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Text. We introduce the notion of Drinfeld modular forms with
A-expansions, where instead of the usual Fourier expansion in tn

(t being the uniformizer at ‘infinity’), parametrized by n ∈ N, we
look at expansions in ta , parametrized by a ∈ A = Fq[T ]. We con-
struct an infinite family of eigenforms with A-expansions. Drinfeld
modular forms with A-expansions have many desirable properties
that allow us to explicitly compute the Hecke action. The appli-
cations of our results include: (i) various congruences between
Drinfeld eigenforms; (ii) the computation of the eigensystems of
Drinfeld modular forms with A-expansions; (iii) examples of fail-
ure of multiplicity one result, as well as a restrictive multiplicity
one result for Drinfeld modular forms with A-expansions; (iv) ex-
amples of eigenforms that can be represented as ‘non-trivial’ prod-
ucts of eigenforms; (v) an extension of a result of Böckle and
Pink concerning the Hecke properties of the space of cuspidal
modulo double-cuspidal forms for Γ1(T ) to the groups GL2(Fq[T ])
and Γ0(T ).

Video. For a video summary of this paper, please click here or
visit http://www.youtube.com/watch?v=GCE_rN0gI9I.

© 2013 Elsevier Inc. All rights reserved.

1. Introduction

Drinfeld modular forms are certain analogues of classical modular forms that were first introduced
by Goss in [7,8]. Drinfeld modular forms have many properties that are similar to classical modular
forms. However, there are several important differences that to this day make the theory of Drinfeld
modular forms less understood in comparison to the classical theory. Arguably the most significant
differences are: the apparent disconnect between the coefficients in the expansions at ‘infinity’ on
one hand, and the Hecke operators and eigenvalues on the other (the first indexed by the natural
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numbers, while the latter is indexed by the monic univariate polynomials over a finite field); the lack
of transparent arithmetic significance of the coefficients due to that disconnect; the lack of diagonal-
izability of the Hecke action; and the lack of multiplicity one property (if we assume that the notion
of multiplicity one remains the same as in the classical case).

In the present work, we aim to address the points above by considering the concept of Drinfeld
modular forms with A-expansions. Such forms have many desirable properties with respect to the
Hecke algebra because the Hecke action on an A-expansion is easily computable.

Before we introduce Drinfeld modular forms with A-expansions, we need to recall some notation
from [6]. Let p be a rational prime and q = pe . Let A = Fq[T ] be the ring of univariate polynomials
over Fq , A+ be the set of monic elements of A, K the fraction field of A, K∞ the completion of
K with respect to the valuation coming from 1/T , and let C∞ be the completion of the algebraic
closure of K∞ . Let ρ stand for the Carlitz module. We denote by eπ̃ A the Carlitz exponential and by
π̃ a fixed choice for a period of the Carlitz module. If Λ is a lattice, then its nth Goss polynomial will
be denoted by Gn,Λ(X). A primed sum

∑′ will denote that 0 is omitted from the set over which we
are summing.

The Drinfeld upper half-plane Ω is the set C∞\K∞ with its rigid-analytic structure as described
in [8, Proposition 1.65]. The ‘imaginary distance’ |z|i of any z ∈ Ω is defined to be infx∈K∞ |z − x|. If
c is in the value group of C∞ , then we let Ωc = {z ∈ Ω: |z|i � c}. The set Ωc is an admissible open
subset of Ω and such sets cover Ω (see [8, Proposition 1.65]).

Given k ∈ N, an integer m, 0 � m � q − 1, and a congruence subgroup Γ ⊂ GL2(A), we let Mk,m(Γ )

denote the space of Drinfeld modular forms for Γ of weight k and type m. The subspaces of Mk,m(Γ )

that consist of cuspidal and double-cuspidal Drinfeld modular forms will be denoted by Sk,m(Γ ) and
S2

k,m(Γ ), respectively. Every f ∈ Mk,m(GL2(A)) has a power series expansion in t := t(z) = 1/eπ̃ A(π̃ z):

f (z) =
∞∑

n=0

antn, an ∈C∞.

The expression on the right-hand side only converges for z in a neighborhood of ‘infinity’ (i.e., there
exists a real number c � 1 such that the right-hand side converges for z ∈ Ωc), but it determines f
uniquely for any z. The reader is warned that unlike [6] we will normalize Drinfeld modular forms so
that ai0 = 1, i0 = min{n: an �= 0}. The only exception will be Section 3.3. Given a ∈ A+ of degree d,
we let ta := t(az). One can show (see [6, (6.2)]) that ta can be expanded in a power series in t:

ta = tqd

ρa(t−1)tqd
= tqd

1 + · · · = tqd + · · · .

We define Gn(X) to be the multiple of Gn,π̃ A(X) which has 1 as its first non-zero coefficient. Property
(iv) in [6, (3.4)] shows that X | Gn(X) for any positive n.

Consider the formal series indexed by A+∑
a∈A+

caGn(ta) ∈C∞[[t]],

where ca ∈ C∞ . If |ca| has polynomial growth in |a| for all but finitely many a ∈ A+ , then the series
converges to a well-defined function on {z ∈ Ω: |z|i > 1}. Indeed, for such z, Lemma (5.5) from [6]
shows that |t| = |t(z)| � q−|z|i . But then X | Gn(X) implies that

∣∣Gn(ta)
∣∣ � |ta| = |t||a| � q−|a||z|i < q−|a|.

Therefore if |ca| has polynomial growth in |a|, then for z with |z|i > 1
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lim|a|→∞
∣∣caGn(ta)

∣∣ → 0,

and ∑
a∈A+

caGn(ta) =
∑

a∈A+
caGn

(
t(az)

)
converges. Such series are the main topic of this paper:

Definition 1.1. A modular form f ∈ Mk,m(GL2(A)) is said to have an A-expansion if there exist a
positive integer n and coefficients c0( f ), ca( f ) ∈C∞ such that

f = c0( f ) +
∑

a∈A+
ca( f )Gn(ta).

Here the equality above is meant as an equality in C∞[[t]] between the t-expansion of f on the
left side and the expression on the right side. As we have already remarked, if |ca( f )| grows at a
rate polynomial in |a|, then this equality shows that f and the series indexed by A+ agree as rigid-
analytic functions on some admissible set Ωc . We will call the integer n an A-exponent of f and the
number ca = ca( f ) the ath coefficient of f . Since t | Gn(ta) for any n ∈ N, a ∈ A+ , if f ∈ Sk,m(GL2(A)),
then c0( f ) = 0. Theorem 2.2 below will show that if we fix the A-exponent n, then the A-expansion
is unique.

Remark 1.2. Since

Gn

(
ta

([
θ 0
0 1

]
z

))
= Gn

(
ta(θ z)

) = θ−nGn
(
ta(z)

)
it is easy to see that if f is a Drinfeld modular form of type m with an A-expansion with exponent n,
then n ≡ m mod (q − 1). We will show that if f is a simultaneous eigenform, then the A-exponent n
of f is unique. This will follow from our multiplicity one result for forms with A-expansions (Theo-
rem 2.6). For a general Drinfeld modular form f with A-expansion we do not know, but we strongly
suspect, that the A-exponent n is unique.

Examples of such forms have been known to Goss in the form of Eisenstein series, which until
recently appeared to be the only examples. In a recent paper [11], López showed two additional
examples of Drinfeld modular forms with A-expansions. We prove that there are infinitely many
examples of cuspidal Drinfeld eigenforms with A-expansions.

Theorem 1.3. Let k,n be two positive integers such that k − 2n is a positive multiple of (q − 1) and n �
pvalp(k−n) , where valp is the p-adic valuation. Then

fk,n :=
∑

a∈A+
ak−nGn(ta)

is an element of Sk,m(GL2(A)), where m ≡ n mod (q − 1).

We will prove this result in Section 4. We do not know of examples of cuspidal Drinfeld modular
forms with A-expansions other than the ones obtained from Theorem 1.3. Example 2.7 will show that
there are cuspidal Drinfeld modular forms, indeed eigenforms, which do not have A-expansions.
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Remark 1.4. The condition n � pvalp(k−n) is equivalent to the condition that the p digit expansions of
k and n agree up to the 	logp(n)
th digit.

Properties of A-expansions (Theorem 2.3 below) show that the form fk,n is an eigenform with
eigensystem {λp = ℘n}. Therefore, Theorem 1.3 produces infinitely many examples of cuspidal Hecke
eigenforms with explicit eigensystems. Theorem 1.3 has other important consequences:

• it shows that the space of single-cuspidal modulo double-cuspidal Drinfeld modular forms is
parametrized by forms with A-expansions for Γ = GL2(A),Γ1(T ),Γ0(T ) (Theorem 3.2, Exam-
ple 3.3, Theorem 3.4, respectively);

• it provides examples of ‘non-trivial’ congruences between eigenforms (Theorem 3.10);
• it suggests interesting eigenproduct identities (Remark 3.19 and Theorem 3.17) in the case of

Drinfeld modular forms.

2. Properties of Drinfeld modular forms with A-expansions

Before we turn to the proof of Theorem 1.3, we discuss the properties of Drinfeld modular forms
with A-expansions that make them so useful.

Drinfeld modular forms with A-expansions were among the first concrete examples of Drinfeld
modular forms considered by Goss [8, Section 2]:

Example 2.1 (Eisenstein series). Let k be a positive integer and consider the (non-normalized) Eisenstein
series:

Ek(z) := 1

π̃k

∑′

(a,b)∈A2

1

(az + b)k
=

∑′

b∈A

1

(π̃b)k
−

∑
a∈A+

∑
b∈A

1

(π̃az + π̃b)k
.

It is known that Ek ∈ Mk,0(GL2(A)). If k �≡ 0 mod (q − 1), then Ek = 0. Assume that k ≡ 0 mod (q − 1).
Then Ek is not cuspidal and we can renormalize so that its first non-zero coefficient is 1 to obtain:

gk := 1

δk
Ek = 1 − 1

δk

∑
a∈A+

Gk(ta), where δk =
∑′

b∈A

1

(π̃b)k
.

This is our first family of examples of Drinfeld modular forms with A-expansions. Following [6], we
define g := gq−1.

Until the work of López [11] in 2010, the family of normalized Eisenstein series {gk}k≡0 mod (q−1)

gave the only examples of Drinfeld modular forms with A-expansions. López considered A-expansions
with A-exponents n = 1 and n = q − 1, i.e., A-expansions in terms of G1(ta) = ta and Gq−1(ta) = tq−1

a .
López showed that there are two additional examples: the theoretically important (see [6, (5.12) &
(5.13)]) forms h and Δ. López proved that

h =
∑

a∈A+
aqta, Δ =

∑
a∈A+

aq(q−1)tq−1
a .

Theorem 1.3 shows that h and Δ are just two examples in a whole family of infinitely many
Drinfeld modular forms that possess A-expansions. All of the new examples are cuspidal or double-
cuspidal eigenforms and we will be able to explicitly compute their eigensystems. The first result that
we will need is:



A. Petrov / Journal of Number Theory 133 (2013) 2247–2266 2251
Theorem 2.2 (Uniqueness of an A-expansion).

c0 +
∑

a∈A+
caGn(ta) = c′

0 +
∑

a∈A+
c′

aGn(ta) ⇒ ca = c′
a ∀a ∈ A+ ∪ {0}.

Proof. The case n = q − 1 has been proved by López in [12, Theorem 3.1] and the same proof works
for general n. �

Next, we turn to Hecke properties of Drinfeld modular forms with A-expansions. Let p be a non-
zero prime ideal of A, let ℘ be its unique monic generator and let

Sp := {
β ∈ A: deg(β) < deg(℘)

}
.

Following [8, Section 3] and [6, Section 7], we define the pth Hecke operator Tp:

Tp f (z) := ℘k f (℘z) +
∑

β∈Sp

f

(
z + β

℘

)
, where f ∈ Mk,m

(
GL2(A)

)
.

A Drinfeld modular form f is called a simultaneous eigenform or simply an eigenform, if there exist
λp’s in C∞ such that

Tp f = λp f , ∀p ∈ Spec(A) \ {0}.

For such an f the values {λp}p∈Spec(A)\{0} will be called the eigensystem of f . Goss computed the
action of Tp on the t-expansion, which in our notation gives (see [6, (7.3)]):

Tp

( ∞∑
n=0

antn

)
=

∞∑
n=0

antn
℘ +

∞∑
n=0

anGn,p(℘t).

In the formula above, Gn,p(X) is the nth Goss polynomial for the lattice kerρp. Drinfeld modular
forms with A-expansions behave even better with respect to the action of Tp as the next result
shows:

Theorem 2.3. Suppose that f ∈ Sk,m(GL2(A)) is an eigenform for Tp with eigenvalue λp and that f has an
A-expansion with exponent n. Then λp = ℘n and cp( f ) = ℘k−nc1( f ) so that the exponent n is, in this case,
uniquely determined.

Proof. Since f and ℘ are fixed, we let ca = ca( f ). We compute the Hecke action

Tp f = ℘k
∑

a∈A+
caGn(t℘a) +

∑
β∈Sp

∑
a∈A+

caGn

(
ta

(
z + β

℘

))

= ℘k
∑

a∈A+
caGn(t℘a) + 1

π̃n

∑
β∈Sp

∑
a∈A+

∑
b∈A

ca℘
n

(az + aβ + b℘)n

= ℘k
∑

a∈A+
caGn(t℘a) + 1

π̃n

∑
a∈A+

∑
b∈A

ca℘
n

∑
β∈Sp

1

(az + aβ + b℘)n
.
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If (a,℘) = 1, then the map A × Sp → A, which sends (b, β) to aβ + b℘ , is a bijection. The inner
double sum is absolutely convergent, therefore by rearranging we obtain

∑
b∈A

∑
β∈Sp

1

(az + aβ + b℘)n
=

∑
b∈A

1

(az + b)n
= Gn(ta).

If (a,℘) = ℘ , then the map A × S p → A, which sends (b, β) to aβ +b℘ , is surjective, and every output
has a number of preimages which is divisible by q. Hence

∑
b∈A

∑
β∈Sp

1

(az + aβ + b℘)n
= 0.

It follows that

Tp f = ℘k
∑

a∈A+
caGn(t℘a) + ℘n

∑
a∈A+,(a,℘)=1

caGn(ta).

Noting that Tp f = λp f and comparing coefficients in the A-expansions, we see that if there exists
a ∈ A+ such that (a,℘) = 1 and ca �= 0, then λp = ℘n . But if all the ca satisfying (a,℘) = 1 are zero,
then again looking at the A-expansions on both sides we see that f cannot be an eigenform for Tp.
Indeed, by the computation above

f =
∑

a∈A+
c℘aGn(t℘a) ⇒ λp

∑
a∈A+

c℘aGn(t℘a) = ℘k
∑

a∈A+
c℘aGn(t℘2a),

which contradicts the uniqueness of the A-expansion. By comparing ℘th coefficients on both sides,
we get

c℘ = ℘k

λp
c1 = ℘k−nc1. �

Corollary 2.4. Assume that f ∈ Sk,m(GL2(A)) is a modular form that possesses an A-expansion with expo-
nent n. Let a = ∏ν

i=1 ℘
ei
i for distinct monic primes ℘i . If f is an eigenform for Tp1 , . . . , Tpν , then ca( f ) =

ak−nc1( f ).

Proof. This follows by induction on the factorization of a. �
Classically any Hecke eigenform for SL2(Z) is determined up to a multiplicative constant by its

eigensystem. This is known as the multiplicity one property (usually one speaks of the multiplicity
one property of cusp forms). The analogous multiplicity one property is not true for Drinfeld modular
forms for GL2(A). For instance, g , gqΔ, Δ are all eigenforms with eigensystem {λp = ℘q−1} (see [7,
Corollaries 2.2.4, 2.2.5]). Indeed, Theorem 1.3 provides infinitely many counterexamples:

Example 2.5. Let n = pr . If u is a positive integer, then the pair (k,n) = (pr(2 + u(q − 1)), pr) satisfies
the hypothesis of Theorem 1.3. And therefore, the family

f pr(2+u(q−1)),pr =
∑

a∈A+
apr(1+u(q−1))t pr

a ∈ S pr(2+u(q−1)),pr
(
GL2(A)

)
, u ∈N,

consists of eigenforms with eigensystem {λp = ℘pr }.
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The family { f pr(2+u(q−1)),pr }u∈N consists of pr -powers of the forms from the family { f s}s∈Z�0 de-
fined in Definition 3.1 below.

Next, let n be a fixed positive integer, which is not a pth-power. Put ν = �logp(n)�. Let u0 be a
positive integer, which satisfies the congruence n ≡ u0(1 −q) mod pν . Then, for any integer u � 0, the
pair (k,n) = (2n + u0(q − 1) + pνu(q − 1),n) satisfies the hypothesis of Theorem 1.3. Therefore, the
family

f2n+u0(q−1)+pνu(q−1),n =
∑

a∈A+
an+u0(q−1)+pνu(q−1)Gn(ta), u � 0,

consists of eigenforms with eigensystem {λp = ℘n}. The family of eigenforms
{ f2n+u0(q−1)+pν u(q−1),n}u∈Z�0 can be obtained from the family { f s}s∈Z�0 (Definition 3.1 below) by
using divided derivative (see [4, p. 5]).

Since the classical version of multiplicity one fails for Drinfeld modular forms, Gekeler asked if a
Drinfeld eigenform for GL2(A) is determined up to a multiplicative constant by its eigenvalues and its
weight. We do not know if the answer to Gekeler’s question is positive or negative (in general) when
f is an eigenform, or even a cuspidal eigenform, for GL2(A). There are multiplicity one results due to
Armana [1, Theorem 7.7] for forms of low weight for GL2(A). The situation is much more favorable if
we assume that the eigenform has an A-expansion. The following result (which is an immediate con-
sequence of Corollary 2.4) shows that a cuspidal Drinfeld eigenform with an A-expansion is uniquely
determined by its eigensystem {λp} and its weight k (as predicted by a positive answer to Gekeler’s
question):

Theorem 2.6 (Multiplicity one for modular forms with A-expansions). If f ∈ Sk,m(GL2(A)) is an eigenform
that possesses an A-expansion with exponent n, then

f =
∑

a∈A+
ak−nGn(ta).

Therefore, f is determined uniquely by its weight k and the eigenvalues {λp = ℘n}.

Example 2.7 (Non-examples). Theorem 2.6 shows that eigenforms with A-expansions can only
have very restrictive types of eigensystems. In particular, not every Drinfeld eigenform can have
an A-expansion. For instance, the form h2 g ∈ S10,0(GL2(A)) is an eigenform when q = 3 (since
S10,0(GL2(A)) is one-dimensional), but computations for p of degree � 4 show that λp �= ℘n for
any n.

The natural question is: Does every cuspidal eigenform with eigensystem {λp = ℘n} possess an A-
expansion? We strongly suspect that the answer is No. The example that we have in mind is
h2 g2 ∈ S2

12,0(GL2(A)) when q = 3 (this is an eigenform, since S2
12,0(GL2(A)) is one-dimensional). The

only reason that we cannot be completely certain is that we cannot show that the eigenform h2 g2

has eigenvalues λp = ℘4 for all p. We have verified that for p of degree � 4, Tph2 g2 = ℘4h2 g2, and
h2 g2 does not have an A-expansion.

3. Consequences of Theorem 1.3

3.1. Single-cuspidal forms that are not double-cuspidal

Theorem 1.3 allows us to define a special family of Drinfeld modular forms that turns out to
parametrize the space of strictly single-cuspidal Drinfeld modular forms for GL2(A).
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Definition 3.1. If s ∈ Z�0, then we define

f s := fq+1+s(q−1),1 =
∑

a∈A+
aq+s(q−1)ta.

It follows from Theorem 1.3 that f s is an element of the space of cuspidal forms
Sq+1+s(q−1),1(GL2(A)), which is not in S2

q+1+s(q−1),1(GL2(A)).
Since the weights k = q + 1 + s(q − 1), s � 0, are precisely the weights for which Sk,1(GL2(A))/

S2
k,1(GL2(A)) �= 0, this shows that:

Theorem 3.2. The space

Sk,1
(
GL2(A)

)
/S2

k,1

(
GL2(A)

)
is diagonalizable, and the eigenforms for Sk,1(GL2(A)) whose images form a coset eigenbasis have eigenvalues
λp = ℘ .

In [2, Example 15.7], Böckle shows1 that the same result holds for Γ1(T ). We will see below
that we can reprove Böckle’s result by using A-expansions and extend it to Γ0(T ) as hinted by [2,
Remark 12.9 & Example 15.7].

To that end, let Γ be either Γ1(T ) or Γ0(T ). We have two natural maps from Mk,m(GL2(A)) to
Mk,m(Γ ), which respect cuspidality and double-cuspidality:

ι : Mk,m
(
GL2(A)

) → Mk,m(Γ ) : f (z) �→ f (z),

ιT : Mk,m
(
GL2(A)

) → Mk,m(Γ ) : f (z) �→ F (z) = f (T z).

The effect of ιT on A-expansions is as follows:

ιT

(
c0 +

∑
a∈A+

caGn(ta)

)
= c0 +

∑
a∈A+

caGn(taT ).

The proof of Theorem 2.3 shows that ιT fk,n remains an eigenform away from the level. That is, if
p �= (T ), then

TpιT fk,n = pnιT fk,n.

Example 3.3. Example 15.7 in2 [2] shows that the two-dimensional quotient space Sk,0(Γ1(T ))/

S2
k,0(Γ1(T )) is always diagonalizable with respect to the Hecke algebra away from T . And any eigen-

form in this space has eigenvalues3 λp = ℘ for p �= T .
The use of A-expansions allows us to see that this also follows without using the cohomological

tools developed in [3]. Indeed, if k ≡ 1 mod (q − 1), then write k = s(q − 1) + 1. Using ι and ιT to
induce f s to Γ1(T ), we have two linearly independent forms

ι( f s), ιT ( f s) ∈ Sk,0
(
Γ1(T )

)
/S2

k,0

(
Γ1(T )

)
,

with the same eigensystem away from the level {λp = ℘}p�=(T ) .

1 The reader should be aware that Böckle uses a different normalization for Tp and with his normalization the eigenvalues
are all equal to 1, which corresponds to λp = ℘ in our notation.

2 These are examples due to Böckle and Pink.
3 With Böckle’s normalization the eigenvalues are actually λp = 1.
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The argument applies verbatim to Γ0(T ), and we obtain:

Theorem 3.4. The quotient space Sk,1(Γ0(T ))/S2
k,1(Γ0(T )) has a basis of eigenforms away from T . Each ele-

ment of this basis has eigensystem {λp = ℘}p�=(T ) . �
Böckle observed in Remark 12.9 and Example 15.7 of [2] that the quotient space may be generated

by Poincaré series. Our results show that this space is generated by forms with A-expansions for
Γ = GL2(A),Γ0(T ) and Γ1(T ), i.e., that forms with A-expansions parametrize the quotient spaces for
these congruence subgroups. We do not know if this happens for general congruence subgroups.

3.2. The family Fν

Definition 3.5. Given ν ∈N we define

Fν :=
∑

a∈A+
aqν

ta.

Since (q − 1) | (qν − 1) it follows from Theorem 1.3 that{
Fν ∈ Sqν+1,1

(
GL2(A)

)}
ν∈N ⊂ { f s}s∈Z�0 .

The family {Fν}ν∈N satisfies a recursive formula, which is similar to the formula for the subfamily
{gqk−1}k∈N of Eisenstein series given in [6, Proposition 6.9].

Theorem 3.6. We have F1 = h, F2 = hgq and the recursive formula for ν � 2

Fν = gq

hq−1
F q
ν−1 − [ν − 2]q2

hq−1
F q2

ν−2,

where [i] := T qi − T .

Proof. Following Pellarin,4 we define

E(z, u) =
∑

a∈A+
a(u)ta ∈C∞[[t, u]],

where u is a new variable independent of t and T . Let ϕ̃ be the map that fixes u and acts on
the elements of C∞[[t]] by x → xq (the partial Frobenius). The space C∞[[t, u]] also has the usual
Frobenius, ϕ , which acts as x → xq on every element of C∞[[t, u]]. By definition of ϕ and ϕ̃ , we have(

ϕ ◦ ϕ̃−1)νE(z, u)|u=T = Fν .

Pellarin has shown (see [13, Proposition 9]) that E satisfies the ϕ̃-difference equation

ϕ̃2E = 1

u − T q2

(−hq−1E+ gqϕ̃E
)
,

which we rewrite as

4 Pellarin considers E in [13, Section 3], but the formula that we have used to define E is shown in [14, Corollary 5].
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E = gq

hq−1
ϕ̃E− (u − T q2

)

hq−1
ϕ̃2E.

Applying (ϕ ◦ ϕ̃−1)ν to both sides and plugging in u = T , we get the recursion

Fν = gq

hq−1
F q
ν−1 − T qν − T q2

hq−1
F q2

ν−2. �
Remark 3.7. Our computations suggest that the following equality holds for j � q:

E j =
∑

a∈A+
a(u) jt j

a.

If we assume this conjectural equality between E j and the expression on the right, then the ϕ̃-
difference equation for E j will allow us to prove the recursive relations (which we have also observed
computationally) among the Drinfeld modular forms

Φν, j :=
∑

a∈A+
a jqν

t j
a

for different ν ′s, where j � q. We hope to return to this in future work.

Example 3.8. Using the recursion, one easily computes:

F3 =
∑

a∈A+
aq3

ta = hgq2+q − [1]q2
hq(q−1)+1,

F4 =
∑

a∈A+
aq4

ta = hgq3+q2+q − [2]q2
hq(q−1)+1 gq3 − [1]q3

hq2(q−1)+1 gq,

F5 =
∑

a∈A+
aq5

ta = hgq4+q3+q2+q − [3]q2
hq(q−1)+1 gq4+q3

− [2]q3
hq2(q−1)+1 gq4+q − [1]q4

hq3(q−1)+1 gq2+q + [1]q4 [3]q2
h(q3+q)(q−1)+1.

3.3. Congruences between eigenforms

Another classically important topic is that of congruences between modular forms. Several results
have appeared that seem to mirror the classical situation (see [6, Section 12] and [17]). It turns
out that we can use Theorem 1.3 to obtain a new result regarding congruences between Drinfeld
eigenforms, because the A-expansions make it possible to easily observe congruences. We use A-
expansions in terms of Gn,π̃ A(ta), instead of Gn(ta), because it is easier to understand the divisibility
properties of the coefficients of Gn,π̃ A(X) rather than Gn(X).

Definition 3.9. Let k,n be two positive integers that satisfy the hypothesis of Theorem 1.3. For any
integer l � 0, define

F �
k,n,l :=

∑
a∈A

a(k−n)ql
Gn,π̃ A(ta) ∈ S(k−n)ql+n,n

(
GL2(A)

)

+
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and

Fk,n,l :=
∑

a∈A+
a(k−n)ql

Gn(ta) ∈ S(k−n)ql+n,n

(
GL2(A)

)
.

Theorem 3.10. Let ν0 = valp(k − n), and let ν be any non-negative integer.
If p is any prime of degree d with d > logq(n), then

F �
k,n,d+ν ≡ F �

k,n,ν mod pqν pν0
.

Note that the weights of the forms in the congruence are (k − n)qd+ν + n and (k − n)qν + n,
respectively.

Proof of Theorem 3.10. Let p be a prime of degree d. Then p | (aqd − a) for all a ∈ A. Therefore, we
have

pqν pν0
∣∣ (

a(k−n)qd+ν − a(k−n)qν )
for all a ∈ A. Because of the A-expansions on both sides, the congruence

F �
k,n,d+ν ≡ F �

k,n,ν mod pqν pν0

will follow if we can prove that p does not divide the denominators of the coefficients of Gn,π̃ A(X)

(note that if a ∈ A+ , then ta has no denominators in its t-expansion). Since we are taking d > logq(n),
in each case we are considering, this follows from formula (3.8) in [6], combined with the fact
(see [16, Section 2.5]) that the qlth coefficient of eπ̃ A(z) equals the reciprocal of the product of all
monic polynomials of degree l. �
Remark 3.11. In many cases (for example 1 � n � q2; n = qr − 1, n = qr + 1, r arbitrary), Theorem 3.10
remains true if we replace F �

k,n,l with Fk,n,l throughout. Unfortunately, we do not have a complete list
of cases for when this happens. The issue is that we do not know enough about the divisibility prop-
erties of the smallest degree non-zero coefficient of Gn,π̃ A(X). In the examples below we always have
Gn(X) = Gn,π̃ A(X) and we use the notation Fk,n,l , which conforms with our convention of normalizing
Drinfeld modular forms.

Remark 3.12. Note that we actually have

[d]qν pν0
∣∣ (

a(k−n)qd+ν − a(k−n)qν )
, ∀a ∈ A,

where [d] = T qd − T is the product of all monic primes of degree dividing d. Therefore, if [d] is
relatively prime to the denominators of the coefficients of Gn,π̃ A(X), then we obtain the stronger
congruence

F �
k,n,d+ν ≡ F �

k,n,ν mod [d]qν pν0
.

Remark 3.13. The proof of Theorem 3.10 is deceptively simple however this is because the A-
expansions have packaged the t-expansions on both sides in a special way. It is unclear how to prove
the result of the previous theorem without observing the A-expansions, i.e., by just looking at the
t-expansions or at the expressions in terms of h and g .
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Remark 3.14. One should note that Theorem 3.10 gives congruences in two directions: for varying d
and fixed ν , and for fixed d and varying ν . We will give examples of both.

Some of the results before the present work, particularly gqd−1 ≡ 1 mod [d] from [6, Proposi-
tion 6.12], were also proven by using the A-expansions of Eisenstein series. It is interesting to see
if there are other congruences that come from A-expansions of forms that are not eigenforms.

We end this subsection with several examples of congruences obtained from Theorem 3.10.

Example 3.15. First, we present examples with increasing d and fixed ν = 0. We have

Fq+1,1,d = Fd+1 =
∑

a∈A+
aq·qd

ta,

so that h = Fq+1,1,0, hgq = Fq+1,1,1, etc.
This gives

h ≡ hgq = F2 mod [1]q,

h ≡ hgq2+q − [1]q2
hq(q−1)+1 = F3 mod [2]q,

h ≡ hgq3+q2+q − [2]q2
hq(q−1)+1 gq3 − [1]q3

hq2(q−1)+1 gq = F4 mod [3]q.

Another family for which we obtain congruences is

Fq(q−1)+1,1,d =
∑

a∈A+
aq(q−1)qd

tq−1
a , d � 0,

where Δ = Fq(q−1)+1,1,0. We have the congruences

Δ ≡ Δgq2−q = Fq(q−1)+1,1,1 mod [1]q,

Δ ≡ Δgq3−q + [1]q2
Δq+1 gq3−q2−2q + [1](q−1)q2

Δq2−q+1 = Fq(q−1)+1,1,2 mod [2]q.

Since G1(X) = X and Gq−1(X) = Xq−1, we are in the situation described in Remark 3.12. We note that
we cannot improve the congruence to mod[d + 1] (i.e., to mod p with p of degree d + 1) because

h �≡ hgq mod [2], h �≡ hgq2+q − [1]q2
hq(q−1)+1 mod [3].

Example 3.16. Let us fix d = 1 and let ν vary.
Notice that Fq+1,1,1+ν = F2+ν . Then we have

F5 = (
hgq4+q3+q2+q − [3]q2

hq(q−1)+1 gq4+q3 − [2]q3
hq2(q−1)+1 gq4+q

− [1]q4
hq3(q−1)+1 gq2+q + [1]q4 [3]q2

h(q3+q)(q−1)+1)
≡ (

hgq3+q2+q − [2]q2
hq(q−1)+1 gq3 − [1]q3

hq2(q−1)+1 gq) mod [1]q2·q

= F4.

We can also see F6 ≡ F5 mod [1]q3·q , F7 ≡ F6 mod [1]q4·q , . . . .
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3.4. Eigenproducts

In [5], Gekeler proved5 that h has a product expansion that is indexed by the monic polynomials

h = t
∏

a∈A+
ψa(t)

q2−1,

where ψa is the ath inverse cyclotomic polynomial ψa(X) := ρa(X−1)Xqd
(see [6, Eq. 4.6]).

Theorem 1.3 allows us to show that there are identities between A-expansions and product ex-
pansions indexed by A+:

Theorem 3.17. If 1 � j � q, then

h j =
∑

a∈A+
aqjt j

a = t j
∏

a∈A+
ψa(t)

(q2−1) j.

In particular, we have

h =
∑

a∈A+
aqta, Δ = hq−1 =

∑
a∈A+

aq(q−1)tq−1
a .

Proof. We know that h j as well as the claimed A-expansion are in the one-dimensional space
S j(q+1), j(GL2(A)) by Theorem 1.3. Comparing the first non-zero coefficient of the t-expansions on
both sides, the claimed equality follows. �
Remark 3.18. We remark that while the relations

h j = t j
∏

a∈A+
ψa(t)

(q2−1) j

are immediate from the product formula for h, the equations that follow from Theorem 3.17

( ∑
a∈A+

aqta

) j

=
∑

a∈A+
aqjt j

a, 1 � j � q,

are non-trivial and imply relations between the coefficients of the t-expansions on both sides.

Remark 3.19. Computer experimentations suggest that Theorem 3.17 is part of a more general phe-
nomenon. Namely, if Gn(X) · Gn′ (X) = Gn+n′ (X), then there exist weights k,k′ such that the pairs
(k,n), (k′,n′), (k + k′,n + n′) satisfy the hypothesis of Theorem 1.3, and, for all l, l′ ∈ Z�0, the product

( ∑
a∈A+

aql(k−n)Gn(ta)

)
·
( ∑

a∈A+
aql′ (k′−n′)Gn′(ta)

)

5 Actually Gekeler derived a product expansion for Δ. The result for h follows immediately from that.
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equals ∑
a∈A+

aql(k−n)+ql′ (k′−n′)Gn+n′(ta).

Given n,n′ and q such that Gn(X) · Gn′ (X) = Gn+n′ (X), there could be more than one pair of integers
(k,k′) that works, as Example 3.20 below shows. Because a Drinfeld modular form of type k and
weight m is uniquely determined by the first i coefficients in its t-expansion, with i � k

q+1 + 1, we
can verify the equality above case by case. We present several examples for various q.

Example 3.20. Let q = 3. Then our computations suggest that( ∑
a∈A+

a3·3l
ta

)
·
( ∑

a∈A+
a6·3l′

t2
a

)
=

∑
a∈A+

a3·3l+6·3l′
t3
a ,

( ∑
a∈A+

a3·3l
ta

)
·
( ∑

a∈A+
a12·3l′

t2
a

)
=

∑
a∈A+

a3·3l+12·3l′
t3
a ,

for all l, l′ ∈ Z�0.
We have verified the equalities above for l, l′ � 4.

Example 3.21. Let q = 3. Then G7(X) ·G8(X) = G15(X). By the procedure in Remark 3.19, we can prove
that ( ∑

a∈A+
a9G7(ta)

)
·
( ∑

a∈A+
a18G8(ta)

)
=

∑
a∈A+

a27G15(ta).

Let q = 4. Then G7(X) · G4(X) = G11(X) and we have( ∑
a∈A+

a16G7(ta)

)
·
( ∑

a∈A+
a16G4(ta)

)
=

∑
a∈A+

a32G11(ta).

Example 3.22. Remark 3.19 does not account for all examples of equalities between an A-expansions
and a product of A-expansions that we have found. We have verified (when q = 3) that( ∑

a∈A+
a5ta

)
·
( ∑

a∈A+
a7ta

)
=

∑
a∈A+

a12t2
a ,

however ( ∑
a∈A+

a5·3ta

)
·
( ∑

a∈A+
a7ta

)
�=

∑
a∈A+

a5·3+7t2
a .

We have not found other exceptions in our computations. We suspect that such exceptions are forced
by dimensional reasons. For instance, the form∑

a∈A+
a12t2

a

generates the one-dimensional space of double-cuspidal forms of weight 14.
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Remark 3.23. Remark 3.19 and Theorem 2.6 give examples of eigenforms that can be represented
as products of eigenforms. Classically this rarely happens and such products have been explicitly
determined (see [10]). In contrast to the classical case, in the case of Drinfeld modular forms we can
have high order vanishing at the cusps. In the case of Drinfeld modular forms, one ‘trivial’ way of
obtaining infinitely many such products is to take pth powers of known eigenforms (for example,
h,hp,hp2

, . . . ). Our results yield ‘non-trivial’ examples of such eigenproducts. It is interesting to see
if Remark 3.19, together with some exceptional cases like Example 3.22, and ‘trivial’ products are the
only eigenproducts in the Drinfeld setting.

4. The proof of Theorem 1.3

Throughout this section, we will assume that k and n are positive integers such that k � 2n, k −
2n ≡ 0 mod (q − 1) and n � pvalp(k−n) . We use the standard notation A<d := {a ∈ A: deg(a) < d},
A<d+ := A<d ∩ A+ , and A2

<d := {(a,b): a,b ∈ A<d}. Finally, we let z ∈ Ω .
We note that n � pvalp(k−n) if and only if (T − 1)n | (T k−n − 1). Let

F (T ) =
k−2n∑
i=0

ξi T
i

be defined by T k−n − 1 = (T − 1)n F (T ). If k = 2n, then n = k − n is a pth-power and F (T ) = 1. In
general, by setting T = 0, we see that ξ0 = (−1)n+1.

Lemma 4.1. Given r > 0, there exists a positive integer dr such that for all d � dr we have

∑
a∈A<d

a j = 0, ∀ j, 1 � j � r.

Proof. Define

Sr,d :=
∑

a∈A<d

ar .

If (q − 1) � r, then Sr,d = 0. This follows since

A<d − {0} = {
θa+: θ ∈ F∗

q, a+ ∈ A<d+
}

and summing over F∗
q first, we get 0.

The result for r ≡ 0 mod (q − 1) is due to Lee (see [16, Section 5.6]). �
Remark 4.2. If q = pe , then it is a result due to Lee that Sr,d = 0 whenever the sum of the p-adic
digits of r is < de(p − 1). A complete vanishing criterion was given by Carlitz. However, Carlitz simply
asserts the result without proving it. It turns that the proof is not trivial and was only achieved by
Sheats in the late 1990s. For more on this, see [16, Sections 5.6–5.8] and the references therein.

Remark 4.3. The previous lemma also follows easily from the vanishing of the Carlitz zeta function at
negative ‘even’ integers, which was first proved by Goss (see [9, Sections 8.8, 8.13]).
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Lemma 4.4. Let z ∈ Ω . If d � dk−2n, then

∑′

(u,v)∈A2
<d

(vz)k−n − uk−n

(vz − u)n
=

{
0, k − 2n �= 0,

−1, k − 2n = 0.

Here the prime on the summation means that we are taking pairs (u, v) �= (0,0).

Proof. We break the sum into three parts.
When u = 0 we have v �= 0. By Lemma 4.1,

∑′

v∈A<d

vk−2nzk−2n = 0 for k − 2n �= 0.

The case k − 2n = 0 gives −1 for the sum, since we are summing over non-zero v . Therefore,

∑′

v∈A<d

vk−2nzk−2n =
{

0, k − 2n �= 0,

−1, k − 2n = 0.

When v = 0 we have u �= 0. By the same argument as for the previous sum,

∑′

u∈A<d

uk−2n =
{

0, k − 2n �= 0,

−1, k − 2n = 0.

If v �= 0, u �= 0, then

∑′

u∈A<d

∑′

v∈A<d

(vz)k−n − uk−n

(vz − u)n
=

∑′

u∈A<d

∑′

v∈A<d

uk−2n F

(
vz

u

)

=
∑′

u∈A<d

∑′

v∈A<d

k−2n∑
i=0

ξi(vz)iuk−2n−i.

Summing over v and using Lemma 4.1 we see that only the term i = 0 remains. But if k − 2n �= 0,
then for i = 0 we can sum over u and get 0. Therefore, if k − 2n �= 0, then

∑′

u∈A<d

∑′

v∈A<d

(vz)k−n − uk−n

(vz − u)n
= 0.

On the other hand, if k − 2n = 0, we have

∑′

u∈A<d

∑′

v∈A<d

(vz)k−n − uk−n

(vz − u)n
=

∑′

u∈A<d

∑′

v∈A<d

ξ0(vz)0u0 = ξ0 = (−1)n+1.

Combining these proves the lemma. �
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Lemma 4.5. Let k − 2n > 0. If d � dk−2n, then for any a,b ∈ T d A (not both zero) we have

∑
(u,v)∈A2

<d

(a + u)k−n

((a + u)z + b + v)n
=

∑′

(u,v)∈A2
<d

(bu − av)k−n

(az + b)k−n((a + u)z + b + v)n
.

Note that the left sum does not have the condition that (u, v) �= (0,0).

Proof. Assume that (u, v) �= (0,0). Then

(bu − av)k−n

(az + b)k−n((a + u)z + b + v)n
− (a + u)k−n

((a + u)z + b + v)n

is equal to

((bu − av) − (a + u)(az + b))n ∑k−2n
i=0 ξi(bu − av)i((a + u)(az + b))k−2n−i

(az + b)k−n((a + u)z + b + v)n
.

Here we have used the identity Xk−n − Y k−n = Y k−2n(X − Y )n F (X/Y ). Since (bu − av) − (a + u)(az +
b) = −a((a + u)z + b + v), the last expression reduces to

(−a)n ∑k−2n
i=0 ξi(bu − av)i((a + u)(az + b))k−2n−i

(az + b)k−n
.

For 1 � i � k − 2n, we consider ∑′

(u,v)∈A2
<d

(bu − av)i(a + u)k−2n−i.

Expanding (bu − av)i by the binomial theorem and summing over v , we see by Lemma 4.1 that only
the term (bu)i(a + u)k−2n−i remains. Thus

∑′

(u,v)∈A2
<d

(bu − av)i(a + u)k−2n−i =
∑′

u∈A<d

(bu)i(a + u)k−2n−i.

Expanding (a + u)k−2n−i by the binomial theorem and summing over u, we obtain 0 by Lemma 4.1.
For i = 0 we have ∑′

(u,v)∈A2
<d

(a + u)k−2n =
∑
u �=0

(a + u)k−2n
∑

v∈A<d

1 + ak−2n
∑
v �=0

1

= −ak−2n.

Therefore,

∑′

(u,v)∈A2

(−a)n ∑k−2n
i=0 ξi(bu − av)i((a + u)(az + b))k−2n−i

(az + b)k−n
<d
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equals

(−1)n+1ak−n

(az + b)n
ξ0.

But ξ0 = (−1)n+1 (we are using k �= 2n here) and the lemma follows. �
Proof of Theorem 1.3. In order to simplify notation, we impose the following conventions: in what
follows we will assume that a ∈ T d A, b ∈ T d A, u ∈ A<d and v ∈ A<d .

Define

φk,n(z) :=
∑′

(u,v)

uk−n

(uz + v)n
+

∑′

(a,b)

∑′

(u,v)

(bu − av)k−n

(az + b)k−n((a + u)z + b + v)n
.

Note that the first sum is finite, while the second sum converges, since each term is bounded by
1

min{|a|,|b|}n in absolute value. We compute

φk,n

(−1

z

)
=

∑′

(u,v)

uk−nzn

(vz − u)n
+

∑′

(a,b)

∑′

(u,v)

zk(bu − av)k−n

(bz − a)k−n((b + v)z − (a + u))n

which by Lemma 4.4 equals

∑′

(u,v)

(vz)k−nzn

(vz − u)n
+

∑′

(a,b)

∑′

(u,v)

zk(bu − av)k−n

(bz − a)k−n((b + v)z − (a + u))n
.

By replacing u with −u and a with −a, we have

zk
∑′

(u,v)

vk−n

(vz + u)n
+ zk

∑′

(a,b)

∑′

(u,v)

(av − bu)k−n

(bz + a)k−n((b + v)z + (a + u))n
= zkφk,n(z).

Therefore, we have the correct functional equation with respect to z �→ −1/z.
It remains to show that φk,n has an A-expansion. By Lemma 4.5

∑′

(a,b)

∑′

(u,v)

(bu − av)k−n

(bz − a)k−n((b + v)z − (a + u))n
=

∑′

(a,b)

∑
(u,v)

(a + u)k−n

((a + u)z + b + v)n
.

Thus the sum defining φk,n is equal to

∑′

(u,v)

uk−n

(uz + v)n
+

∑′

b

∑
(u,v)

(bu)k−n

bk−n(uz + b + v)n
+

∑′

a

∑
b

∑
(u,v)

(a + u)k−n

(az + b)k−n((a + u)z + b + v)n
,

which, after multiplying by 1/π̃k−n , becomes

∑
u∈A

uk−nGn(tu) +
∑

d

ak−nGn(ta).
<d a∈T A
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Finally, notice that Gn(tθa) = θ−nGn(ta) and hence the expression above is precisely

−
∑

a∈A+
ak−nGn(ta).

This shows that φk,n is invariant under translations by A (i.e., invariant under z �→ z + a for all a ∈ A)
and that

−1

π̃k−n
φk,n = fk,n =

∑
a∈A+

ak−nGn(ta) ∈ Sk,n
(
GL2(A)

)
. �

Remark 4.6. We want to briefly mention two cases outside of Theorem 1.3 which are of interest.
First, if k = n, we can make the same definition for φk,n , i.e.,

φk,n(z) =
∑′

(u,v)

1

(uz + v)n
+

∑′

(a,b)

∑′

(u,v)

1

((a + u)z + b + v)n
.

Then φk,n has the correct functional equation under z �→ −1/z, but Lemma 4.5 does not apply, since

∑′

(a,b)

∑′

(u,v)

1

((a + u)z + b + v)n
�=

∑
(a,b)

∑′

(u,v)

1

((a + u)z + b + v)n
.

Therefore, φk,n does not have a t-expansion. To fix this we add the (u, v) = (0,0) term to the double
sum. The resulting expression is essentially the non-normalized Eisenstein series En:

φk,n +
∑′

(a,b)

1

(az + b)n
= π̃n En.

The second case is k = 2n. As n � pvalp(k−n) , we see that in this case k − n = n = pν for some
non-negative integer ν . We define φk,n as in the proof. Using Lemma 4.4, we obtain

φk,n

(−1

z

)
= zkφk,n + zn.

Lemma 4.5 does not hold, but it is replaced by the equation

−
∑

(u,v)∈A2
<d

(a + u)k−n

((a + u)z + b + v)n
=

∑′

(u,v)∈A2
<d

(bu − av)k−n

(az + b)k−n((a + u)z + b + v)n
.

Therefore, if we define

φ∗
k,n :=

∑′

(u,v)

uk−n

(uz + v)n
−

∑′

(a,b)

∑′

(u,v)

(bu − av)k−n

(az + b)k−n((a + u)z + b + v)n
,

we have

φ∗
k,n

(−1

z

)
= zkφ∗

k,n + zn
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and

−1

π̃k−n
φ∗

k,n = f ∗
k,n =

∑
a∈A+

ak−nGn(ta) =
∑

a∈A+
apν

G pν (ta).

The first equation resembles the functional equation of a Drinfeld quasi-modular form (see [4, Defi-
nition 2.1]) and the second equation shows that f ∗

k,n is E pν
, the pν th power of the false Eisenstein

series [6, (8.2)]:

E :=
∑

a∈A+
ata.
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