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Abstract

This paper obtains a result on the finiteness of the number of integer solutions to decom-
posable form inequalities. Letk be a number field and letF(X1, ..., Xm) be a non-degenerate
decomposable form with coefficients ink. We prove that, for every finite set of placesS of k
containing the archimedean places ofk, for each real number�< 1

m−1 and for each constant
c >0, the inequality

0<
∏
�∈S

‖F(x1, ..., xm)‖� �cH �
S(x1, ..., xm) in (x1, ..., xm) ∈ OmS . (1)

has only finitely manyO∗
S

-non-proportional solutions.
© 2004 Elsevier Inc. All rights reserved.

Keywords:Decomposable form inequality; Integer solutions; Diophantine approximations; Schmidt’s
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1. Introduction

Let k be a finitely generated (but not necessarily algebraic) extension field ofQ.
Let F(X1, . . . , Xm) be a form (homogeneous polynomial) inm�2 variables with co-
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efficients ink and suppose thatF is decomposable, i.e. it factorizes into linear factors
over some finite extension ofk. Let b ∈ k∗, wherek∗ is the set of non-zero elements
of k, and consider the decomposable form equation

F(x1, . . . , xm) = b in (x1, . . . , xm) ∈ Rm, (1.1)

where R is a subring ofk finitely generated overZ. Equations of this type are of
fundamental importance in the theory of Diophantine equations and have many ap-
plications in algebraic number theory. Important classes of such equations are Thue
equations (whenm = 2), norm form equations, discriminant form equations and index
form equations. The Thue equations are named after A. Thue[Th] who proved, in the
casek = Q, R = Z,m = 2, that if F is a binary form having at least three pairwise
linearly independent linear factors in its factorization over the field of algebraic num-
bers, then (1.1) has only finitely many solutions. Later, Lang[L1] extended Thue’s
result to the general case whenk is a finitely generated extension field ofQ andR is a
subring ofk finitely generated overZ. For the casem�2, after the works of Schmidt,
Schlickewei, Laurent and others (cf.[Sch1,Schli,LA]), Evertse and Györy[EG1] finally
obtained a necessary and sufficient condition for (1.1) to have finitely many solutions,
independently of the choice ofb and R. In Section 3 of[EG1], Evertse and Györy
gave an equivalent form of this condition in the case whereF factors into a product
of linear forms overk. The following is the statement of their result.

Theorem A (Evertse and Györy). Let k be a finitely generated extension field ofQ.
Let F(X1, . . . , Xm) be a decomposable form inm�2 variables with coefficients in k.
Assume that it factors into a product of linear forms over k. Denote byL a maximal
set of linear factors of F which are pairwise linearly independent. Then the following
two statements are equivalent:

(i) For everyb ∈ k∗, the equation

F(x1, . . . , xm) = b in (x1, . . . , xm) ∈ Rm

has only finitely many solutions for every R, a subring of k finitely generated
over Z.

(ii) The subspace(L) of k[X1, . . . , Xm] generated by L has dimension m and that,
for each proper non-empty subsetL1 of L, the intersection(L1)∩(L\L1) contains
a non-zero element ofL.

Note that the condition (ii) is independent of the choice ofL.
The purpose of this paper is to study decomposable form inequalities whenk is

assumed to be a number field. To state our result, we first recall some definitions.
Let k be a number field of degreed. Denote byM (k) the set of places (equivalent

classes of absolute values) ofk and writeM∞(k) for the set of archimedean places of
k. For � ∈ M (k) we choose the normalized absolute value| |� such that| |� = | |
on Q (the standard absolute value) if� is archimedean, whereas for� non-archimedean
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|p|� = p−1 if � lies above the rational primep. Denote byk� the completion ofk with
respect to� and byd� = [k� : Q�] the local degree. We put‖ ‖� = | |d�/d

� . Let S be
a finite subset ofM (k) containingM∞(k). An elementx ∈ k is said to be aS-integer
if ‖x‖� �1 for each� ∈ M (k)\S. Denote byOS the set ofS-integers. The units ofOS

are calledS-units. The set of allS-units forms a multiplicative group which is denoted
by O∗

S . For x = (x1, . . . , xm) ∈ km, we put‖x‖� = max1� i�m ‖xi‖� and we define the

height ofx by H(x) =
∏

�∈M (k)
‖x‖�, and the logarithmic height ofx by h(x) = logH(x).

By the product formula,H(�x) = H(x) for all � ∈ k∗. For x = (x1, . . . , xm) ∈ km,
we also define theS-height asHS(x) =

∏
�∈S

‖x‖�. If x ∈ Om
S \{0}, thenHS(x)�1 and

HS(�x) = HS(x) for all � ∈ O∗
S .

Let k be a number field, and letF(X1, . . . , Xm) be a decomposable form inm�2
variables with coefficients ink. For each finite set of placesS of k containing the
archimedean places ofk, and for given two positive real numbersc and�, we consider
the solutions of the inequality

0 <
∏
�∈S

‖F(x1, . . . , xm)‖� �cH �
S (x1, . . . , xm) in (x1, . . . , xm) ∈ Om

S . (1.2)

If (x1, . . . , xm) is a solution of (1.2), then so is(�x1, . . . , �xm) for every � ∈ O∗
S .

Solution (�x1, . . . , �xm) is said to beO∗
S -proportional to (x1, . . . , xm). To state our

result, we need the following definition.

Definition 1.1. Let k be a number field and letF(X1, . . . , Xm) be a decomposable
form in m�2 variables with coefficients ink. We say thatF is non-degenerate if it
satisfies the following conditions: there exists a finite algebraic extensionk′ of k such
that F factors into a product of linear forms overk′ and if we denote byL a maximal
set of linear factors ofF which are pairwise linearly independent, then the subspace
(L) of k′[X1, . . . , Xm] generated byL over k′ has dimensionm and that, for each
proper non-empty subsetL1 of L, the intersection(L1) ∩ (L\L1) contains a non-zero
element ofL.

Note that the above definition is independent of the choice ofL. The main result of
this paper is as follows.

Theorem 1.1. Let k be a number field and letF(X1, . . . , Xm) be a non-degenerate
decomposable form with coefficients in k. Then, for every finite set of places S of k
containing the archimedean places of k, for each real number� < 1

m−1 and for each
constantc > 0, the inequality

0 <
∏
�∈S

‖F(x1, . . . , xm)‖� �cH �
S (x1, . . . , xm) in (x1, . . . , xm) ∈ Om

S

has only finitely manyO∗
S -non-proportional solutions.
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Theorem 1.1 implies in particular that, for eachb ∈ k∗, the equationF(x1, . . . , xm) =
b has finitely many solutions(x1, . . . , xm) ∈ OSm. Hence, it could be viewed as a
quantitative extension of the result of Evertse and Györy [EG1] in the number field
case. Consider a special case thatk = Q and S = {∞, p1, . . . , ps}, wherep1, . . . , ps
are primes. Recall that in this case,| |∞ is the standard absolute value, while|pi |pi =
p−1
i for i = 1, . . . , s. Further, every solutionx ∈ Om

S of (1.2) is O∗
S -proportional to a

solution (x1, . . . , xm) ∈ Zm with gcd(x1, . . . , xm) = 1 which is unique up to a factor
−1. Moreover, for such a solution(x1, . . . , xm), HS(x1, . . . , xm) = max1� i�m |xi |.
This leads us to the following consequence of Theorem 1.1.

Corollary 1.1. Let F(X1, . . . , Xm) be a decomposable form inm�2 variables with
coefficients inQ. Assume that F is non-degenerate. Then, for each real number� < 1

m−1
and for each constantc > 0, the inequality

0 < |F(x1, . . . , xm)|
s∏
i=1

|F(x1, . . . , xm)|pi �c

(
max

1� i�m
|xi |

)�

has only finitely many solutions(x1, . . . , xm) ∈ Zm with gcd(x1, . . . , xm) = 1.

Important examples of non-degenerate decomposable forms are thoseF(X1, . . . , Xm)

such that degF > 2(m − 1) and that anym linear factors ofF over Q are linearly
independent. In this case, K. Györy and the second author proved a stronger result (cf.
[GR]) as follows.

Theorem B (Györy and Ru). Let k be a number field and letF(X1, . . . , Xm) be a
decomposable form inm�2 variables with coefficients in k. Assume thatdegF >

2(m − 1) and � < degF − 2(m − 1). Assume further that any m linear factors of F
are linearly independent overQ . Then, for each constantc > 0, (1.2)has only finitely
many O∗

S -non-proportional solutions.

Note that, if we take degF = 2(m − 1) + 1 in above, then the condition for�
becomes� < 1. Thus, we conjecture that the condition� < 1

m−1 in Theorem 1.1 could
be improved to� < 1.

2. Generalization of Schmidt’s subspace theorem

In this section, we prove a Schmidt’s subspace-type theorem. In the theorem, we drop
the “in general position” assumption for linear forms appearing in Schmidt’s subspace
theorem, only assuming that they are non-degenerate. Here, the meaning of thata set
of pairwise linearly independent linear forms is non-degenerateis as follows.

Definition 2.1. Let k be a number field. A setL of finitely many pairwise linearly
independent linear forms inn + 1 variables with coefficients ink is said to benon-
degenerateif the subspace(L) of k[X0, . . . , Xn] generated byL has dimensionn+ 1
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and that, for each proper non-empty subsetL1 of L, the intersection(L1) ∩ (L\L1)

contains a non-zero element ofL.

To state our result, we first recall the following statement of Schmidt’s subspace
theorem, due to Vojta (see[V] ).

Schmidt’s Subspace Theorem.Let k be a number field and let S be a finite set of
places of k. Given linear formsL1, . . . , Lq ∈ k[X0, . . . , Xn] in general position, i.e.,
any n+ 1 linear forms among them are linearly independent. Then, for every� > 0,

q∑
j=1

∑
�∈S

log
‖x‖� · ‖Lj‖�

‖Lj (x)‖�
�(n+ 1 + �)h(x) (2.1)

holds for all x ∈ Pn(k) outside a finite union of proper linear subspaces ofPn(k).

Let L ∈ k[X0, . . . , Xn] be a linear form. Define, for everyx ∈ Pn(k) with L(x) �= 0,

m(x, L) =
∑
�∈S

log
‖x‖� · ‖L‖�

‖L(x)‖�

and

N(x, L) =
∑
��∈S

log
‖x‖� · ‖L‖�

‖L(x)‖�
.

Then, by the product formula,

m(x, L)+N(x, L) = h(x)+O(1) (2.2)

holds for all x with L(x) �= 0, whereO(1) is a constant, independent ofx. Hence we
can rewrite (2.1) as

(q − n− 1 − �)h(x)�
q∑

j=1

N(x, Lj )+O(1). (2.3)

We prove the following result which might be interesting in itself.

Theorem 2.1. Let k be a number field and let S be a finite set of places of k. Let L =
{L1, . . . , Lq} be a finite set of pairwise linearly independent linear forms inn+1 vari-
ables with coefficients in k. Assume thatL is non-degenerate. Then, for � > 0, we have,

(1 − �)h(x)�n ·
q∑

j=1

N(x, Lj )+O(1) (2.4)

for everyx ∈ Pn(k) with Lj (x) �= 0 for j = 1, . . . , q.
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Proof. Before proving Theorem 2.1, we first make two observations. First, we have
the following height inequality:

h[z : x1 : · · · , xm : y1 : · · · : yl]�h[z : x1 : · · · : xm] + h[z : y1 : · · · : yl] (2.5)

for z, x1, . . . , xm, y1, . . . , yl ∈ k with z �= 0. To show (2.5), we recall that, for every
[x0 : · · · : xn] ∈ Pn(k),

h([x0 : · · · : xn]) =
∑

�∈M (k)
log max{‖x0‖�, . . . , ‖xn‖�}.

Hence

h([z : x1 : · · · : xm : y1 : · · · : yl]) = h([1 : x1/z : · · · : xm/z : y1/z : · · · : yl/z])
� h([1 : x1/z : · · · : xm/z])

+h([1 : y1/z : · · · : yl/z])
= h([z : x1 : · · · : xm])+ h([z : y1 : · · · : yl]).

This proves (2.5). The second observation is that the non-degeneracy is preserved by
restriction to the linear subspacesV of Pn such that none of the linear forms inL
vanishes identically onV. To show this, letV be a subspace ofPn such that none of
the linear forms inL vanishes identically onV. For a linear formL ∈ L denote byL|V
the restriction ofL to V. Let M be a maximal subset of pairwise linearly independent
linear forms from{L|V : L ∈ L}. Then we claim thatM is non-degenerate. In fact,
since dim(L) = n+1, dim(M) = dim V +1, where dimV is the projective dimension
of V. Next, let M1 be a non-empty proper subset ofM. Let L1 be the set of all
linear formsL ∈ L such thatL|V is proportional to a linear form inM1. SinceL is
non-degenerate, there is a linear formL ∈ (L1)∩ (L\L1)∩ L. Taking restrictions toV
we obtain a non-zero linear form in(M1)∩ (M\M1)∩ M. So M is non-degenerate.

To continue, for a subsetI = {i1, . . . , it } of {1, . . . , q}, we define

PI,x := [Li1(x) : · · · : Lit (x)].

We prove by induction ons the following claim:

Claim. For every s with2�s�n+ 1 there is a subset I of{1, . . . , q} (independent of
x) with rank{Li : i ∈ I }�s such that, for every � > 0, the inequality

(1 − �)h(PI,x)�(s − 1)
q∑

j=1

N(x, Lj )+O(1) (2.6)
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holds for everyx ∈ Pn(k) outside some finite union of proper linear subspaces of
Pn(k).

To prove the Claim, we first settle the cases = 2. SinceL is non-degenerate, there
is a linear relation ∑

i∈I ′
ciLi = 0, (2.7)

whereI ′ is a subset of{1, . . . , q} of cardinality �3 and allci �= 0. By shrinkingI ′ if
needed, we may assume that each proper subset of{Li : i ∈ I ′} is linearly independent.
Further, the set{Li : i ∈ I ′} has rank at least 2. Without loss of generality, we assume
that I ′ = {1, . . . , t + 1}. Let I = {1, . . . , t}. Then {Li : i ∈ I } is linearly independent
and it also has rank at least 2. Applying Schmidt’s subspace theorem to the linear
forms L̃1 = c1X1, . . . , L̃t = ctXt and L̃t+1 = c1X1 + · · · + ctXt in Pt−1(k), we have,
for every � > 0,

(1 − �)h(P )�
t+1∑
l=1

N(P, L̃l) (2.8)

for all P ∈ Pt−1(k) outside a finite union of proper linear subspacesT1, . . . , TM . Since
{Li : i ∈ I } is linearly independent, the pointsx ∈ Pn(k) with PI,x ∈ ∪M

�=1T� is con-
tained in some finite union of proper linear subspaces ofPn(k). Hence, outside some
finite union of proper linear subspaces ofPn(k), we have

(1 − �)h(PI,x)�
t+1∑
l=1

N(PI,x, L̃l). (2.9)

For 1� l� t ,

N(PI,x, L̃l) =
∑
��∈S

log
‖PI,x‖� · ‖cl‖�

‖clLl(x)‖�

�
∑
��∈S

log
‖x‖� · max1� j � t ‖Lj‖�

‖Ll(x)‖�

=
∑
��∈S

log
‖x‖� · ‖Ll‖�

‖Ll(x)‖�
+
∑
��∈S

log
max1� j � t ‖Lj‖�

‖Ll‖�
.

Note that,

log
max1� j � t ‖Lj‖�

‖Ll‖�
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vanishes for all, but finitely many, places�, so

∑
��∈S

log
max1� j � t ‖Lj‖�

‖Ll‖�

is a constant, independent ofx. Therefore, we have, for 1� l� t ,

N(PI,x, L̃l) = N(x, Ll)+O(1), (2.10)

whereO(1) is a constant, independent ofx. Further, by (2.7),ct+1Lt+1(x) = −(c1L1(x)
+ · · · + ctLt (x)). Hence,

N(PI,x, L̃t+1) =
∑
��∈S

log
‖PI,x‖� · ‖L̃t+1‖�

‖L̃t+1(PI,x)‖�

=
∑
��∈S

log
‖PI,x‖� · max1� j � t ‖cj‖�

‖c1L1(x)+ · · · + ctLt (x)‖�

�
∑
��∈S

log
‖x‖� · max1� j � t ‖Lj‖� · max1� j � t ‖cj‖�

‖ct+1Lt+1(x)‖�

=
∑
��∈S

log
‖x‖� · ‖Lt+1‖�

‖Lt+1(x)‖�

+
∑
��∈S

log
max1� j � t ‖Lj‖� · max1� j � t ‖cj‖�

‖Lt+1‖� · ‖ct+1‖�
.

Again, since

log
max1� j � t ‖Lj‖� · max1� j � t ‖cj‖�

‖Lt+1‖� · ‖ct+1‖�

vanishes for all, but finitely many, places�,

∑
��∈S

log
max1� j � t ‖Lj‖� · max1� j � t ‖cj‖�

‖Lt+1‖� · ‖ct+1‖�

is a constant, independent ofx. Hence,

N(PI,x, L̃t+1) = N(x, Lt+1)+O(1). (2.11)
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Combining (2.9)–(2.11), we have,

(1 − �)h(PI,x)�
t+1∑
l=1

N(x, Ll)+O(1)�
q∑

j=1

N(x, Lj )+O(1) (2.12)

for every x ∈ Pn(k) outside some finite union of proper linear subspaces ofPn(k).
Hence the claim is proved fors = 2.

Now, let 2�s�n and assume that the claim holds fors, i.e., a subsetI of {1, . . . , q}
(independent ofx) exists with rank{Li : i ∈ I }�s, such that, for every� > 0, (2.6)
holds for everyx ∈ Pn(k) outside some finite union of proper linear subspaces of
Pn(k). If either rank{Li : i ∈ I } > s or s = n, then the induction step is completed.
So we assume that rank{Li : i ∈ I } = s < n. Let A = {L ∈ L : L ∈ (Li : i ∈ I )},
where (Li : i ∈ I ) is the subspace ofk[X0, . . . , Xn] generated by the linear forms
Li, i ∈ I . A is then a non-empty proper subset ofL. By the non-degeneracy ofL,
there is a linear formLi0 ∈ (A) ∩ (L\A) ∩ L. Then Li0 = ∑

i∈I ciLi for certain
ci ∈ k, while also there is a linearly independent subset{Lj : j ∈ J } of L\A such that
Li0 = ∑

j∈J djLj for certaindj ∈ k with dj �= 0. Notice thatA, J are independent of
x. Sinceh(PI∪{i0},x)�h(PI,x)+O(1) and by the induction hypothesis, for every� > 0,

(1 − �)h(PI,x)�(s − 1)
q∑

j=1

N(x, Lj )+O(1),

holds for everyx ∈ Pn(k) outside some finite union of proper linear subspaces of
Pn(k), we have

(1 − �)h(PI∪{i0},x)�(s − 1)
q∑

j=1

N(x, Lj )+O(1) (2.13)

for all x ∈ Pn(k) outside some finite union of proper linear subspaces ofPn(k). On
the other hand, completely similar to (2.12) we have, for every� > 0, the inequality

(1 − �)h(PJ∪{i0},x)�
q∑

j=1

N(x, Lj )+O(1) (2.14)

for all x ∈ Pn(k) outside some finite union of proper linear subspaces ofPn(k). Now
let Ĩ := {i0}∪I ∪J . Then rank{Li : i ∈ Ĩ }�rank{Li : i ∈ I }+1�s+1 since each form
Lj with j ∈ J is linearly independent of the linear forms inA, hence ofLi, i ∈ I .
Further, by (2.5),

h(P
Ĩ ,x)�h(PI∪{i0},x)+ h(PJ∪{i0},x).
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By combining this with (2.13) and (2.14) we obtain

(1 − �)h(P
Ĩ ,x)�s ·

q∑
j=1

N(x, Lj )+O(1)

for all x ∈ Pn(k) outside some finite union of proper linear subspaces ofPn(k). This
completes the induction step, and thus proves the Claim.

We now continue the proof of Theorem 2.1. LetI be a subset of{1, . . . , q} as in
the Claim with s = n + 1. Then all linear forms inn + 1 variablesX0, . . . , Xn can
be expressed as linear combinations of the linear formsLi(i ∈ I ), so in particular the
forms X0, . . . , Xn. Consequently,h(x)�h(P

Ĩ ,x) + O(1) for x ∈ Pn(k). Fixing � > 0,
by our claim we have

(1 − �)h(x)�n ·
q∑

j=1

N(x, Lj )+O(1) (2.15)

holds for all x ∈ Pn(k) outside some finite union of proper linear subspaces ofPn(k).
We complete the proof of the theorem by induction onn. For n = 0 the theorem is
clearly true. Suppose that the theorem is true for projective spaces of dimension at most
n−1 for somen�1. Consider inequality (2.4) for dimensionn. We know, from (2.15)
that (2.4) holds for allx ∈ Pn(k) outside some finite union of proper linear subspaces
of Pn(k). Let V be one of these exceptional subspaces. Since we only consider those
points x with L(x) �= 0 for every L ∈ L, we only need to consider thoseV such
that none of the linear forms fromL vanishes identically onV. Then, by our second
observation stated in the beginning of the proof thatM is non-degenerate, hence the
induction hypothesis is applicable. So

(1 − �)h(x)� dim(V ) ·
q∑

j=1

N(x, Lj )+O(1)�n ·
q∑

j=1

N(x, Lj )+O(1)

for x ∈ V (k). By applying this to all exceptional subspaces we infer that (2.4) holds
for all x ∈ Pn(k). This completes the proof.�

3. Proof of the main theorem

By the assumption,F is non-degenerate. So there exits a finite algebraic extension
k′ of k such that

F(X1, . . . , Xm) = L1(X1, . . . , Xm) · · ·Lq(X1, . . . , Xm),
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whereL1, . . . , Lq ∈ k′[X1, . . . , Xm] are linear forms and if we denote byL a maximal
set of linear factors ofF which are pairwise linearly independent overk′, then L is
non-degenerate. LetS′ ⊂ M (k′) consist of the extension of the places ofS to k′, then
everyS-integer ink is also anS′-integer ink′. Moreover, we haveHS(x1, . . . , xm) =
HS′(x1, . . . , xm) and

∏
�∈S ‖F(x1, . . . , xm)‖� = ∏

w∈S′ ‖F(x1, . . . , xm)‖w for every
(x1, . . . , xm) ∈ Om

S . So (1.2) is preserved when we work onk′. Therefore, for sim-
plicity, we assume thatk′ = k. By enlargingS if necessary, we may assume that the
coefficients ofLj ,1�j�q, are inOS . Hence, for(x1, . . . , xm) ∈ Om

S ,

∏
�∈S

(∏
L∈L

‖L(x1, . . . , xm)‖�

)
�
∏
�∈S

‖F(x1, . . . , xm)‖�.

Thus, (1.2) gives

0 <
∏
�∈S

(∏
L∈L

‖L(x1, . . . , xm)‖�

)
�cH �

S (x1, . . . , xm) in (x1, . . . , xm) ∈ Om
S . (3.1)

Choose an� > 0 such that 1−�−(m−1)� > 0. By Theorem 2.1, for everyx ∈ Pm−1(k)

with L(x) �= 0 for all L ∈ L, we have

(1 − �)h(x)�
∑
L∈L

(m− 1)N(x, L)+O(1).

By the product formula, this is equivalent to

(m− 1)
∑
L∈L

m(x, L)�[#L(m− 1)− 1 + �]h(x)+O(1),

where #L is the cardinality of the setL. This gives

∑
�∈S

∑
L∈L

log
‖x‖� · ‖L‖�

‖L(x)‖�
�
(

#L − 1 − �

m− 1

)
h(x)+O(1). (3.2)

For x ∈ Om
S , we have

h(x)� log HS(x). (3.3)

Combining (3.2) and (3.3) yields

H #L
S (x) ·∏�∈S

∏
L∈L ‖L‖�∏

�∈S
∏

L∈L ‖L(x)‖�
�C1HS(x)

#L− 1−�
m−1 ,



Z. Chen, M. Ru / Journal of Number Theory 115 (2005) 58–70 69

whereC1 > 0 is a constant. This implies that

H 1−�
S (x)�C2

(∏
�∈S

∏
L∈L

‖L(x)‖�

)m−1

,

whereC2 > 0 is a constant. By (3.1), this implies that

H 1−�
S (x) < C2 · cm−1 ·H(m−1)�

S (x).

Hence

H
1−�−(m−1)�
S (x) < C3,

whereC3 > 0 is a constant. With the choice of our�, 1 − � − (m − 1)� > 0. Hence
HS(x) is bounded. By the Dirichlet–Chevalley–WeilS-unit theorem, there is anS-unit
u such that‖ux‖� �D�HS(x)1/#S for � ∈ S, where theD� are constants depending
only on k, S. Thusx is O∗

S -proportional tox′ := u · x, and‖x′‖� is bounded for every
� ∈ M (k). This implies that there are only finitely many possibilities forx′. Hence up
to O∗

S -proportionality, (1.2) has only finitely many solutionsx ∈ Om
S . This finishes the

proof. �
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