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We classify even unimodular Gaussian lattices of rank 12, that is, even unimodular
integral lattices of rank 12 over the ring of Gaussian integers. This is equivalent to the
classification of the automorphisms t with 1> = —1 in the automorphism groups of
all the Niemeier lattices, which are even unimodular (real) integral lattices of rank 24.
There are 28 even unimodular Gaussian lattices of rank 12 up to equivalence. © 2002
by Elsevier Science
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1. INTRODUCTION

Let C" be an n-dimensional vector space over C which possesses the
Hermitian form

(v, u) =vju; + -+ vy, vV=(01,...,0,), u=@Wy,...,u,),

where u; denotes the complex conjugate of u;. A Gaussian lattice of rank »
is a Z[i]-module containing a basis of C". A Gaussian lattice L is said to be
integral (resp. even), if (z,2') € Z[i] for all z,Z € L (resp. ||z|]* € 2Z for all
z € L). Moreover L is unimodular if and only if the determinant of the Gram
matrix with respect to some basis is equal to 1. Iyanaga [4] constructed an
even unimodular Gaussian lattice of rank 4, and proved its uniqueness up to
equivalence. The purpose of this paper is to classify the equivalence classes
of even unimodular Gaussian lattices of rank < 12.

An even unimodular Gaussian lattice L can be regarded as a Z-module of
rank 2n. We denote this Z-module by (L), and we regard (L) as a
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submodule of the Euclidean space R*" whose symmetric bilinear form (-, IR
is defined as the real part of the Hermitian form. Then /(L) becomes an even
unimodular lattice in R*". The multiplication by i acts on (L) as an

automorphism satisfying i> = —1. The original Hermitian form can be
recovered from its real part and the action of i on (L) (see Lemma 2.1).
A unimodular lattice in R*" possessing an automorphism t with 12 = —1

is called symplectic [1, Appendix 2]. In Section 2, we will show that all even
unimodular Gaussian lattices in C" are obtained from even unimodular
lattices in R*, together with an automorphism t satisfying 12 = —1.
Moreover, isomorphisms among the Gaussian lattices are determined by the
conjugacy of elements t in the automorphism groups of lattices in R*"
satisfying t> = —1.

An even unimodular lattice in R*" exists if and only if n = 0 (mod) 4.
If n=12 (resp. 8, 4), then all even unimodular lattices in R*" have
been classified, and the number of the equivalence classes is 24 (resp. 2,1).
An even unimodular lattice N in R* is called a Niemeier lattice,
and is characterized by its root system. The automorphism group
Aut(N) contains the Weyl group. We will collect some properties of
Weyl groups in Section 3. In Section 4, we will determine the conjugacy
classes of 7 (12 = —1) in the automorphism groups. We will need some
information about Aut(N) and N /R, which can be found in Chapters 16 and
18 [7] in [3].

We would like to point out the similarity of the present work and
that of Hashimoto-Sibner [4]. They considered the imaginary part
of the Hermitian form, which becomes a non-degenerate alternating form.
Such an alternating form is uniquely determined by the dimension 2n, and
thus there exists a one-to-one correspondence between the equivalence
classes of even unimodular Gaussian lattices and the conjugacy classes
of t with 2 = —1 in the symplectic group Sp(2n,7). This result is simple
and beautiful, but it seems to be difficult to classify the conjugacy
classes of 7. Our one-to-one correspondence is more complicated, but we
can use the classification theorem of the even unimodular lattices of
rank 24 by Niemeier [6]. Together with the knowledge of their automorph-
ism groups, we can carry out the classification of even unimodular
Gaussian lattices of rank 12. For higher dimensional cases, our approach
does not work because the number of the equivalence classes becomes
too large.

2. REAL LATTICES AND GAUSSIAN LATTICES
In this section, we will describe the connection between real lattices and

Gaussian lattices. We use the same notation (.,-),(-,-)g as in the
Introduction.
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Let {e1,...,&,}, {el, f1,...,en fu} be orthonormal bases of C”", R,
respectively. Define iy : C" — R* by

Jj=1

Jj=1

v (Z (x; + i)ﬁ)%‘) =" e+ if),

where x;, y; € R, j=1,...,n. The following lemma is immediate from this
definition.

LEmMMA 2.1. Ifz,Z € C", then
(z.2) = W@, ¥ (@) + i), Y(i2)g.

In particular, ||y (2)|| = ||z|| holds for all z € C".

Let L be a Gaussian lattice in C". Then W(L) is a lattice in R*". The
following is immediate from Lemma 2.1.

LEMMA 2.2. Let L = C" be a Gaussian lattice. Then L is integral (resp.
even) if and only if (L) is integral (resp. even).

LEMMA 2.3. Let L = C" be a Gaussian lattice. Then L is unimodular if
and only if W(L) is unimodular.

Proof. Let {zj,...,z,} be a basis of L, and let G=A4 +iB be the
Gram matrix with respect to this basis, where A4,B e M,(R). Then
by Lemma 2.1, the Gram matrix of the lattice (L) with respect to
the basis

{lp(Zl), sy l//(Zrl)’ l,b(l.Zl), ceeo l,b(lZ,,)}

(5 %)

whose determinant is |det G|*. Therefore, L is unimodular if and only if y(L)
is unimodular. 1

is given by
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Let O(2n,R), U(n,C) denote the orthogonal group, the unitary group,
respectively. Define 7o € O(2n, R) by

0 -1
1 0

To(el’fl:'-'se}’hfn) = (elﬂfl""iei’bfi’l)
0 -1
1 0

Then 7oy is the multiplication by i, and we have the following:
LEMMA 2.4. The centralizer of vy in O(2n,R) is yU(n, )y~

Let % be the set of Gaussian lattices in C", and put
Z ={lLl|Le 2},

where [L] denotes the set of lattices equivalent to L. Let .# be the set of pairs
(M, 1), where M is a lattice in R*", 7 is an automorphism of M satisfying

72 = —1. We define an equivalence relation on .# by

M,7) ~ (M',7) <= 3p e O2n,R) such that p(M) = M', ptp~' =17

Denote by [M, 1] the equivalence class containing the pair (M, 1) € .4, and
put

M= {M, ]| (M, 1) e M.

THEOREM 2.5.  There exists a bijection ¥ between & and M defined by
¥ [L] = [(L), o]

Proof. If Le%, then (L) is a lattice in R>* and
toW(L) = (oW (L)) = Y(iL) = W(L), so 1o is an automorphism of y(L).
Thus (Y(L),t0) € 4. If L,L' € ¥ are isomorphic, then there exists an element
o € U(n, C) such that a(L) = L'. Putting p = Yoy ' € O(2n, R), we see that p
commutes with 7y by Lemma 24, and pW(L))=y(L'). Thus
[W(L), 7] = [W(L), t0]. This establishes the well-definedness of the mapping .

Next we show that ¥ is injective. Suppose L,L'e.¥ and
[W(L), 0] = [W(L'),70]. Then there exists an element p € O(2n, R) such that
p(p(L)) = W(L') and prop~! = 10. Putting ¢ =y ' py, Lemma 2.4 implies
o € U(n,C), and we have o(L) = L'. Thus [L] = [L'].
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Finally, we show that ¥ is surjective. Suppose (M, 1) € .. Since 1> = —1,
there exists a basis {e], f7,...,€,, f'} of R*" such that

R = e, f1> Lo+ L <€ /i

and
0 -1
1 0
‘C(ellafll)'- enaf)_( 1’f1)'” n’fn)
0 -1
1 0
Observe || /1| = Ifz(¢))ll = l¢}]| and
£ = Xeh /D — 4f)—e)
= %(e}a fj/)R - %(T(e})s T(/{;))R
=0
for j=1,...,n. Thus, we may assume without loss of generality that {e},

flo--- en,f’} is an orthonormal basis. Deﬁne ¢ € 0(2n,R) by ¢(e ) =ej,

O(f) = fj. j= 1 ,n. Then we have ¢t¢ ' = 10, so [M,1] = [d’(M) To].
Therefore V([ (S = [M,7]. 1

Theorem 2.5 shows that all (even, integral, unimodular) Gaussian lattices
in C" are obtained from (even, integral, unimodular) lattices in R*", and
isomorphisms among the Gaussian lattices are determined by the conjugacy
of elements 7 in the automorphism groups of lattices in R*" satisfying
2 =—1.

3. ROOT LATTICES
In this section, we consider the irreducible root lattice L = L(X) of type

XX=4,n=>1), D,mn > 4), E,(n=06,7,8)) and its Weyl group W(X).
We fix the presentation of these lattices as follows:

L(An) = {(xlax29 s 7x}’l+1) € ZYH_] | zxi = 0}7

L(D,) = {(x1,x2,...,x,) € Z" | Zx; = 0 mod 2},
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L(Eg) =< L(Dg), (1/2)(1,1,1,1,1,1,1,1) >,

L(E7) = {(x1,x2,...,x3) € L (Eg)|x7 = x3},

L(Es) = {(x1,x2,...,x8) € Eg | x¢ = x7 = x3}.

We denote by L* the dual lattice of L. Then the quotient L* /L has the
following structure:

Zooi if X =4,

Zy  if X = Doy,

F, if X = Dy,

7,  if X =Eo, (k=1273),

L* /L =

where Z, = Z/nZ and Fy = {0,1,0,»*} (0* + @ + 1 =0). If X = Dy, the
above isomorphism is given as follows:

1 (1,0,...,0), o110, o’ o =11,...,1).
In other cases, the generator of L* /L is as follows:

—(=n,1,...,1) if X =4,,
L1, D) if X = Dy,

40,0,0,0,0,1,1,1) if X = Eg,

40,0,0,0,0,0,1,1) if X = E7.

The lattice vectors of squared length 2 are called the roots. The Weyl
group W(X) is the group generated by the reflections with respect to the
roots. It is easily verified that W(X) acts trivially on L* /L. The (full)
automorphism group of L(X) is generated by W(X) and the graph
automorphisms. The (outer) graph automorphisms y are constructed as
the symmetries of the Dynkin diagram of X.

The root lattice L(D,) has an outer graph automorphism of order 2, and
furthermore the root lattice L(D4) has those of order 3. These are
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represented by the following:

-1 0 0 0
0 1 0 0 1 1 1 1
(order 2) (ord 3)1 -1 1 1
. r Z
order ' , order 3) 5 R
0 0 1 0 -1 1 1 —1
0 0 0

The actions of graph automorphisms y on L* /L are described as follows:

the field automorphism on Fy (X = Dy, [y| =2),
the multiplication by — 1 (X = Dogy1, Iyl =2),
the multiplication by w (X = Dy, Iyl =3).

The root lattice of type 4, or E4 also has outer graph automorphisms of
order 2, which is obtained as the product of —1 and some element of the
Weyl group.

LemwmA 3.1. Let W = W(X) be the Weyl group of type X, and set
W+ =W+*(X)=Aut(L(X)), which is generated by W and the graph
automorphisms of X .

(1) If X is one of Ax,Dyiy1,Es, E7, then W* contains no elements © with
2
= —1.

(2) If X = Eg or X = Doy, then W* contains an element t with 1> = —1,
which is contained in W if X = Eg or Do, with k even, and is contained in
W*\W if X = Dy with k odd. Moreover t is uniquely determined up to the
conjugation by an element of W.

Proof.

(1) If X is one of Ay, Dyii1,Eg, E7, then {(—1) is a factor of direct
product in W *. Hence the statement holds.

(2) Suppose X = Dy;. Then W * is the semi-direct product of the symmetric
group (the group of permutation matrices) of degree 2k and the group consisting
of the diagonal matrices with all entries + 1.

Let 7 be an element of W* satisfying t> = —1. Then it is easily verified

that 7 is conjugate to
k
(o —1\°
T =
1 0
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in W. Set « =(12)---(2k — 1 2k) € W. Then the product of is a diagonal
matrix such that the number of —1’s in the diagonal entries is k. Thus t € W
if and only if k is even. This proves (2) for the case X = Dy.

Since W*(Eg) = W(Eg) contains W(Dg) with odd index, the statement for
Eg is deduced from that for Dg. |

If L is an integral lattice containing some direct sum of root lattices
L @ @ Ly, then Lis contained in L] @ --- @ Ly, The quotient L/(L; @
---@®L,) is a Z-submodule (or equivalently, a subgroup) of
L{ /L @ -+ @ Ly /Ly. This submodule is called the glue code for L (with
respect to L1 @ -+ @ Ly,).

4. CLASSIFICATION OF GAUSSIAN LATTICES

In this section, we will classify the even unimodular Gaussian lattices of
rank 12. At the end of this section, we also show that there are three even
unimodular Gaussian lattices of rank 8 up to equivalence. Recall that an
even unimodular lattice of rank 24 is called a Niemeier lattice. By Theorem
2.5, it suffices to classify conjugacy classes of elements ¢ with > = —1 in
Aut(N) for each Niemeier lattice N. Every Niemeier lattice is uniquely
characterized by its root system, which is one of the following:

0,47%, 437, 45, 48, DS, 43Dy, A, A3D3, A3, DY, A3Ds, Ey,
A11D7Eg, A%y, D3, A15Do, D1oE3, A17E7, D15, A2a, E3, D16Es, Dag.

We denote by N(R) the Niemeier lattice with root system R. The lattice N(0)
is isomorphic to the Leech lattice and Aut(N(9)) is the Conway group -O. By
Conway et al. [2], we have the following:

PROPOSITION 4.1.  There exists just one conjugacy class of elements © with
2 = —1 in -O which corresponds to the class of 2B-elements in the simple

group Coy.

For the remainder of this section, we assume R # @), and N = N(R) will denote
the Niemeier lattice with root system R. Then R is written as a union of
irreducible root systems A4, D,, E¢, E7, Eg, which are called the components of
R. Let R’ be the union of the components of type 41, Dy, E7, Eg, and R” = R\R'.

By Chapters 4 and 16 in [3], Aut(V) contains normal subgroups Gy, > Gy,
where Gy is the subgroup generated by the reflections with respect to the
elements of R and Gy, is the component-wise stabilizer of R. The group Gy is
the direct product of the Weyl groups for the components of R. Set G; =
Go1/Goy and G, = Aut(N)/Gy;. The group G, is a permutation group on the
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Table I

Table 16.1 in [3] and our Results
Root system R |Gool |G| |G| Case 1 Case 2
Doy 2 1 1 1
DisEs 2 1 1 1
Eg 1 1 6 1 1
Ary 5 2 1
D3, 4 1 2 1 1
ArEq 6 2 1
DyoE3 4 1 2 1
Ay5Dg 8 2 1
D§ 8 1 6 1
A} 13 2 2 1x2
AnD7Eg 12 2 1
E‘g‘ 9 2 24 1
A5Dg 20 2 2 1x2
D;g 16 1 24 2
A 27 2 6
Ang 32 2 4 1
A% 49 2 12 1
AiD, 72 2 24 1
D§ 64 3 720 1 2
Ag 125 2 120 1x2
A% 256 2 1344 1
A%2 729 2 |M] 1
A 4096 1 |May| 1
0 — 1 1 1
Total 28

set of the components. The orders of Gy, G, are listed in Table 16.1 of [3].
We will list them in Table I together with our results.

LEMMA 4.2, If R#DS, then Gy is generated by Gy and —1. Moreover if
|G| = 2, then Gy, is the direct product of Gy and {—1).

Proof. Suppose R#DS. If R = R', then the Weyl group Gy contains —1
and furthermore |G| = 1 by Table 1. On the other hand, if R#R’, then Gy
does not contain —1 and |G;| = 2 by Table I. Hence —1 is contained in
Go1\ Gy and the statement holds. 1

Remark 4.3.  For each component Ry of R, Gy contains —1¢zyy @ 1igp,s-
Moreover Gy, contains l¢zy @ —1¢pry. Lemma 4.2 implies that these

elements generate the center of Gy;.

We will classify the automorphisms t € Aut(N) satisfying t*> = —1.
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Case 1. t € Gy: First suppose t € Gy;. Then Lemma 4.2 forces |G| #2. By
Table 1, we see that |G| is odd, and hence 7 € Gy. By Lemma 3.1 the
following proposition is obtained.

PROPOSITION 4.4 If R is one of
DY, D§, Diy, Eg, DigEs, Do,

then Gy, contains just one conjugacy class of T with ©*> = —1. If R is not any of
them, then Gy, does not contain such automorphisms.
Case 2. 1¢ Gy;: Next suppose 7 ¢ Go;. We may assume

R#A11D7E6, A15Dy, A17E7, A24, D16Es, Daa,
because G, = 1 in these cases. Moreover, we may assume
R#A;
by the following lemma, which is an easy consequence of Lemma 3.1.

LeEmMA 4.5. Let Ry be a component fixed by t. Then Ry = Eg or Dy for
some integer k > 1. Moreover, the action of T on Ry is uniquely determined up
to the conjugation of an element of W(Ro). In particular, T is conjugate to
—1g,7 in Aut(N).

LEMMA 4.6. Suppose that 1,7, € Aut(N)\Go, satisfy ©=-1 and
11Go1 = 12Goy. If |Gi| =1 or 3, then 1, is conjugate to 7. If |G| = 2, then
Ty IS conjugate to Tty or —1y.

Proof. Let 11,7, be as in the statement. Then 117! = —127) € Gyy. By
Lemma 4.5, we may assume 7|z = 12lg, for any fixed component Ry. Let
R, R, be any components such that 7;(R;) = R,. Let @; be a fundamental
root system of R, and set @, = 7,(®;). By the regularity of the action of the
Weyl group on its fundamental systems, there exists a unique element u €
W(R)) (<= Aut(N)) satisfying —1271(P;) = u(P;). Since ulp, = 1z,, we have
uilfzul’lﬁl(ds]) = @ and _

u_lrzurl_l(d?z) = u 'ru(d))
= u "ta(2r (@)
=u"'11(®))
= o,.
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1

Hence, we may assume t,7] preserves a fundamental system of each

component of R.

(1) If |G| = 1 then Gy; = Gy and we have t; = 7, by the regularity of
the action of the Weyl group on its fundamental systems.

(i) If |Gi| = 2, then there is another possibility 717! € Go1\Gy. By
Lemma 4.2, there exists some we Gy satisfying tot7! = —w. Here w is
uniquely determined as the element satisfying w(®) = —@ for the funda-
mental system @ of each component. Let w; = wl. (i = 1,2) and regard w;
as elements of Gy. Moreover set 75 = w; 'tow,. Then we have

- 1
Thty g, = Wiy Taowa(—11)lg,

wy 'ows(w ),

—1 —1

=w, Towa(w, 12)lg,
—1

=W |R1

= —lp,.

This means 75|z, = —11lz, and 15|z, = —71lz,. Hence, we may assume 75 =
—1; on any component which is not fixed by 7;. By Lemma 4.5, it is easily
proved that 7} is conjugate to —7; as required.

(iii) If |G| = 3, then the other possibility is 7, = yt;, where 7 is an

element of order 3 that gives a generator of G;. By 13 = —1, we have (y7
)* = —1 and thus we have
y Ty =90m)’ ! = - =g =

This means that 7, is conjugate to ;. 1

ProrosiTION 4.7. (1) If R is one of
AT, A5, A3, 43Dy, A¢, A3D3, E¢, D, DioE3, Diy, E,

then Aut(N)\ Gy contains just one conjugacy class of T with t> = —1.

(2) If R = A48, 43Ds, or A3,, then Aut(N)\ Gy contains just two conjugacy
classes of T with > = —1, and moreover t is not conjugate to —1.

(3) If R = D¢ or DS, then Aut(N)\ Gy contains just two conjugacy classes of
© with 1> = —1, and moreover t is conjugate to —1.

Proof. First of all we will give the outline of our proof.

(1) We will determine the action of T on the components (i.e., the image
of 7 in G,), in terms of a conjugacy class of involutions in Gj.

(i1) Let ¢ be such an involution in G,. Then we will define 7 as a
transformation which preserves R and whose image in G is equal to .
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(iii)) We will prove T € Aut(N) by showing that 7 preserves the glue code
N/L(R), whose order is listed as |G| in Table 1, and whose generators are
described in [7]. Then, by Lemma 4.6, the uniqueness of = up to conjugacy
will follow if |G| =1 or 3.

(iv) If |G| = 2, then we will check whether 7 is conjugate to —z or not.
Then the proof will be completed.

In the following proof, we regard L(4;) (resp. L(Eg),L(E7)) as a lattice
embedded in R* (resp. R®,R7). We denote by s(k) the transformation

represented by
Or —1Ix
Iy O

which exchanges two (isomorphic) components of rank &, and denote by #(k)
the transformation represented by the same matrix which preserves a
component of rank 2k. Moreover, in the proof of (3), we use the
transformation A(k) represented by

-1 0 0 0
Or —H, 0 1 0 0
, where H, = ,
Hk Ok .
0 0 0 1

which exchanges two components isomorphic to Dy (k = 4,6). Here notice
that Hj is a representation of the graph automorphism of Dj.
(1) If R is one of

24 412 48 44 272 4 2
Ay, Ay, 43, A, A3D5, Eg, Dy,

then t acts fixed-point-freely on the components of R, and if R
is one of

43Dy, Dy, DiE3, Ey,

then 7 fixes only one component (Dy,Dg,Dig,Es, respectively). By the
structure of G, the action on the components (the image in G5) is uniquely
determined. In fact, if R#A7*, 412, 4%, the proof is easy because G, is a small
group. If R = 43* (resp. 412, 43), the group G, is Mag (resp. My2,2° : PSLy(7))
and its structure is well known, and there is a unique conjugacy class of
fixed-point-free involutions.

Now we will prove the assertion case by case.
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R = A3*: The glue code is the binary Golay code of length 24. The group
Gy = Mys contains a unique class of ¢ as above. We may
assume ¢ = (1 2)(3 4)---(21 22)(23 24). Since W(A;) contains —1, Aut(N)

contains
0 _1\®"2
T= s
1 0
which is a desired element.

R = A}?: The glue code is the ternary Golay code whose automorphism
group is the non-split extention 2 - Mj,. This group can be regarded as a
subgroup complementary to Gy in Aut(). By the character table in [2], the
group 2 - My, contains a unique class of the desired element 7. In particular,
T is conjugate to —r.

R = A8: The glue code is a type Il Zy-code of length 8 whose image
modulo 2 is the extended Hamming code. Such a Z4-code is uniquely
determined up to isomorphism (and is called the octacode). Its generator
matrix is

t

X1 10002111
‘X2 01 003231
fx3:00103123
-~ 00013312

Let 7 = s(3) @ s(3) @ s(3) @ s(3). Then the action of t on the glue code is
represented by the 8 x 8 matrix

0 —1\%
T = .
1 0
Since 7(x;) = x; and 7(x3) = x4, the transformation 7 preserves the glue code
and thus 7 € Aut(V). Moreover, let

0, 03 L 0;\%

O3 03 03 —L
-I; O3 O3 O

O I 03 O
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Then o € Aut(N), since a(x;) = —x3, g(xz) = x4. Moreover, it is easily
verified that t” = —t as required.

R=A%Ds; The glue code is the subgroup generated by
x1 ="(0,1,2,—1,w), x=11,1,1,3,0), x3="(3,3,0,0,1) of Z;‘ x 4. Set
T =35(5) @ s(5) @ 1(2). Since #(2) is an element of the Weyl group, #(2) acts
trivially on F4 =~ D, /D4. Hence, we have t(x;) = xj + 5x2, 1(x2) = 2x; +
5xp, t(x3) = x3, as desired. Moreover, let

Os Os Is Os 0 -1 0 O

Os Os Os —Is 1 0 0 O
o= (&)

—Is Os Os Os 0 0 0 1

Os Is Os Os 0 0 -1 0

Then o(x;) = 5x; + 2x2, o(x2) = 2x1 + x2, o(x3) = 3x, + x3 and further % =
—1 as required.

R= A‘g: The glue <code is the Zj-code generated by
x1 ='(1,2,3,0), x =(0,3,-2,1). Set 7 =s5(6) ® (—s(6)). Then we have
T(x1) = Sx1 4 4xp, t(x2) = 4x1 + 2x3, as desired. Moreover, let

Os Os —Is Og
Os O O¢ —Ig
Is Os O Og
Os Is 0O Og

Then a(x1) = 4x1 + 2x2, o(x2) = 2x1 + 3x2 and  further 1= —1
as required.

R = E‘g: The glue code is the Z3-code generated by x; =(1,1,1,0),
x ='0,—1,1,1). Set 7==5(6)@®s(6). Then we have 1(x;)=
2x1 + x2,7(x2) = x| + x2, as desired. Moreover, let

Os Os Is Og
Os O¢ Os —Ig
—Ils Os Og Og
Os Is O Og

g

Then  o6(x1) = x; +x2, 0(x2) =x; +2x; and further <
required.

R = A3D%: The glue code is the subgroup generated by x; ='(3,1,1,0),x,
="(2,0,—1,1) of Z x Z5. Set ©=5(7) ® (—s(5)). Then we have t(x;) =

= -7 as
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3x1 4 3x2, T(x2) = 2x1 + 5x7, as desired. Moreover, let

07 ]7 _15 05
o= (&) .
L Oy Os I

Then o(x;) = 3x1,0(x3) = 2x; + x, and further t° = —7 as required.

R= Dg: The glue code is the subgroup generated by x; = (w,1,1),
x ='(1,w,1), x3 ="(1,1,w) of [Fi. Notice that it is not an [F4-submodule of
[Fi. Set © = t(4) @ s5(8). Since #(4) acts trivially on F4 =~ D; /Dg, we have
T(x1) = x1,7(x2) = x3, as desired.

R = DoE?: The glue code is the subgroup generated by x; ='(w, 1,0),x; =
{(@?,0,1) of Fy x Z3. Set © = 1(5) @ s(7). Since #(5) exchanges » and »?, we
have t(x;) = x,7(x3) = x, as desired.

R = D3,: The glue code is the subgroup generated by (1, ), (w, 1) of [Fi.
Clearly, t = s(12) is a desired element.

R = E3: The glue code is the trivial code, and t = #(4) @ s(8) is a desired
element.

(2) Let R=A4$,43Ds, or A%,. Then the action of t on the com-
ponents is uniquely determined up to conjugacy. We will show the existence
of 1.

R= Ag: The glue code is the Zs-code generated by x; =(0,0,1,3,2,1),
x ='(2,3,0,1,1,0), x3 =(1,1,2,0,0,3) (these generators are obtained by
exchanging the fourth and sixth entries from those in [7]). Let
T=35(4) @ s(4) @ s(4). Then we have t(x;) = 2x;, 7(x3) = 2x3, T(x3) = 2x2,
and thus t € Aut(V).

We will prove that 7 is not conjugate to —z. Suppose that there exists
some u € Aut(N) with ¥ = —1. Without loss of generality, we may assume
that the order of u is a power of 2. Let 7,u be the images in G, of 7,u,
respectively, so  that 7= (1 2)(3 4)(5 6). Since  |Gy/Gy| =2
(G, = PGLy(5) = S5) and 7¢G), one of @, ut belongs to Gb.
Hence we may assume # € G. This implies that # is an even permutation,
and hence # is the product of two transpositions. One can check easily that

Os Os4 O4 04 Iy Oy
Oy Os O4 O4 Oy 1Ly
Oy =1y Oy Os4 O4 Oy
Iy Oy O O4 Oz O4
Os Os4 Os Iy O4 Oy
Os Os4 -1y Os O4 Oy

is an element of Aut(N) centralizing 7. Replacing u by u® or u” if
necessary, we may assume that # fixes 1 and 2. Then, as G, does not
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contain a transposition, we see that u## (3 4)(5 6). Since ¥ = —1, u has the
form
X O4 Oy Os Og4 Oy X Os O4 O4 O4 O4
Oy —X O4 O4 O4 Oy Oy —X O4 Oy O4 Oy
Oy Oy O4 O4 Y Oy Oy Oy O4 Oy O4 Y
Oy Oy O4 Og4 04 —Y or Oy Oy Oy Oy Y 04
Oy Oy Z O4 O4 Oy Oy Oy Oy Z O4 Oy
Oy Oy Oy —Z 04 Oy Oy Oy Z Oy O4 Oy

so that the action of u on the glue code is represented by

e 0 0 0 0 0 e 0 0 0 0 0
0 = 0 0 0 0 0 = 0 0 0 0
00 0 0 & 0 00 0 0 0 ¢
o0 0 0 0o | > oo 0 o0 ¢ 0]
0 0 & 0 0 0 0 0 0 & 0 0
0 0 0 —& 0 0 0 0 & 0 0 0

respectively, where ¢,¢',¢” = 4+ 1. One can check that such an element never
preserves the glue code for any choice of ¢,¢,¢”. This is a contradiction.

R =A43,: The glue code is the Zj3-code generated by x='(1,5).
Let © = 5(12). Then t(x) = 8x and thus t € Aut(N). We will prove that 7 is
not conjugate to —t. Suppose that there exists some u € Aut(N) with
™ = —1. Since Aut(N) = Go<t), we may assume u € Gy. Hence u is

represented by
X On
O Y

for some 12 x 12 matrices X, Y. By t* = —1, we have Y = —X. This means X
and —X are contained in the Weyl group W(4;), and contradicts the fact
—1 W(dr).

R = A3Dq: The glue code is the subgroup generated by x; = (1,2, ), x»
='(5,5,1) of Z1p x F4. Set T = s(9) ® #(3). Since #(3) is not contained in the
Weyl group, #(3) exchanges @ and w?. Hence we have t(x;) = 3x; +
x2,7(x2) = x, as desired. By the same argument as in the case R = A%z, we
can prove that 7 is not conjugate to —7.

(3) R = D¢: The group G, is isomorphic to Sy and contains just two
conjugacy classes of involutions. The glue code is the F4-code generated by
xi =" (1,1,1,1),x =" (0, I, w?, w).



EVEN UNIMODULAR GAUSSIAN LATTICES OF RANK 12 93

First we define 7; = s5(6) @ s(6), which acts linearly on the glue code.
Then we have 71(x;) =x,71(x2) =x1 +x2, as desired. Next we will
define 7, = #(3) @ #(3) ® h(6), which acts semilinearly on the glue code.
Since the matrix H; gives a graph automorphism of Dg, the action of 7, on
the glue code is the composition of the permutation (3 4) and the field
automorphism on [Fy4 (see Section 3). Hence we have 15(x;) = x1, 72(x2) = x2
as desired.

R=D§: The group G, is isomorphic to S¢ and contains three
conjugacy classes of involutions whose type of permutation are 23, 2212
and 2'14.

The glue code is the hexacode over 4 with generator matrix

! 2

X1 1 0 0 1 w w
txz =101 01 o o
! X3 0O 0 1 1 1 1

We define 7; (resp. 1) corresponding to type 23 (resp. 221%) by h(4) @ h(4)®
h(4) (resp. s(4) @ s(4) @ 1#(2) ® t(2)), whose action on the glue code is linear
(resp. semilinear). Then we have

Ti(x1) = x2 +x3, Ti(x2) =x1+x3, T(x3)=x3 (i=12)

as desired.

Finally, we prove the non-existence of the automorphism 73 correspond-
ing to the involution of type 2'14. If it exists, 73 fixes four components and,
by Lemma 3.1, its action on each component is contained in the Weyl group.
Hence, 73 acts trivially on the corresponding four coordinates of the glue
code. Since each codeword is uniquely determined by its three coordinates,
the above property contradicts that 3 is an involution.

By Propositions 4.1, 4.4 and 4.7 (see Table I as a summary), we have the
following theorems.

THEOREM 4.8. A Niemeier lattice is symplectic unless its root system is
one of the following:

A3, A11D7Es, A15Do, A17E7, Aoa.
THEOREM 4.9. Up to equivalence, there exist exactly 28 even unimodular
Gaussian lattices of rank 12.

Among them, just three lattices, which are obtained from Eg, DieEg, are
decomposable. Such a decomposable lattice is obtained as a sum of two lattices
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of rank 4 and rank 8. Since the even unimodular Gaussian lattice of rank 4 is
uniquely determined up to equivalence, we have proved the following:

COROLLARY 4.10. Up to equivalence, there exist exactly three even

unimodular Gaussian lattices of rank 8.

1.

2.

D
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