation stated in the beginning of the proof tidtis non-degenerate, hence the
induction hypothesis is applicable. So

q q
1—eh)<dimV)- > N, Lj)+0@D)<n- Y NX Lj)+ 0D
j=1 j=1
for x € V(k). By applying this to all exceptional subspaces we infer that (2.4) holds
for all x € P"(k). This completes the proof.(]

3. Proof of the main theorem

By the assumptionf is non-degenerate. So there exits a finite algebraic extension
k' of k such that

F(X1,...,Xm) = L1(X1, ..., Xp) - Lg(X1, ..., Xi),
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whereLq, ..., Ly € k'[X1, ..., X,,] are linear forms and if we denote iy a maximal
set of linear factors of which are pairwise linearly independent ov€r then L is
non-degenerate. Le¥’ ¢ M (k') consist of the extension of the places ®fo &/, then
every Sinteger ink is also anS’-integer ink’. Moreover, we havedg(x1, ..., xy) =

Hg(x1, ..., %n) and [ cg 1F(x1, .., x5l = [lpes 1F (1, ..., xm)llw for every
(x1,...,xn) € O§'. So (1.2) is preserved when we work @h Therefore, for sim-
plicity, we assume that’ = k. By enlargingS if necessary, we may assume that the
coefficients ofL;, 1< j<gq, are inOg. Hence, for(xy, ..., x,) € Of,

I1 (]"[ 1L (x1, ...,xm>||.)) <[TIFGL - xm)
veS \LeLl ves
Thus, (1.2) gives

0< ]_[ (]"[ ||L(x1,...,xm)||[>) SCH{(X1, oy Xm) N (1, ..., ) € 0%, (3.1)

veS \Lel

Choose ar > 0 such that +¢—(m—1)4 > 0. By Theorem 2.1, for every € P"1(k)
with L(x) # 0 for all L € £, we have

(L—e)h(x) < Z(m — 1N, L)+ O(d).
Lel

By the product formula, this is equivalent to

(m=1) ) mx, L)SHLom — 1) = 1+ elh(x) + O (D),
LeLl

where # is the cardinality of the set. This gives

53" log Xl Ehy < - ni_) 7O + O(D). (3.2)

veS LeLl GO
For x € ", we have
h(X) < log Hg(X). (3.3)
Combining (3.2) and (3.3) yields

H.?E(X) i l_[veS nLeﬁ L1y
HUES HLGE LGOI

_1-¢
<CiHg(x)*e= =1,
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whereC; > 0 is a constant. This implies that

m—1
Hg * () <C2 (1"[ I1 ||L<x>||v> :

veS Lel
whereCy > 0 is a constant. By (3.1), this implies that

HEP(x) < Co- "1 HI" DA ().

Hence

H;—;;—(m—l)).(x) < Ca,
where C3 > 0 is a constant. With the choice of ogr 1 —¢— (m — 1)4 > 0. Hence
Hg(x) is bounded. By the Dirichlet—Chevalley—Welunit theorem, there is a8-unit

u such that|jux||, < D,Hs(x)Y#S for v € S, where theD, are constants depending
only onk, S. Thusx is Of-proportional tox’ := u - x, and ||X'[|, is bounded for every
v € M (k). This implies that there are only finitely many possibilities fér Hence up
to Og-proportionality, (1.2) has only finitely many solutionse . This finishes the
proof. [
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