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1. Introduction and statement of results

The Riemann zeta function has but one simple pole, at s =1 in the complex plane [10,21,24]. In
the Laurent series about that point,

1 DRy K
“5)—5_1+1§ G (11)

Yk are called the Stieltjes constants [5-7,13,15,18-20,23,25,26], where Yo = y, the Euler constant.
These constants have many uses in analytic number theory, asymptotic analysis, and elsewhere.
Among other applications, estimates for y, may be used to determine a zero-free region of the zeta
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function near the real axis in the critical strip 0 < Res < 1. The Stieltjes constants can be related to
sums over the zeta function complex zeros, as well as to the Li/Keiper constants (e.g., [9]).

The Hurwitz zeta function ¢(s,a) may also be analytically continued to the whole complex
plane C/{1}. It has the Laurent expansion

1l @y
é(s,a)—s_1+k§ DS s#L (12)

Again ¢(s,a) has a simple pole at s =1 with residue 1. By convention, one takes yi(1) = yx [17].
Earlier studies of y4(a) include [3,27], with the latter reference giving integral representations. In this
paper, we are concerned with certain series representations of the constants yy(a).

We let P1(x) = B1(x — [x]) =x — [x] — 1/2 be the first periodized Bernoulli polynomial, and {x} =
X — [x] be the fractional part of x. Addison [2] gave an interesting series representation for y [11],

1 1 0o 21 1 1 0o 2n 1
——4+-%"n =1--%"n a3
y=3+32. 2m(m+ 1H)2m + 1) 2 2. mam—n: 3
n=1 m=2n-1 n=1 m=2n-141

His approach uses an integral representation for the zeta function in terms of P1. We note that various
transformations of Addison’s result are possible [4,11,22]. In this paper, we describe several general-
izations of Addison’s result. We indicate how a family of summation representations for y; may be
obtained. Representative in this regard are the first two propositions and their proofs.

We let v = I''/I" be the digamma function [1], and H, = Z'Z,:] 1/p the nth harmonic number.
We have Hy =y (n+ 1) + y, with y = —¢(1).

Proposition 1. We have

oo 211 .
1 . G-—1 In2 Inm In(m+1/2) In(m+1)
(@) _VI_Z;’ 22;_1[ 2 mmahem+h  m | 2m+1 | m+1 ]
(1.4)
and
13 ¥ (=13 1 1
b =5 _
®) n 3122;1 23;_1= 2 [m(3m+1) (m+1)(3m+2)]
_Inm  3In(m+1/3)  3In@m+2/3) In(m+ 1)} s)
m 3m+1 3m+2 m+1 | ’

Proposition 2. Let k > 2 be an integer. Then we have

oo ki-1

) 2km +k+1 G-1
—yi=>J Y {[m+w(lcm)—w(km+lc)]<1+ 5 lnk)

=1 m=kj-1

k 1 ,
1 1\ -D[1+nm+5L)  14+Inm+5
_k;[5<1_§>_ k M km+¢—1  km+¢ “ (1.6)
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Alternatively, on the right side we may write the difference

k—1

W km) — yr(km 4+ k) =— "

p=0

1

—— =Hgp_1—H 1. 1.7
mk+p km—1 km-+k—1 ( )

Series representations that generalize Addison’s approach may also be obtained for yi(a). As an
illustration, we have

Proposition 3. Let Rea > 0. We have

(a) (a) = lna+1+1§:1§: b
nlw) = 20" 4444 2 @+b)@+b+b)2a+b+2b) |,
=—¥(a), (1.8)
and
Ina Ina 1 > [ln@+bj) In(@+b+bj)
b = - 4+ = 27Y
(b) no=-r-73 +4Z Z[ a+bj a+b+bj
v=0 Jj=0
| b(j+1/2
_4Inla+bG+ /. )] . (19)
2a+b+2bj |-
Part (a) is a known result [26]. However, we obtain it in a different way.
From Proposition 3(b) we obtain
Corollary 1. We have
1 2
- 3 =2yIn2+41In“2 —y. (1.10)

From the proof of Proposition 3(a) we obtain

Corollary 2. An integral representation corresponding to the Addison series (1.3) is given by

1 1 p 1 ad
— X n_q
y=—+—/< )Zx dx. (111)
2 20 1+x -

Our next proposition generalizes Lemma 2.5 of [4]. We have

Proposition 4. For any integer n > 1, we have
1

n 1 > 1 «
(a) Y24y = _/< - — )Z[klnnﬁn(ln(—))]x’1 Ty, (112)
, 1—X 1—x P X




2052 M.W. Coffey / Journal of Number Theory 130 (2010) 2049-2064

(b) and for Rea > 0, we have
1

lna—l/f(a)zlna+)/0(a):/<w 1_X>Zx“”k_1dx, (113)
0

k=1

yIna +3 ln a—yy(a + yi(a

1
ad 1 k
- — klnn-l—ln(ln(f))}x“" —Tdx, (1.14)
0/(1 —X 1 —x) ;[ X

k

2 2
(y +—>lna+yln a+;l <)/ + )w(a)—|—2yy1(a)+yz(a)

1 o0
1 1 k
_ 2 112 - 2 - an®—1
/(1 — 1—x> Z][k In n+2klnnln(ln<x>> + In (ln(x>>]x dx.
o —

k

(1.15)

Our last proposition generalizes relation (2.87) of [8] for . We introduce the constants [8, Propo-
sition 11]

(=D sk, n)

1
1
pn+1=—m/<—x)ndx= > ; e (1.16)
J -

where (2), = I'(z+n)/I"(z) is the Pochhammer symbol and s(k, ¢) is the Stirling number of the first
kind. Then we have

Proposition 5. Let Rea > 0. Then we have

(a) Ina— ¢ (a)=Ina+ yp(a) = Z(n l)‘i";ﬂ (117)
and .
1., R - o k(n—T1\Ink+a)
(b) 5n a+y1(a>_§pn+12< 1) ( ; )—(kﬂ) : (118)

From part (a) of this proposition we obtain the following, where ;F; is the Gauss hypergeometric
function. We have

Corollary 3. For Rea > 0 we have the representation

2F1(1 11+ a;v) dv.

119
[n?(5Y) + 2] v (L9

Ina+ yo(a) = ! /
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Recent analytic results for the Stieltjes constants may be found in [7,8], and a convenient and
computationally effective asymptotic form in [16]. The work [8] includes an addition formula for the
constants together with series representations. Although the Stieltjes constants have been investigated
for approximately a century, many open questions concerning them remain, especially including char-
acterizing their arithmetic properties.

We recall some relations useful in the following.

From the representation (cf. e.g., [24, p. 14]),

e¢]
1 1
o(s) = — 5" s/x‘“’“”ﬁ(x) dx, Res>1, (1.20)
1
we obtain
™ (5) = et (-1)"n [P "' xdx — (—1)"s [P In" xdx (1.21)
¢ - (s — 1)n+1 xst1 xs+1 ' :
1 1
From (1.1) we have
lim| ™ (s) — Dt (=D)"¥x. (1.22)
s—>1 (s — 1+l
Eq. (1.20) extends to
_e [P dx, R 1 123
;(s,a)—T—i-s_]— PEsCs x, Res> —1. (1.23)
0

We have the connection to differences of logarithmic sums

® rnd + In/ +b .
yj(a)—yj(b)ZZ[ nn(r—lHIG) _ rln(T:_b ):|, =1,

n=0

(1.24)

where a,b e C/{—1,-2,...}.
2. Proof of propositions

Proof of Proposition 1. (a) We have from (1.20) and (1.21) the integral representation (cf. [14, p. 5])
forn>1

® n—1
Yn= / P1(%) logX2 % (n— logx)dx. (2.1)
1
We let f(x) =—P1(x) and put [2]
1
8200 =f(x) — Ef (2x), (2.2)

so that g, is the rectangular function
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20 =1/4, 0<{x} <1/2,

=-1/4, 1/2<{x}<1. (23)
We have from (2.2)
on on 211+1
ZgZ( i _Z[f( al f(2n+1X)] = f(x). (2.4)

Therefore, from (2.1) we obtain the representation

=1 oog (2Vx)
yn=_Z—f sz In""'x(n — Inx) dx

=3 [ By y)ay, 5)

. j+1
with the change of variable y = 2Vx. We write the integral over y as jzo,,o dy = Z‘J’iv fZZjH dy and then
interchange the resulting double sum in (2.5). Therefore, we obtain

. 2]+1
sz 8200 111 (- y) [ — In(27 )] dy. (26)
j=0v= 02
We now specialize to n = 1:
. 2]+l
0
j=0v= 0

2i+1

J
Z/ gz(Y)[l—f—van Inyldy

Mg

j=0v
2]+1
__Z( +1)/ gzm[ +%1n2—lny]dy. 2.7)
We then use the integral

m+1 m+1/2 m+1 |

n
VL
m m+1/2

(2.8)

_1[1+Inm 41 +Inim+1/2))  1+Inim+1)
T4 m 2m+1 m+1 ’
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We find

18, 2 1+ 5 in2 1+Inm  4(1+In(m+1/2)) ]+ln(m+])]

_”:Z;J%:l[m(mﬁ)(zmﬁ)_ m 2m+ 1 T mt
eyl

(2.9)
With the use of partial fractions on the first term on the right side of this equation, we obtain the

form (1.4).
For part (b), we proceed similarly, employing the function

1
G0 =0 —-3fBY=1/3, 0<(¥<1/3,
=0, 1/3<{x}<2/3,
=—1/3, 2/3<{x) <1, (2.10)

so that 302 g3(3 X — f(x). We use the integrals

m+1 m+1/3  m41
/g3(Y)dy_l / ~ / dy

y: 73 y?
m

m m+2/3

=l[ 1 1 ] (211a)
3 mGm+ 1) m+HGm+2)

and

m m+2/3

1|:1 +Inm _3a +In(m + 1/3))
BE]

m 3m+1

~3a +Inm+2/3)) 1+In(m+ 1)]

(2.11b)
3m+2 m+1

Again, an application of partial fractions gives the final form (1.5). O

Proof of Proposition 2. Proposition 1 is further extended with the use of functions for integers k > 2

1
gkx) = f(x) — Ef(kx), (212)

with Y02 g"g(k" X = f(x). Since f is periodic, g is also periodic of period 1. From the expression

—1 1 L 1/ 213
gk(")—z( _E>+E{<X}_{x}’ (2.13)
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we obtain the values of gi(x) on subintervals [j%, ,{) for j=1,2,...,k. We have

1 1 (-1 j=1j
gk(x)_z(l—E)— T xe[ X ’E)‘ (2.14)

This enables the development of summation expressions for any y;, as a result of integrations over a
function gy (x). We have from (2.1)

o0
Zlv/gk(k x)] "1 x(n — Inx) dx

o0

=— Z/ % ln"_1(k_"y)[n —In(k"y)]dy
v OkV
RS
2 gk(y)
=23 [ AW ) - infe )y, (215)
j=0v=0 ki

So at n =1 we obtain

]<J+1

V1= ZZ/ gk(y) [1=In(k""y)]dy

j=0v=f Ok
. kit+1 )

:Z(j—i—l)/ g’;fzy)[l—i—%lnk—lny}dy. (2.16)
=0

ki

Now using the piecewise values in (2.14), we have

m+1 o) K ) ! -1 m+£/k J
Ek(y _ 1 R T _y
/ y2 dy_2[2<1 k) k :| / y2
m =1 m-+(6—1)/k
[ 1 ) - 1)} k
_Z < k (km+ &) (km+£—1)
2km+ k1 ) — v km ). (217)

= 2km(m+ 1)
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We also have

m+1 m-+£/k

k
&) 1 1 -1 / dy
Inyd —\1-=)- 1
fy “”ZH k) k} My
m t=1 m+-(e—1)/k
_2": 1,1\ _(=D][1+nem+ Y 1+InGm+f
&2 k k km+ ¢ — 1 km + ¢
(2.18)
combining (2.16), (2.17), and (2.18), we arrive at the proposition. O
Proof of Proposition 3. (a) From (1.13) and (1.2) we have
lim| (s, a) ol Ina+ - [P (2.19)
i ,a) — =— — — .
s—1 ¢ -1 2a (x+a)?
0
so that
L
X
=-1 — 2.20
vo@=—Ina+ -+ a2 (2.20)
0
Using the functions g of (2.12) we have
x oo
f [0 - 1/gk(k X)
x=) —
(X + a)? kv ) (x+a)?
v=0 0
00 AR
1 gk(y)
= — ——dy. 2.21
Zk ”Z/ &ry+a?? (221
v=0 Jj= §
We now specialize to k =2 and obtain
[ Jj+1
f) 1 + / £2(y)
dx = —
/(x+a>2 =2 w2 | Gy ®
v=0 j=0 i
j+1/2 j+1
11 & dy
_ZZFZ< / - )(Z—Vy+a)2
v=0 =0 G g

Iy ls b
T 4Ly = (@+bj)(@+b+bj)2a+b+2bj) |

1 2a+b a a+b
"4 Z[ZW( 2b ) B Ip(E) B W<T)]b=2*v' (2:22)
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We now apply the functional equation and duplication formula for the digamma function:

[ f® 1 2a+b a\ b
x+a)? *=3 _0[21/,< 2b > - 2¢<E> - E]b=2v
; —
1 a 1 a 1
=2/ (5+2) ()],
s 2a a 1
= Z['”(F) - W(g) - 1n2]b=27u — o (2.23)

1 v v
i " 2a - a —In2 — lim : /wdt_lnz
v=0 b b =2 70T t=1
= =0L 9
! (ta2T+171 a1y
= lim |:f—dt—(T+1)1H2i|
T—o0 t—1
0

= Tlim [v(a2™") — ¢ (a) — (T + 1) In2]

=—y(a) +Ina, (2.24)

where the above interchange of summation and integration is justified by absolute convergence of the
integral, and where in the last step we applied the large argument asymptotic form for v [1, p. 259].
Therefore, from (2.20), (2.23), and (2.24), we find (1.8).

(b) Using (1.23) and (1.2) we have

lim|¢'(s,a) +a'~* ! +_lna
s—>]{ ’ s—1% s-1

o0
Ina Ina P1(x)
0
giving
In?a Ina T P1(x)
yi@=———+ [1—In(x+a)]dx. (2.26)

2 2a x+a)?
0

With k=2 in (2.12) we have
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_ (:jr(gz [1-In(x+a)]dx
0
o0 1 o0 j+l ( )
_ L &2y _ v
_12)41)]:2(:)/- v +a)2[1 11‘1(2 Y+a)]dy
J
(X > J+1/2 0 jt ;
LA _ T y
_4Z4vz< / /)[1 In(2 y+a)]7(2,vy+a)z. (2.27)

v=0 =08 5
We then carry out the integrations and simplify. Using (2.25) completes part (b). O

Proof of Corollary 1. We put a =1/2 in (1.9) and manipulate the resulting series to write

y1(1/2)+1n2+ In?2

_ In(1/2) i1 1 1 2
T4 VX_;: j_201+2*"+1j+1+2*"+1(j+1) 142701 +1/2)

+122_Uz[ln(1 +bj) In[14+b(+1)] _zln[l +b(j+1/2)]]
b=2—"

& 1+ 1+b(+1) 1+b(j+1/2)

(2.28)

’Z[ln(Hz]) In[1+2( +1)] _zln[1+2(j+1/2)]}
1+2j 1+2(+1) 14+2(+1/2) |

By the method of (2.23)-(2.24), the first line on the right side of this equation has the value
—In2(y +1n2 —1). From Proposition 3(b) at a =1, the second line on the right side of (2.28) is y1.
The following evaluates the third line of the right side of (2.28).

Lemma 1. We have

i[ln(l—i—Z]) In[1+2(j+ 1] __In1 +2(j+1/2)]}
1+2j 1+2(G+1) 142 +1/2)

o

_ %[m(]) )/1] +n?2. (2.29)

1 i[ln[zm Y21 IRG+3/2]InRG+ 1)1]
4 j+1/2 j+3/2 j+1

Proof. We write

=0

ln2 1 1 2
4 iz —|—1/2 j+3/2 j+1

+ %[)’1 (%) -"+n <§> - J/l], (2.30)
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where we used (1.24) at j = 1. Then the sum of (2.30) is given by

N2 o2 —1)+ Nin(3) -2
D) 2 14! 3 14! 2 14!
_2 a1yl (1 +1n2
=5 D) 14! 3 14!
17 /1 ,
—5[7/1<§> —y1]+ln 2. (2.31)

In obtaining this result we have used y(a+ 1) = v (a) — (ln" a)/a, that follows easily from the series
form of ¢(s,a), at k=1.
Then combining the terms on the left and right sides of (2.28) yields (1.10). O

Proof of Corollary 2. We have, by applying for instance Theorem 2.2 of [4],

1
1—x 1
Pdx=———+H — Hp— , R —1. 2.32
/<1+X>X X p+l+ /2 (-1/2. Rep> (2.32)

Then, with the interchange of the summation and integration justified by the absolute convergence of
the integral, we have

n=1 n=1

/(1 +x> ZXZ “ldx=-1+ Z[Hp/Z — Hp_12lp=on_1, (2.33)
0

giving

n= n=1

1
1 1 [(1-x Z°° 21 _12‘” p+1\ (p
5+5/<1+x> 1X dx-z [W( 2 ) w<2+1>i|p=2”—1. (234
0

By the method of (2.22)-(2.24), the corollary follows. O

Proof of Proposition 4. Part (a) is based upon the integral

1
/<i+ ! >1n5<%>dx:1“(s)[s§(s+1)—1], Res > —1. (2.35)
0

Inx  1-—x

This equation follows easily by term-by-term integration, as we have

1 1 1
/( >1n5<1>dx=/ln(l/x)dx+ /xfln( )
Inx 1-—x X Inx
0 0 00

—F(s)+F(s+1)Z




M.W. Coffey / Journal of Number Theory 130 (2010) 2049-2064 2061
where we used the change of variable u = —Inx. We apply Lemma 2.4 of [4] that we write in the
following form. For any integer n > 1 and Rex > 0, we have

1 ])x(] ])/n
— = Z (2.37)
Inx le Zn 1XJ/nk
We then proceed as in the proof of Lemma 2.5 of [4] to find
1 1 N
- In®( - kX" lax. (238
[t o) (@)= [ (- 75)w () % 23
0 0 k=1
We perform -[s—o on (2.35) and (2.38), and (1.12) follows.
Part (b) is based upon the integral
1
1 1 a-1y.s( 1 —S
— + X = Jdx=T(s)[s¢(s +1,a) —a™*],
Inx  1-—x X
0
Res > —1, Rea > 0. (2.39)
Using Lemma 2.4 of [4] we find
/ 1
/ un*( - ) du
lnu 1—-u u
0
1 1 1) —
n k
= - In*( = nksxam =1 gx. 2.40
/(1—x” l—x) <x>k2:' ( )
4 —

Taking s = 0 in (2.38) and (2.39) gives (1.13). Performing (%)f|5=0. j=1,2 on (2.39) and (2.40),

respectively gives (1.14) and (1.15). O

Proof of Proposition 5. We employ the generating function [8, (2.78)]

> 1 1
A g —, |zl <1,
X_jpw S tha—g A<

so that by (2.39) we have

1

refsss+10-a7]= 112:; Pn41 /xa_1 (1—x""n’ (%) dx.

0

(2.41)

(2.42)
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For part (a), we take s =0 in this equation and evaluate the integral using the beta function. For
part (b), we differentiate both sides of (2.42) with respect to s and put s = 0. We find

1
1 > 1
—ylIna-— 3 Infa+yy@) —yi@) = an+1 /x“‘l(l —x)1 ln(ln(;)) dx.  (2.43)

n=1 0

By logarithmic differentiation we obtain the integral for Res > —1

1
e sf 1 1 _ T(s+1) B
/x In <;>ln(ln<;>>dx_ eyl [V(s+1) —Ink+1)], (2.44)
0
giving at s=0
1
/xkln<ln<1)>dx——w (2.45)
X o k+1 ’ ’
0

Then by binomial expansion we have

1

a1 n-1 k(M—1\[y +Ink+a)]
/x 1-x) ln(ln( )) Z( 1)< " )T

0
_ n—-1)! — 1\ In(k + a)
=@ _kZ( 1)( B >7k+a . (2.46)

By using (2.43) and (1.17) we find (1.18).
For Corollary 3 we apply the integral representation (2.85) of [8] for p,1, so that by (1.17)

du
(A +uwn(n®u +72)

n=1

Ina+ yo(@) = Z (n(a—)l)! /‘
0

1 1 1 1
:_/ 3 2F1l 1, ;1 +a; du. O (2.47)
a) (Infu+x2) (1+uw 1+u
0

Remarks. From (2.6) we have for n > 1

2J+1

oo n—1

L Zi / £0)

2
; y
j=0v=0 2

-1
(n ‘ )(—v In2) In"*'y[n+vin2 — Inyldy, (2.48)
=0
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and more generally from (2.15) for k > 2 we have

k]+1

—Yp = Z Z / &) S Z ( >(—vlnk)z " 1ym+vink —Iny]dy. (2.49)

]0\)0

With (2.20) and (1.8) we have recovered a known integral representation for InI" or the
polygamma functions @) in terms of Py (e.g., [10, Section 6.3]). However, our route has been very
different from say the use of Euler-Maclaurin summation.

The result (1.10) also follows from the relation ¢ (s, 1/2) = (2° — 1)¢(s). The method of Corollary 1
shows an instance of the functional relation contained in (1.9).

In Proposition 5(a), when a =1, we have (1), =n!, and we recover (2.87) of [8]. Other forms of
part (b) may be written by using the integral representation

n—1 _ 1 _ a—1
Z(-l)"(” 1 1)“"8‘—“) :_/[u ~Y R —n1+a u)}d—”‘ (2.50)
prd k +a ) (a)n a Inu

This expression has been obtained by inserting an integral representation for In on the left side,
interchanging summation and integration, and making a change of variable.

We note that representations of other constants may be obtained from Lemma 2.4 of [4]. We let
li(z) = foz dt/Int be the logarithmic integral. Then we have

Corollary 4. For any integer n > 1 we have

y oo
n 1 k
—In(1 — li(y) = - X" Tdx. 2.51
(1= y) +1i(y) /(1_XH 1_X)Z (2551)
0 k=1
Our results for y also imply representations for the coefficients 7; that appear in the Laurent
expansion of ¢’/¢ about s =1 (e.g., [9]). As an example, we have 11 = y2 + 2y1.

3. Summary

We have shown that the method of Addison may be generalized in several directions. It applies
not only to the Euler constant y, but to the Stieltjes constants )} for the Riemann zeta function. It
further extends to y4(a) for the Hurwitz zeta function. Moreover, one may develop a set of param-
eterized series representations by using the step-wise functions gi(x). On yet a broader scale, the
series developments are applicable any time the first periodic Bernoulli polynomial Pq is integrated,
including in numerous occurrences of Euler-Maclaurin summation.

With Proposition 4, we have generalized representations of y given by Ramanujan and Berndt and
Bowman [4].
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