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Abstract. The notion of broken k-diamond partitions was introduced by Andrews and Paule.
Let Δk(n) denote the number of broken k-diamond partitions of n for a fixed positive integer
k. Recently, Chan, and Paule and Radu proved some congruences modulo 5 for Δ2(n). In this
paper, we prove several new infinite families of congruences modulo 5 for Δ2(n) by using an
identity due to Newman. Our results generalize the congruences proved by Paule and Radu.
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1 Introduction

The aim of this paper is to prove several new infinite families of congruences modulo 5 for broken
2-diamond partitions, which generalize some congruence results due to Paule and Radu [12].

Let us begin with some notation and terminology on q-series and partitions. We use the
standard notation

(a; q)∞ =
∞∏
k=0

(1− aqk)

and often write
(a1, a2, . . . , an; q)∞ = (a1; q)∞(a2; q)∞ · · · (an; q)∞.

Recall that the Ramanujan theta function f(a, b) is defined by

f(a, b) =

∞∑
n=−∞

an(n+1)/2bn(n−1)/2, (1.1)

where |ab| < 1. The Jacobi triple product identity can be restated as

f(a, b) = (−a,−b, ab; ab)∞. (1.2)

One special case of (1.1) is defined by

ψ(q) = f(q, q3) =
∞∑
n=0

q
n(n+1)

2 . (1.3)

1



By (1.1), (1.2) and (1.3),

ψ(q) =
(q2; q2)2∞
(q; q)∞

. (1.4)

A combinatorial study guided by MacMahon’s Partition Analysis led Andrews and Paule [2]
to the construction of a new class of directed graphs called broken k-diamond partitions. Let
Δk(n) denote the number of broken k-diamond partitions of n for a fixed positive integer k.
Andrews and Paule [2] established the following generating function of Δk(n):

∞∑
n=0

Δk(n)q
n =

(q2; q2)∞(q2k+1; q2k+1)∞
(q; q)3∞(q4k+2; q4k+2)∞

. (1.5)

Employing generating function manipulations, Andrews and Paule [2] proved that for all integers
n ≥ 0,

Δ1(2n+ 1) ≡ 0 (mod 3).

Since then, a number of congruences satisfied by Δk(n) for small values of k have been proved.
See, for example, Chan [4], Chen, Fan and Yu [5], Hirschhorn and Sellers [7], Lin [8], Lin and
Wang [9], Paule and Radu [12], Radu and Sellers [13, 14, 15], Xia [17, 18] and Yao [20].

In 2008, Chan [4] proved that for n, k ≥ 0,

Δ2(10n+ 2) ≡ Δ2(10n+ 6) ≡ 0 (mod 2),

and

Δ2

(
5k+1(5n+ ω) +

3× 5k+1 + 1

4

)
≡ 0 (mod 5), (1.6)

where ω ∈ {2, 4}. Congruences Δ2(10n+ 2) ≡ 0 (mod 2) and Δ2(25n+ 14) ≡ 0 (mod 5) were
conjectured by Andrews and Paule[2] and proved by Chan [4]. In 2010, Paule and Radu [12]
proved several infinite families of congruences modulo 5 for Δ2(n). They proved that for k ≥ 0,

Δ2

(
15× 29k + 1

4

)
≡ 1 + k (mod 5) (1.7)

and if p � (4n+ 3), then

Δ2

(
5pn+

15p+ 1

4

)
≡ 0 (mod 5), (1.8)

where p is a prime with p ≡ 13, 17 (mod 20).

In this paper, we prove many new infinite families of congruences modulo 5 for Δ2(n) by
using an identity of Newman [11] and several theta function identities. Our results generalize
congruences proved by Paule and Radu [12].

The following theorem states three non-standard infinite families of congruences modulo 5
for Δ2(n).
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Theorem 1.1 If p is a prime with p ≡ 1, 9 (mod 20), then for k ≥ 0,

Δ2

(
15pk + 1

4

)
≡ 1 + k (mod 5). (1.9)

If p is a prime with p ≡ 13, 17 (mod 20), then for k ≥ 0,

Δ2

(
15p2k + 1

4

)
≡ 0 (mod 5), (1.10)

and

Δ2

(
15p2k+1 + 1

4

)
≡ 1 (mod 5). (1.11)

It should be noted that if we set p = 29 in (1.9), we obtain (1.7). Therefore, (1.9) is a
generalization of (1.7).

In order to state the following theorem, we introduce the Legendre symbol. Let p ≥ 3 be a

prime. The Legendre symbol

(
a

p

)
is defined by

(
a

p

)
:=

⎧⎪⎨
⎪⎩

1, if a is a quadratic residue modulo p and p � a,

− 1, if a is a quadratic nonresidue modulo p,

0, if p|a.

Theorem 1.2 Let α, β, ν be nonnegative integers and let p1, . . . , pα, pα+1, q1, . . . , qβ, r1, . . . , rν , rν+1

be primes with pi ≡ 13, 17 (mod 20), qj ≡ 1, 9 (mod 20) and
(
−5
rs

)
= −1 for 1 ≤ i ≤ α + 1,

1 ≤ j ≤ β and 1 ≤ s ≤ ν + 1. Define

A = 5kp21p
2
2 · · · p2αq51q52 · · · q5βr21r22 · · · r2ν . (1.12)

If pα+1 � (4n+ 3), then

Δ2

(
5Apα+1n+

15Apα+1 + 1

4

)
≡ 0 (mod 5). (1.13)

If rν+1 � n, then

Δ2

(
5Arν+1n+

15Ar2ν+1 + 1

4

)
≡ 0 (mod 5). (1.14)

Remark. If we set α = β = ν = k = 0 in (1.13), we obtain (1.8). From Theorem 1.2, we can
obtain many new congruences modulo 5 for Δ2(n). For example, setting k = β = ν = 0, α = 1
and p1 = p2 = 13, we deduce that if 13 � (4n+ 3), then

Δ2(10985n+ 8239) ≡ 0 (mod 5). (1.15)

If we set p = 13 in (1.8), we find that if 13 � (4n+ 3), then

Δ2(65n+ 49) ≡ 0 (mod 5). (1.16)

It should be noted that we can not replace n by 169n + 126 in (1.16) to get (1.15) since
13|(4(169n+ 126) + 3). Therefore, Congruence (1.16) does not imply (1.15).
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2 Proof of Theorem 1.1

In order to prove Theorem 1.1, we first prove two lemmas.

Lemma 2.1 For n ≥ 0,

Δ2(5n+ 4) ≡ t6(n) (mod 5), (2.1)

where t6(n) is the number of representations of n as a sum of six triangular numbers.

Proof. Setting n = 2 in (1.5), we get

∞∑
n=0

Δ2(n)q
n =

(q2; q2)∞(q5; q5)∞
(q; q)3∞(q10; q10)∞

. (2.2)

By the binomial theorem,

(q; q)5∞ ≡ (q5; q5)∞ (mod 5). (2.3)

Thanks to (2.2) and (2.3),

∞∑
n=0

Δ2(n)q
n ≡ (q; q)2∞

(q2; q2)4∞
(mod 5). (2.4)

It follows from [3, Entry 10 (iv), p. 262] that

(q; q)4∞
(q2; q2)2∞

=
(q5; q4)4∞
(q10; q10)2∞

− 4q
(q; q)∞(q10; q10)3∞
(q2; q2)∞(q5; q5)∞

. (2.5)

By (2.3) and (2.5),

(q; q)2∞
(q2; q2)4∞

=
1

(q; q)2∞(q2; q2)2∞

(q; q)4∞
(q2; q2)2∞

=
1

(q; q)2∞(q2; q2)2∞

(
(q5; q5)4∞
(q10; q10)2∞

− 4q
(q; q)∞(q10; q10)3∞
(q2; q2)∞(q5; q5)∞

)

=
(q5; q5)4∞

(q; q)2∞(q2; q2)2∞(q10; q10)2∞
− 4q

(q10; q10)3∞
(q; q)∞(q2; q2)3∞(q5; q5)∞

≡ (q; q)3∞(q2; q2)3∞(q5; q5)3∞
(q10; q10)3∞

− 4q
(q2; q2)2∞(q10; q10)2∞
(q; q)∞(q5; q5)∞

(mod 5). (2.6)

In view of (2.4) and (2.6),

∞∑
n=0

Δ2(n)q
n ≡ (q; q)3∞(q2; q2)3∞(q5; q5)3∞

(q10; q10)3∞
− 4q

(q2; q2)2∞(q10; q10)2∞
(q; q)∞(q5; q5)∞

(mod 5). (2.7)
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We have the well-known result of Jacobi [1, p.176] which states that

(q; q)3∞ =
∞∑
n=0

(−1)n(2n+ 1)q
n(n+1)

2 . (2.8)

By (2.8), it is trivial to check that

(q; q)3∞ ≡ (q10, q15, q25; q25)∞ − 3q(q5, q20, q25; q25)∞ (mod 5). (2.9)

From [3, Corollary (ii), p. 49],

(q2; q2)2∞
(q; q)∞

= (−q10,−q15, q25; q25)∞ + q(−q5,−q20, q25; q25)∞ + q3
(q50; q50)2∞
(q25; q25)∞

. (2.10)

Substituting (2.9) and (2.10) into (2.7), we obtain

∞∑
n=0

Δ2(n)q
n ≡ (q5; q5)3∞

(q10; q10)3∞

(
(q10, q15, q25; q25)∞ − 3q(q5, q20, q25; q25)∞

)

× (
(q20, q30, q50; q50)∞ − 3q2(q10, q40, q50; q50)∞

)
− 4q

(q10; q10)2∞
(q5; q5)∞

(
(−q10,−q15, q25; q25)∞ + q(−q5,−q20, q25; q25)∞

+ q3
(q50; q50)2∞
(q25; q25)∞

)
(mod 5). (2.11)

If we extract the terms of the form q5n+4 in both sides of (2.11), divide by q4, replace q5 by q
and then apply (2.3), we obtain

∞∑
n=0

Δ2(5n+ 4)qn ≡ (q2; q2)∞(q10; q10)2∞
(q; q)∞(q5; q5)∞

≡ (q2; q2)12∞
(q; q)6∞

(mod 5). (2.12)

By (1.3) and (1.4), the generating function of t6(n) is

∞∑
n=0

t6(n)q
n = ψ6(q) =

(q2; q2)12∞
(q; q)6∞

. (2.13)

Congruence (2.1) follows from (2.12) and (2.13). This completes the proof of this lemma.

Lemma 2.2 For n, k ≥ 0,

t6

(
pkn+

3(pk − 1)

4

)
=

p2k − 1

p2 − 1
t6

(
pn+

3(p− 1)

4

)
+

p2 − p2k

p2 − 1
t6(n), (2.14)

where p is a prime with p ≡ 1 (mod 4).
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Proof. Newman [11] proved that for n ≥ 0,

t6

(
pn+

3(p− 1)

4

)
= t6

(
3(p− 1)

4

)
t6(n)− p2t6

(
n

p
− 3(p− 1)

4p

)
, (2.15)

where p is a prime with p ≡ 1 (mod 4). The following formula for t6(n) was proved by Liu [10]
by using an identity of Ramanujan:

t6(n) =
1

8

⎛
⎝ ∑

d|(4n+3), d≡3 (mod 4), d>0

d2 −
∑

d|(4n+3), d≡1 (mod 4), d>0

d2

⎞
⎠ . (2.16)

By (2.16),

t6

(
3(p− 1)

4

)
= (1 + p2). (2.17)

Replacing n by pn+ 3(p−1)
4 in (2.15) and utilizing (2.17), we obtain

t6

(
p2n+

3(p2 − 1)

4

)
= (1 + p2)t6

(
pn+

3(p− 1)

4

)
− p2t6(n). (2.18)

Now, we are ready to prove Lemma 2.2 by induction.

It is easy to check that (2.14) is true when k = 0 and k = 1. Assume that (2.14) holds when
k = m and k = m+ 1 (m ≥ 0), that is,

t6

(
pmn+

3(pm − 1)

4

)
=

p2m − 1

p2 − 1
t6

(
pn+

3(p− 1)

4

)
+

p2 − p2m

p2 − 1
t6(n) (2.19)

and

t6

(
pm+1n+

3(pm+1 − 1)

4

)
=

p2m+2 − 1

p2 − 1
t6

(
pn+

3(p− 1)

4

)
+

p2 − p2m+2

p2 − 1
t6(n) (2.20)

Replacing n by pmn+ 3(pm−1)
4 in (2.18) and employing (2.19) and (2.20), we have

t6

(
pm+2n+

3(pm+2 − 1)

4

)
=(1 + p2)t6

(
pm+1n+

3(pm+1 − 1)

4

)
− p2t6

(
pmn+

3(pm − 1)

4

)

=(1 + p2)

(
p2m+2 − 1

p2 − 1
t6(pn+

3(p− 1)

4
) +

p2 − p2m+2

p2 − 1
t6(n)

)

− p2
(
p2m − 1

p2 − 1
t6(pn+

3(p− 1)

4
) +

p2 − p2m

p2 − 1
t6(n)

)

=

(
(1 + p2)(p2m+2 − 1)

p2 − 1
− p2(p2m − 1)

p2 − 1

)
t6

(
pn+

3(p− 1)

4

)

+

(
(1 + p2)(p2 − p2m+2)

p2 − 1
− p2(p2 − p2m)

p2 − 1

)
t6(n)
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=
p2m+4 − 1

p2 − 1
t6

(
pn+

3(p− 1)

4

)
+

p2 − p2m+4

p2 − 1
t6(n),

which implies that (2.14) is true when k = m+ 2 and this lemma is proved by induction.

Now, we turn to prove Theorem 1.1.

Setting n = 0 in (2.14) and employing (2.17), we find that for k ≥ 0,

t6

(
3(pk − 1)

4

)
=

p2k − 1

p2 − 1
(1 + p2) +

p2 − p2k

p2 − 1
=

p2k+2 − 1

p2 − 1
. (2.21)

If p is a prime with p ≡ 1, 9 (mod 20), then for k ≥ 0,

p2k+2 − 1

p2 − 1
≡ 1 + k (mod 5) (2.22)

If p is a prime with p ≡ 13, 17 (mod 20), then for k ≥ 0,

p4k+4 − 1

p2 − 1
≡ 0 (mod 5) (2.23)

and

p4k+2 − 1

p2 − 1
≡ 1 (mod 5). (2.24)

In view of (2.21), (2.22), (2.23) and (2.24), we deduce that if p is a prime with p ≡ 1, 9 (mod 20),
then for k ≥ 0,

t6

(
3(pk − 1)

4

)
≡ 1 + k (mod 5), (2.25)

and if p is a prime with p ≡ 13, 17 (mod 20), then for k ≥ 0,

t6

(
3(p2k+1 − 1)

4

)
≡ 0 (mod 5) (2.26)

and

t6

(
3(p2k − 1)

4

)
≡ 1 (mod 5). (2.27)

Replacing n by 3(pk−1)
4 in (2.1) and utilizing (2.25), we get (1.9). Similarly, Congruences (1.10)

and (1.11) follow from (2.1), (2.26) and (2.27). The proof is complete.

3 Proof of Theorem 1.2

In order to prove Theorem 1.2, we first prove some lemmas.
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Lemma 3.1 If p is a prime with p ≡ 13, 17 (mod 20) and p � (4n+ 3), then

t6

(
pn+

3(p− 1)

4

)
≡ 0 (mod 5). (3.1)

If p is a prime with p ≡ 13, 17 (mod 20), then

t6

(
p2n+

3(p2 − 1)

4

)
≡ t6(n) (mod 5). (3.2)

If p is a prime with p ≡ 1, 9 (mod 20), then

t6

(
p5n+

3(p5 − 1)

4

)
≡ t6(n) (mod 5). (3.3)

Proof. If p is a prime with p ≡ 13, 17 (mod 20), then 1 + p2 ≡ 0 (mod 5). By (2.17), we can
rewrite (2.15) as

t6

(
pn+

3(p− 1)

4

)
≡ t6

(
n

p
− 3(p− 1)

4p

)
(mod 5). (3.4)

Therefore, if p � (4n+ 3), then n
p − 3(p−1)

4p is not an integer and

t6

(
n

p
− 3(p− 1)

4p

)
= 0. (3.5)

Congruence (3.1) follows from (3.4) and (3.5).

Replacing n by pn+ 3(p−1)
4 in (3.4), we obtain (3.2).

If p is a prime with p ≡ 1, 9 (mod 20), then

p10 − 1

p2 − 1
≡ 0 (mod 5) (3.6)

and

p2 − p10

p2 − 1
≡ 1 (mod 5). (3.7)

Setting k = 5 in (2.14) and using (3.6) and (3.7), we get (3.3). This completes the proof of this
lemma.

Lemma 3.2 Let p ≥ 3 be a prime with
(
−5
p

)
= −1. For n ≥ 0,

t6

(
p2n+

3(p2 − 1)

4

)
≡ t6(n) (mod 5). (3.8)

If p � n,

t6

(
pn+

3(p2 − 1)

4

)
≡ 0 (mod 5). (3.9)
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Proof. Let a(n) be defined by

∞∑
n=0

a(n)qn =
(q2; q2)2∞(q10; q10)2∞
(q; q)∞(q5; q5)∞

. (3.10)

By (2.3) and (2.13),

∞∑
n=0

t6(n)q
n ≡ (q2; q2)2∞(q10; q10)2∞

(q; q)∞(q5; q5)∞
(mod 5). (3.11)

It follows from (3.10) and (3.11) that for n ≥ 0,

t6(n) ≡ a(n) (mod 5). (3.12)

Based on (1.3), (1.4) and (3.10),

∞∑
n=0

a(n)qn =
∞∑
k=0

∞∑
m=0

q
k(k+1)

2
+5

m(m+1)
2 ,

which yields

a(n) =
∑

0≤k, m<+∞,

k2+k
2 +

5(m2+m)
2 =n

1 =
∑

0≤k, m<+∞,

(2k+1)2+5(2m+1)2=8n+6

1. (3.13)

Replacing n by pn+ 3(p2−1)
4 in (3.13), we get

a

(
pn+

3(p2 − 1)

4

)
=

∑
0≤k, m<+∞,

(2k+1)2+5(2m+1)2=8pn+6p2

1. (3.14)

Note that Identity (2k + 1)2 + 5(2m + 1)2 ≡ 0 (mod p) implies 2k + 1 ≡ 2m + 1 ≡ 0 (mod p)

since p ≥ 3 is a prime and
(
−5
p

)
= −1. Setting 2k + 1 = p(2k

′
+ 1) and 2m + 1 = p(2m

′
+ 1)

with k
′
, m

′ ≥ 0 in (3.14), we get

a

(
pn+

3(p2 − 1)

4

)
=

∑
0≤ k

′
, m

′
<+∞,

p2(2k
′
+1)2+5p2(2m

′
+1)2=8pn+6p2

1

=
∑

0≤ k
′
, m

′
<+∞,

(2k
′
+1)2+5(2m

′
+1)2=8n/p+6

1

= a(n/p). (3.15)

Replacing n by pn in (3.15), we have

a

(
p2n+

3(p2 − 1)

4

)
= a(n). (3.16)
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Congruence (3.8) follows from (3.12) and (3.16). If p � n, then a(n/p) = 0 and

a

(
pn+

3(p2 − 1)

4

)
= 0,

which yields (3.9) after using (3.12). The proof of this lemma is complete.

Now, we turn to prove Theorem 1.2.

Let α, β be nonnegative integers and let p1, p2, . . . , pα, pα+1, q1, q2, . . . , qβ be primes with
pi ≡ 13, 17 (mod 20) and qj ≡ 1, 9 (mod 20) for 1 ≤ i ≤ α + 1 and 1 ≤ j ≤ β. Congruences
(3.1), (3.2) and (3.3) imply that for n ≥ 0,

t6

(
p21p

2
2 · · · p2αn+

3(p21p
2
2 · · · p2α − 1)

4

)
≡ t6(n) (mod 5), (3.17)

t6

(
q51q

5
2 · · · q5βn+

3(q51q
5
2 · · · q5β − 1)

4

)
≡ t6(n) (mod 5), (3.18)

and if pα+1 � (4n+ 3), then

t6

(
pα+1n+

3(pα+1 − 1)

4

)
≡ 0 (mod 5). (3.19)

Replacing n by q51q
5
2 · · · q5βn+

3(q51q
5
2 ···q5β−1)

4 in (3.17) and using (3.18), we have

t6

(
p21p

2
2 · · · p2αq51q52 · · · q5βn+

3(p21p
2
2 · · · p2αq51q52 · · · q5β − 1)

4

)
≡ t6(n) (mod 5). (3.20)

Let ν be a nonnegative integer and let r1, r2, . . . rν , rν+1 be primes with
(
−5
rs

)
= −1 for 1 ≤ s ≤

ν + 1. Congruences (3.8) and (3.9) imply that for n ≥ 0,

t6(r
2
1r

2
2 · · · r2νn+

3(r21r
2
2 · · · r2ν − 1)

4
) ≡ t6(n) (mod 5) (3.21)

and if rν+1 � n, then

t6

(
rν+1n+

3(r2ν+1 − 1)

4

)
≡ 0 (mod 5). (3.22)

Replacing n by r21r
2
2 · · · r2νn+

3(r21r
2
2 ···r2ν−1)
4 in (3.20) and utilizing (3.21), we get

t6

(
p21p

2
2 · · · p2αq51q52 · · · q5βr21r22 · · · r2νn+

3(p21p
2
2 · · · p2αq51q52 · · · q5βr21r22 · · · r2ν − 1)

4

)

≡ t6(n) (mod 5). (3.23)

Setting p = 5 in (2.15) and using (2.17), we get

t6(5n+ 3) ≡ t6(n) (mod 5). (3.24)
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By (3.24) and mathematical induction, we see that for n, k ≥ 0,

t6

(
5kn+

3(5k − 1)

4

)
≡ t6(n) (mod 5). (3.25)

Replacing n by 5kn+ 3(5k−1)
4 in (3.23) and employing (3.25), we deduce that for n, k ≥ 0,

t6

(
An+

3(A− 1)

4

)
≡ t6(n) (mod 5), (3.26)

where A is defined by (1.12).

Replacing n by pα+1n+ 3(pα+1−1)
4 (pα+1 � (4n+ 3)) in (3.26) and using (3.19), we have

t6

(
Apα+1n+

3(Apα+1 − 1)

4

)
≡ 0 (mod 5). (3.27)

Congruence (1.13) follows from (2.1) and (3.27). Replacing n by rν+1n+
3(r2ν+1−1)

4 (rν+1 � n) in
(3.26) and utilizing (3.22), we find that

t6

(
Arν+1n+

3(Ar2ν+1 − 1)

4

)
≡ 0 (mod 5), (3.28)

which yields (1.14) after using (2.1). This completes the proof of Theorem 1.2.
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