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1. Introduction

Consider the following result.

Theorem 1.1. Suppose α ∈ Z is such that α ± 8 are squarefree. Let θ be a root of the 
irreducible polynomial T 4 − 6T 2 −αT − 3. Then the field Kα = Q(θ) has ring of integers 
Z[θ]; in other words, Kα is a quartic monogenic field.

The discriminant of this polynomial, and hence the field Q(θ), is −27(α−8)2(α+8)2. 
We do not doubt that monogeneity can be deduced by classical computations, but the 
novelty of this paper is our method: we discover this family of quartic fields as partial 
torsion fields (fields generated by a root of a division polynomial) of a particular family 
of elliptic curves, and deduce monogeneity by reference to reduction properties of the 
elliptic curve. In particular, we prove the following.

Theorem 1.2. Let E be an elliptic curve defined over Q, such that some twist E′ of E
has a 4-torsion point defined over Q. Then the following are equivalent:

(1) E′ has reduction types I∗1 and I1 only;
(2) E has j-invariant with squarefree denominator except a possible factor of 4.
(3) E has j-invariant j = (α2−48)3

(α−8)(α+8) , where α ∈ Z, α± 8 are squarefree.

Let Kn be the field defined by adjoining the x-coordinate of an n-torsion point of E. If 
any of the above hypotheses holds, then K3 is monogenic with a generator given by a root 
of T 4 − 6T 2 −αT − 3. In particular, the field K3 has discriminant −27(α− 8)2(α+ 8)2.

Some examples of small values of α for which K3 is monogenic are:

±2,±3,±5,±6,±7,±9,±11,±13,±14,±15,±18,±21,±22,±23,±25.

The methods used in the proof turn information about reduction properties of an elliptic 
curve into information about the index 

[
OQ(θ) : Z[θ]

]
where θ is a special value of an 

elliptic function (namely, a zero of a division polynomial). Theorem 1.2 is meant primarily 
to showcase our methods. A more detailed analysis using these same methods can provide 
bounds and even formulae for the discriminants of partial torsion fields in general.

In fact, Fleckinger and Vérant studied the number fields of Theorem 1.1, motivated 
by their status as partial torsion fields [11]. However, as they write, “We note that the 
arithmetic of elliptic curves is not used once we have these polynomials.” They describe 
a basis for the ring of integers in general (which is not a power basis), and show that 
they are quartic S4 fields. See Section 6.

There is an abundance of literature on both monogenic number fields and num-
ber fields obtained by adjoining torsion points of elliptic curves. Generally, Bhargava, 
Shankar, and Wang [7] have shown that the proportion of monic, integer polynomials 
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f(x) ∈ Z[x] that are irreducible and such that Z[x]/f(x) is the ring of integers in its 
field of fractions is ζ(2)−1 = 6/π2. That is, about 61% of monic, integer polynomials 
correspond to monogenic number fields. On the other hand, it is known that almost all 
abelian extensions of Q with degree coprime to 6 are non-monogenic [16]. For an in-
depth bibliography of monogeneity, see Narkiewicz [28, pp. 79–81] and the book of Gaál 
[14], and for fundamental algorithmic work, see Győry [19]. We content ourselves here 
with listing a few recent works concerning monogenic quartic fields. In [32], Spearman 
describes an infinite family of A4 monogenic fields arising from x4 +18x2 − 4tx + t2 +81
when t(t2 +81) is squarefree. The D8 fields are studied by Kable [21] and Huard, Spear-
man, and Williams [20]. The pure quartic case is investigated by Funakura, who finds 
infinitely many monogenic fields [13]. Fleckinger and Vérant also have a monogenic fam-
ily which appears to be D8 [11, (2)]. In [17], Gras and Tanoé list necessary and sufficient 
conditions for certain biquadratic extensions of Q to be monogenic; Motoda constructs 
an infinite family [26]. It is also known that infinitely many quartic cyclic fields are 
non-monogenic, by work of Motoda, Nakahara, Shah and Uehara [27]. Gras [15] shows 
Q(ζ5) and Q(ζ16 − ζ−1

16 ) are the only two monogenic imaginary quartic cyclic fields. Ola-
jos [29] studies the simplest quartic fields. As for S4 fields, subsequent to this paper 
the second author [31] has used the Montes algorithm to classify two infinite families. 
Bérczes, Evertse and Győry restrict the multiply monogenic orders in such fields [6]. See 
the experimental data in Section 7 for three more families of quartic fields which appear 
to be monogenic.

The field over which the n-torsion points of an elliptic curve are defined is often 
denoted Q(E[n]) and plays a crucial role in the study of elliptic curves and their Galois 
representations. It is often referred to as a division field or a torsion field. For a survey, 
see [1]. In general, the discriminants of such fields are not known, although there has 
been some work on their ramification [22,24,25]. In the case when n is prime the different 
has been computed [8,23]. In the case of 3-division fields, generators, Galois groups and 
subfields have been very explicitly described [4]; see [5] for higher order. However, little 
similar work has been done on the subfields defined by division polynomials.

The Fueter polynomial we study arises from changing coordinates to the Fueter form of 
an elliptic curve: this choice has a history in explicit class field theory. Specifically, in [9], 
Cassou-Noguès and Taylor pursue Kronecker’s Jugendtraum for certain ray class fields 
of imaginary quadratic fields. They study elliptic curves with complex multiplication and 
good reduction away from 2. Let K be an imaginary quadratic field with discriminant 
dK < −4 and suppose 2 splits in K. For an ideal I ⊆ OK , let K(I) denote the ray 
class field of K mod I. Now suppose ξ is an odd OK ideal, that is, [OK : ξ] is odd. 
Cassou-Noguès and Taylor show that OK(4ξ) is monogenic over OK(4), using special 
values of the coordinates of the Fueter form.

Although the methods and the class of monogenic fields found in [9] differ from ours, 
we adopt their use of the Fueter form to access special values of an elliptic function. It is 
remarkable that in the non-CM case, these special values still seem to offer some advan-
tage in describing partial torsion fields explicitly, in the form of monogenic generators. Is 
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it possible that these special values provide computationally efficient integral bases for 
general partial torsion fields?

Our main method involves two ingredients: the algorithm of Guàrdia, Montes and 

Nart [18], which computes [OQ(θ) : Z[θ]]; and the p-adic valuations of values of division 

polynomials (in particular, T 4−6T 2−αT −3, the 3-division polynomial in Fueter form), 
which are computed in detail in work of the third author [33]. A basic description of the 

Montes algorithm is to be found in Section 2. Briefly, the algorithm uses the Newton 

polygon to compute vp([OQ(θ) : Z[θ]]) in terms of the number of lattice points on and 

under the polygon. The simplest case is a polygon which bounds no points, and this case 

corresponds to the p-adic valuation being 0. Thus, by picking α so that all the polygons 
are simple, we ensure that the corresponding field is monogenic.

It is possible to apply the Montes algorithm to the polynomial T 4 − 6T 2 − αT − 3
directly, but the computations are rather involved. This would provide a proof of The-
orem 1.1, but it would not demonstrate the new methods dependent upon interpreting 

the polynomial as a division polynomial of an elliptic curve. In particular, the efficient 
choice of lift φi (see Section 2) is guided by the elliptic curve.

One can view this project as part of the study the discriminants of number fields 
associated with Lattès maps. Briefly, a rational map φ : P1 → P1 is a Lattès map if there 

exists an elliptic curve endomorphism ψ : E → E and a finite covering π : E → P1 such 

that π ◦ ψ = φ ◦ π.
For example, one may take ψ(P ) = [n]P and π(x, y) = x. The corresponding Lattès 

map has degree n2, and it is from these maps that the division polynomials are derived 

(see Section 3.2).
The idea to compute the discriminants of number fields associated to Lattès maps is 

motivated by similar computations done for the power maps and Chebyshev polynomials. 
These three families of maps—Lattès, Chebyshev, and power—are postcritically finite. 
Consequently, if f is a member of any one of these families, then the tower of number 
fields generated by fn(x) − c, where c is a constant, is unramified outside a finite set of 
primes [10]. In some sense this simplifies the computation of the index as only finitely 

many primes need to be analysed. In the case that f is a Chebyshev or power map, the 

first author has used the Montes algorithm to compute the field discriminant precisely, 
and produced infinite towers of monogenic fields [2,3]. In the case of the n-division 

polynomial, we need only consider the primes dividing n and the discriminant of the 

curve. The shape of the Newton polygons tend to evolve predictably from one iterate to 

the next.

Acknowledgments. The authors are indebted to David Grant, Álvaro Lozano-Robledo 

and Joseph H. Silverman for helpful conversations.
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2. The Montes algorithm

In this section we give a basic description of the Montes algorithm so that Theorem 2.1
is understood. We refer more interested readers to [18] for the full details.

Let Φ ∈ Z[x] be a monic irreducible polynomial whose root θ generates a number 
field K, and denote by OK the ring of integers of K. Define ind Φ = [OK : Z[θ]]. 
Let indp Φ = vp(ind Φ) denote the p-adic valuation of indΦ. The value indp Φ may be 
computed as follows.

First, factor Φ modulo p and write

Φ(x) ≡ φ1(x)e1 · · ·φr(x)er (mod p),

where the φi ∈ Z[x] are monic lifts of the irreducible factors of Φ modulo p. The algorithm 
will terminate regardless of the choice of lifts, however this choice may simplify the 
computations significantly.

For each factor φi, there is a unique expression

Φ(x) = a0(x) + a1(x)φi(x) + a2(x)φi(x)2 + · · · + as(x)φi(x)s,

where the aj are integral polynomials satisfying deg aj < degφi. This expression is called 
the φi-development of Φ.

From the φi-development, construct the φi-Newton polygon by taking the lower convex 
hull of the points {(

j, vp(aj(x))
)

: 0 ≤ j ≤ s
}
, (1)

where vp(aj(x)) is defined to be the minimal p-adic valuation of the coefficients of aj(x). 
Only the sides of negative slope are of import, and we call the set of sides of negative 
slope the φi-polygon. The set of lattice points under the φi-polygon in the first quadrant 
carries important arithmetic data, and to keep track of these points, we define

indφi
(Φ) = (deg φi) · #{(x, y) ∈ N2 : (x, y) is on or under the φi-polygon}.

To each lattice point on the φi-polygon, we attach a residual coefficient

res(j) =
{

red(aj(x)/pvp(aj(x))) if
(
j, vp(aj(x))

)
is on the φi-polygon

0 otherwise,

where red : Z[x] → Fp[x]/(φi(x)) denotes the reduction map modulo p and φi. For any 
side S of the φi-polygon, denote the left and right endpoints of S by (x0, y0) and (x1, y1), 
respectively. We define the degree of S to be degS = gcd(y1−y0, x1−x0). In other words, 
degS is equal to the number of segments into which the integral lattice divides S. We 
associate to S a residual polynomial
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RS(y) =
deg S∑
i=0

res
(
x0 + i

(x1 − x0)
degS

)
yi ∈ Fp[x]/(φi(x))[y].

We note that res(x0) and res(x1) are necessarily non-zero, and in particular, it is always 
the case that degS = degRS .

Finally, if RS is separable for each S of the φi-polygon, then Φ is φi-regular, and if Φ
is φi-regular for each factor φi, then Φ is p-regular.

Theorem 2.1 (Theorem of the index). We have

indp Φ ≥
r∑

i=1
indφi

(Φ)

with equality if Φ is p-regular.

Proof. See [18, §4.4]. �
For our purposes, we need only the following simple corollary.

Proposition 2.2. If Φ is monic, and vp(a0) = 1 for each φi-development, then indp Φ = 0.

Proof. The Newton polygon for each φi-development has exactly one side of negative 
slope to consider, running from (0, 1) to (k0, 0) for some 0 < k0 ≤ s. Therefore there 
are no points under or on the segment, and Φ is p-regular. The result follows from 
Theorem 2.1. �
3. The Fueter model and curves with a point of order 4

The goal of this section is to examine a particular one-parameter family of elliptic 
curve equations, namely a normal form for a curve with a rational point of order 4
(although often called Tate’s normal forms, such families with rational n-torsion were 
known in the 19th century). This family was suggested by experimental data. In the next 
section we exhaustively analyse the valuations of special values of division polynomials 
for this family, describing all situations in which the Montes algorithm can be applied.

3.1. Tate’s normal form and the Fueter model

Tate’s normal form for an elliptic curve over Q with a Q-rational point of order 4 is 
given by the Weierstrass form

E : y2 + (α + 8β)xy + β(α + 8β)2y = x3 + β(α + 8β)x2, (2)
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where α, β ∈ Q. However, by a change of coordinates, we may assume that α, β ∈ Z

and are coprime. Up to isomorphism, this is a one-parameter family of curves with (0, 0)
being a point of order 4. The invariants are:

Δ = β4(α− 8β)(α + 8β)7, j = (α2 − 48β2)3

β4(α− 8β)(α + 8β) . (3)

Throughout the remainder of the paper, we will often use a := α + 8β for ease of 
notation.

Starting with an elliptic curve in Tate normal form ensures we have a point of order 
four, but we also require a model that simplifies the coefficients of the division polyno-
mials. The Fueter model accomplishes this. Applying the change of coordinates

(x, y) =
(
aβ

T
− aβ,

1
2

(
(aβ) 3

2T1

T 2 − a2β

T

))
, (4)

one obtains

T 2
1 = T

(
4T 2 + α

β
T + 4

)
,

which is known as the Fueter model [9]. The identity of the group is (T, T1) = (0, 0), and 
the point

Q0 :=
(
1,
√
a/β

)
=

(
1,
√

8 + α/β
)

is a point of order 4. Note that this change of coordinates is defined over the extension 
Q(

√
aβ), but the field of definition of the x-coordinate of a point is the same as the field 

of definition of the corresponding T -coordinate.
Suppose p is a prime at which E has bad reduction. If p | a or p | β, then the 

singular point modulo p on the Weierstrass model, namely (0, 0), becomes Q0 modulo 
p on the Fueter model. However, if p | (α − 8β), then the singular point modulo p on 
the Weierstrass model, namely (−25β2, 27β3), becomes (−1, 0) modulo p on the Fueter 
model. When p is an odd prime that divides α− 8β, a rational lift of the singular point 
will not necessarily exist.

3.2. Division polynomials, Weierstrass and Fueter

By definition, the n-th division polynomial Ψn(x, y) for an elliptic curve E in Weier-
strass form

E : y2 + a1xy + a3 = x3 + a2x
2 + a4x + a6

has the property that
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[n](x, y) =
(

φn(x, y)
Ψn(x, y)2 ,

ωn(x, y)
Ψn(x, y)3

)
,

where φn, ωn, Ψn are coprime polynomials. The n-th division polynomial can also be 
defined by stipulating that Ψ1(x, y) = 1, Ψ2(x, y) = 2y + a1x + a3 and for n > 2,

Ψn(x, y) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
n

∏′

P∈E[n]�{O}
(x− x(P )) n is odd

n

2 Ψ2(x, y)
∏′

P∈E[n]�E[2]

(x− x(P )) n is even,

where the ′ on the product indicates that we include only one of each pair P and −P

in the product. This definition makes it clear that the odd division polynomials are 
univariate in x and have degree n

2−1
2 . Further, the n-th division polynomial has divisor ∑

P∈E[n](P ) − n2(O). One can compute,

Ψ1 = 1,

Ψ2 = 2y + a1x + a3,

Ψ3 = 3x4 + b2x
3 + 3b4x2 + 3b6x + b8,

Ψ4 = Ψ2(2x6 + b2x
5 + 5b4x4 + 10b6x3 + 10b8x2 + (b2b8 − b4b6)x + (b4b8 − b26)).

The group law of the elliptic curve manifests as a recurrence relation among the Ψn, ωn

and φn; in particular, for n ≥ 3,

Ψ2n−1 = Ψn+1Ψ3
n−1 − Ψn−2Ψ3

n, Ψ2nΨ2 = Ψn

(
Ψn+2Ψ2

n−1 − Ψn−2Ψ2
n+1

)
. (5)

Therefore, having computed the first four division polynomials directly, we can obtain 
all the others recursively.

The discriminants of division polynomials, as polynomials in x, have been computed 
by Verdure:

Theorem 3.1 ([36, Theorem 1]).

Discx(Ψn) =
{

(−1)n−1
2 n

n2−3
2 Δn4−4n2+3

24 n odd
(−1)n−2

2 16nn2−6
2 Δn4−10n2+24

24 n even.

In [12], Fueter defined similar polynomials in T and T1 which we will call Fueter 
polynomials. In particular, for an elliptic curve E given by the Fueter form T 2

1 = T (4T 2+
αT + 4), one defines F1 = 1, F2 = T1√ , and for n > 2,
β T
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Fn =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

∏′

P∈E[n]�{O}
(T − T (P )) n is odd

n

2F2
∏′

P∈E[n]�E[2]

(T − T (P )) n is even.
(6)

Here the above products are taken over the nontrivial n-torsion points with distinct 
T -coordinates. We also exclude the 2-torsion from the product when n is even. The first 
few Fueter polynomials are:

F1 = 1,

F2 = T1√
T
,

F3 = T 4 − 6T 2 − α

β
T − 3,

F4 = 2 T1√
T

(
T 6 + α

β
T 5 + 10T 4 − 10T 2 − α

β
T − 2

)
.

Furthermore, they satisfy a recurrence relation:

F2n−1 = (−1)n(Fn+1F
3
n−1 − Fn−2F

3
n),

F2nF2 = (−1)nFn

(
Fn+2F

2
n−1 − Fn−2F

2
n+1

)
. (7)

Our Fueter polynomials for odd n coincide with those defined by Cassou-Noguès and 
Taylor in [9, §IV.3]. However, our even Fueter polynomials are distinct. In making our 
definition, we wished to preserve the recurrence relation.

One now observes that for odd n (our primary interest), the polynomials Ψn(x) and 
Fn(T ) define the same field extension. We will refer to this field extension as the n-th par-
tial torsion field. When n is an odd prime, it is the field of definition of the x-coordinate 
or T -coordinate of a single point of order n, which is generically of degree (n2 − 1)/2.

Although we will only require the following proposition for odd n, we record the full 
relationship between the division polynomials of the Weierstrass and Fueter forms.

Proposition 3.2. We have

Ψn =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(−1)

n−1
2

(
aβ

T

)n2−1
2

Fn if n is odd

(−1)
n+2

2

(
aβ

T

)n2−1
2

Fn if n is even,

where Fn is defined in equation (6).
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Proof. Using the change of coordinates (4), we check the result directly for n = 1, 2, 3, 4. 
Proceeding by induction, suppose we have the result for all n < N and consider ΨN .

Case I: N odd. In this case, letting N = 2m + 1, we have by (5) that

ΨN = Ψ2m+1 = Ψm+2Ψ3
m − Ψm−1Ψ3

m+1.

Suppose m is even. Then, using (7) and the inductive hypothesis,

ΨN = −
(aβ
T

) (m+2)2−1+3m2−3
2

Fm+2F
3
m −

(aβ
T

) (m−1)2−1+3(m+1)2−3
2

Fm−1F
3
m+1.

= −
(aβ
T

) (2m+1)2−1
2 (

Fm+2F
3
m + Fm−1F

3
m+1

)
= −

(aβ
T

)N2−1
2

FN .

An analogous computation yields the result if m is odd.
Case II: N even. Letting N = 2m, we have from (5) that

Ψ2ΨN = Ψ2Ψ2m = Ψ2
m−1ΨmΨm+2 − Ψm−2ΨmΨ2

m+1.

Again suppose m is even. We have from (7) and the inductive hypothesis that

Ψ2ΨN = −
(aβ
T

) 2(m−1)2−2+m2−1+(m+2)2−1
2

F 2
m−1FmFm+2

+
(aβ
T

) (m−2)2−1+m2−1+2(m+1)2−2
2

Fm−2FmF 2
m+1

= −
(aβ
T

) (2m)2+2
2 (F 2

m−1FmFm+2 − Fm−2FmF 2
m+1)

= −
(aβ
T

)N2+2
2

F2FN .

Dividing by Ψ2 = (aβ)
3
2 T1

T 2 we obtain our desired expression. Finally, as before, if m is 
odd, an analogous computation finishes the proof. �

We also record the discriminant of the odd Fueter polynomials.

Proposition 3.3. For n odd, we have

Disc(Fn) = (−1)
n−1

2 n
n2−3

2
(
β−2(α− 8β)a

)n4−4n2+3
24 .



T.A. Gassert et al. / Journal of Number Theory 197 (2019) 361–382 371
Proof. To compute the discriminant, we use Proposition 3.2. Let d = (n2 − 1)/2, the 
degree of Ψn. Let n be odd. Then,

DiscFn(T ) = (aβ)−2d(d−1) Disc(aβ)dFn(T )

= (aβ)−2d(d−1) Disc
(

Ψn

(
aβ

T
− aβ

)
T d

)
= (aβ)−2d(d−1) Disc(Ψn(aβT − aβ))

= (aβ)−d(d−1) Disc(Ψn(T − aβ))

= (aβ)−d(d−1) Disc(Ψn(T )).

Next, we use the discriminant of E (3) and Theorem 3.1. �
3.3. Tate’s algorithm

The purpose of this subsection is to give a full analysis of the reduction of the curve 
E in Tate’s normal form, via Tate’s algorithm.

Proposition 3.4. Let p be an odd prime, p | Δ. Let Ẽ denote the reduction of E modulo p. 
Let f denote the exponent of p in the conductor of E. Let c be the number of components 
in the special fiber of the minimal proper regular model of the curve over Zp. Then:

(1) If p | β, then f = 1, c = 4vp(β), and E has Kodaira type I4vp(β). In this case, 
E is in minimal Weierstrass form with respect to p, and the point (0, 0) has singular 
reduction.

(2) If p | (α− 8β), then f = 1 and E has Kodaira type Ivp(α−8β). Furthermore,
(a) If p ≡ 1 (mod 4), then c = vp(α− 8β).
(b) If p ≡ 3 (mod 4), then

c =
{

1 if vp(α− 8β) is odd
2 if vp(α− 8β) is even.

In these cases, E is in minimal Weierstrass form with respect to p, and the point 
(−25β2, 27β3) on Ẽ is singular.

(3) If p | a, we let w = 
vp(a)
2 �. Then

(a) If vp(a) is odd, then f = 2, c = 4, and E has Kodaira type I∗vp(a).
(b) If vp(a) is even, then f = 1, E has Kodaira type Ivp(a), and

c =

⎧⎨⎩vp(a) if
(

βap−2w

p

)
= 1

2 if
(

βap−2w

p

)
= −1.
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In this case, E is in minimal Weierstrass form with respect to p after the change of 
coordinates (x, y) = (p2wx′, p3wy′) and the point (0, 0) has singular reduction.

Proof. We follow Tate’s algorithm as described in [30, IV §9].
Case I: Suppose p | β. We apply Tate’s algorithm and note that p � b2 = a2 + 4βa. 

Hence we have Kodaira type I4vp(β) and f = 1. Since T 2 + αT splits completely over 
Z/pZ, c = 4vp(β).

Case II: Suppose p | (α − 8β). In this case the singular point on the reduced curve 
is (−25β2, 27β3). Following Tate’s algorithm, we make a change of coordinates (x′, y′) =
(x − 25β2, y+ 27β3). For ease of notation we will write x′ as x and y′ as y. We now have

E′ : y2 + axy + (28β3 + 25β2a + βa2)y

= x3 + (−3 · 25β2 + βa)x2 + (−26β3a− 27β3a + 3 · 210β4)x

+ (−27β4a2 + 5 · 210β5a− 3 · 214β6).

Continuing, we compute b2 = a2
1 + 4a2. Note a ≡ 24β mod p. We have

b2 = a2 + 22(−3 · 25β2 + βa) ≡ 28β2 − 3 · 27β2 + 26β2 = −26β2.

This shows that p � b2 so that we have Kodaira type Ivp(α−8β) and f = 1. Continuing, 
we consider T 2 +aT +(3 ·25β2 −βa) over Z/pZ. Reducing we have T 2 +24βT +5 ·24β2. 
Applying the quadratic formula, the roots are −8β ± 4β

√
−1. Thus the splitting field 

is Z/pZ if and only if p ≡ 1 mod 4. Hence c = vp(α − 8β) if p ≡ 1 mod 4. Further, if 
p ≡ 3 mod 4, then c = 1 if vp(α− 8β) is odd and c = 2 if vp(α− 8β) is even.

Case III: Now assume p | a. Recall w = 
vp(a)
2 �. We make the change of coordinates 

(x, y) = (p2wx′, p3wy′). We have a1 �→ a1p
−w, a2 �→ a2p

−2w, and a3 �→ a3p
−3w. Note 

Δ′ = Δp−12w so that vp(Δ′) = 7vp(a) − 12w. Thus, if vp(a) is odd, then vp(Δ′) =
vp(a) + 6, and if vp(a) is even, then vp(Δ′) = vp(a).

Part a: Suppose vp(a) is odd. Applying Tate’s algorithm, we see p | b′2 = (a1p
−w)2 +

4a2p
−2w, p3 | b′8 = a2a

2
3p

−8w, and p3 | b′6 = a2
3p

−6w. Hence we consider T 3−a2p
−2w−1T 2

over Z/pZ. This polynomial has a double root at T = 0 and a simple root at T =
a2p

−vp(a). Thus we have Kodaira type I∗vp(a) and f = 2. Following the subprocedure to 
step 7, we find c = 4.

Part b: Suppose vp(a) is even. Applying Tate’s algorithm, we see that p � b′2 =
(a1p

−w)2 − 4a2p
−2w. Hence we have Kodaira type Ivp(a) and f = 1. Considering 

T 2 − βap−2w over Z/pZ, we see that if 
(

βap−2w

p

)
= 1, then c = vp(a). Conversely, 

if 
(

βap−2w

p

)
= −1 then c = 2. �

Care must be taken when E has bad reduction at 2. When 2 | β, the results and proof 
used above can be applied by replacing p with 2. When 2 | a we see 2 | α and hence 
2 | α− 8β.
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Proposition 3.5. Let the notation be as before and define w = 
v2(a)
2 �.

(1) If v2(a) = 1, then E has Kodaira type I∗1 , f = 3, and c = 4. In this case, E
is in minimal Weierstrass form with respect to 2 and the point (0, 0) has singular 
reduction.

(2) If v2(a) = 2, then E has Kodaira type III.
(3) If v2(a) is odd and greater than 1, then E has Kodaira type I∗v2(a).
(4) If v2(a) = 4 and βa+2wa−22w

22w+1 is odd, then E has Kodaira type I∗0 .
(5) If v2(a) = 4 and βa+2wa−22w

22w+1 is even, then we have two subcases.
(a) If βa

2

28 ≡ 1 mod 4, then E has Kodaira type I∗2 .
(b) If βa

2

28 ≡ 3 mod 4, then E has Kodaira type I∗3 .
(6) If v2(a) > 4 is even, we have several subcases:

(a) If βa+2wa−22w

22w+1 is odd, then we have Kodaira type I∗v2(a)−4.
(b) If βa+2wa−22w

22w+1 is even, we have further subcases:
(i) If v2(a) = 6, we have Kodaira type III∗.
(ii) If v2(a) = 8, then E has good reduction at 2.
(iii) If v2(a) ≥ 10, we have Kodaira type Iv2(a)−8.

Proof. We follow Tate’s algorithm as described in [30, IV §9].
Case I: v2(a) = 1. Applying Tate’s algorithm, we see 2 | b2, 4 | a6, 8 | b8, and 8 | b6. 

Thus we consider

P (T ) = T 3 + βa

2 T 2 = T 2
(
T + βa

2

)
.

We see P (T ) has a simple root and a double root modulo 2. Hence we have Kodaira type 
I∗n and f = v2(Δ) − 4 − n. To determine n and c we consider the polynomial

Y 2 + βa2

4 Y.

This polynomial has distinct roots in Z/2Z. Hence n = 1 and c = 4. Noting v2(Δ) = 8, 
the result follows.

Case II: v2(a) > 1. We make the change of coordinates (x, y) = (22wx′, 23wy′). For 
ease of notation we will write x and y for x′ and y′.

Case II-A: v2(a) = 2. Then 8 � b8 and we have type III.
Case II-B: v2(a) odd. If v2(a) is odd we consider P (T ) ≡ T 2(T +1) mod 2. When the 

subprocedure to step 7 terminates, we are left with type I∗v2(a).
Case II-C: v2(a) = 4. In step 6 we change coordinates to obtain

y2 +
( a

w
+ 2

)
xy + βa2

3w y = x3 +
(

βa
2w + a

w
− 1

)
x2 + βa2

3w x.
2 2 2 2 2
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We consider

P (T ) = T 3 + βa + 2wa− 22w

22w+1 T 2 + βa2

23w+2T.

If βa+2wa−22w

22w+1 is odd, then we have type I∗0 . If βa+2wa−22w

22w+1 is even we change coordinates, 
setting x = x′ + 2 and again abuse notation by letting x = x′. Our curve becomes

y2 +
( a

23 + 2
)
xy +

(
βa2

23w + a

2w−1 + 4
)
y

= x3 +
(
βa + 2wa− 22w + 6 · 22w

22w

)
x2 +

(
βa2

23w + βa + 2wa− 22w

22w + 12
)
x.

Following the subprocedure to step 7, we obtain the desired result.
Case II-D: v2(a) > 4 even and βa+2wa−22w

22w+1 odd. Then P (T ) ≡ T 2(T + 1) mod 2. 
Following the subprocedure to step 7, we find we have type I∗v2(a)−4.

Case II-E: v2(a) > 4 even and βa+2wa−22w

22w+1 even. Then P (T ) has a triple root.
Case II-E-i: v2(a) = 6 and βa+2wa−22w

22w+1 even. Then 16 � a4 = βa2

23w so we have type III∗.
Case II-E-ii: v2(a) > 6 even and βa+2wa−22w

22w+1 even. Then our Weierstrass equation 
was not minimal. We make the change of coordinates (x, y) = (4x′, 8y′) to obtain

y2 +
( a

2w+1 + 1
)
xy + βa2

23w+3 y = x3 + βa + 2wa− 22w

22w+2 x2 + βa2

23w+4 x.

Case II-E-ii-a: v2(a) = 8 and βa+2wa−22w

22w+1 even. One checks that if v2(a) = 8, our 
curve has good reduction at 2.

Case II-E-ii-b: v2(a) > 8 even and βa+2wa−22w

22w+1 even. We have type Iv2(a)−8. �
4. Valuation of division polynomials

The purpose of this section is to determine the valuation of Fn evaluated at the 
singular point. This is done by reference to the valuations of Ψn at the singular point, 
and the change of variables of Proposition 3.2. We demonstrate two methods to obtain 
these valuations. The first is to apply the results of [33], which give explicit valuations 
based on the reduction data of Proposition 3.4. The second is a hands-on approach using 
the recurrence relations for division polynomials, which is possible in simpler cases. We 
consider only odd primes.

4.1. Odd primes dividing α− 8β

Recall that, when p | (α− 8β), the singular point modulo p is (−25β2, 27β3).
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Proposition 4.1. Suppose p | (α−8β). Let Q be a point of E(Q) which is singular modulo 
p, and satisfies x(Q) = −25β2. Let Q′ be the image of Q under the change of coordinates 
to Fueter form. Suppose that n is odd. Then,

vp(Fn(Q′)) = vp(Ψn(Q)) = vp(α− 8β)n
2 − 1
8 .

To prove Proposition 4.1, we begin with a lemma.

Lemma 4.2. Suppose p | (α − 8β) and let Q be as above. Then, [2]Q does not reduce to 
the singular point mod p.

Proof. Recall a = α + 8β. We compute

x([2]Q) = 220β8 − b4210β4 + b626β2 − b8
−217β6 + b2210β4 − b426β2 + b6

= 220β6 − 210a3β3 + 26a4β2 − a5β

−217β4 + 210a2β2 + 212aβ3 − 26a3β + a4 .

We divide the numerator and denominator by a − 16β = α− 8β to obtain

−a4β + 3 · 24a3β2 − 28a2β3 − 212aβ4 − 216β5

a3 − 3 · 24a2β + 28aβ2 + 213β3 .

Reducing mod p we obtain

x([2]Q) ≡ −24β2.

Thus [2]Q does not reduce to the singular point. �
Following [33], we define, for any integers a, � such that � 
= 0, the sequence

Rn(a, �) =
⌊
n2â(�− â)

2�

⌋
−
⌊
n̂a(�− n̂a)

2�

⌋
, (8)

where x̂ denotes the least non-negative residue of x modulo �. Theorem 9.3 of [33] gives 
the valuations of the sequence of division polynomials, evaluated at a point of multi-
plicative reduction, in terms of such sequences. We apply this to our specific situation 
here.

In particular, we will encounter the sequence Rn(1, 2), which begins from n = 1 as 
follows:

0, 1, 2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, . . .

The odd terms of the sequence have a simple closed form.
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Lemma 4.3. For n odd, Rn(1, 2) = n2−1
4 .

Proof. For n odd, we have â = n̂a = 1 in (8). Therefore,

Rn(1, 2) =
⌊
n2

4

⌋
−

⌊
1
4

⌋
=

⌊
n2

4

⌋
= n2 − 1

4 . �
Proposition 4.4. Suppose p | (α − 8β) and let Q be as above. Write K for the minimal 
extension of Q so that Q ∈ E(K), and write L for a minimal unramified extension of 
K such that E has split multiplicative reduction over L. Proposition 3.4 shows such an 
L exists. Let v′p be a lift of vp to L. Let n > 0 and suppose 4 � n. Then v′p = 2vp if and 
only if vp(α− 8β) is odd; otherwise v′p = vp. We have

v′p(Ψn(Q)) =
v′p(α− 8β)

2 Rn(1, 2).

If furthermore n is odd, then

vp(Ψn(Q)) = vp(α− 8β)n
2 − 1
8 .

Proof. One can compute that K is the extension obtained by adjoining√
α4 − 25α3β − 27α2β2 + 5 · 211αβ3 − 15 · 212β4

=
√
α− 8β

√
α3 − 24α2β − 320αβ2 + 7680β.

We also have

α3 − 24α2β − 320αβ2 + 7680β ≡ 212β3 (mod α− 8β).

Therefore, since p is odd, divides (α − 8β), and is coprime to β, the extension K is 
ramified at p if and only if vp(α− 8β) is odd. Hence, v′p = 2vp if and only if vp(α− 8β)
is odd; otherwise v′p = vp.

Since we have split multiplicative reduction, the group of components over L is iso-
morphic to Z/v′p(α−8β)Z. The component containing Q has additive order exactly 2 by 
Lemma 4.2. Thus it may be identified with v′p(α− 8β)/2. Hence, in the language of [33], 
�Q = v′p(α− 8β) and aQ = v′p(α− 8β)/2. Applying [33, Theorem 9.3], we find that

v′p(Ψn(Q)) = Rn(v′p(α− 8β)/2, v′p(α− 8β)).

By [33, Proposition 8.2(iv)],

v′p(Ψn(Q)) =
v′p(α− 8β)

Rn(1, 2).
2
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For odd n, Ψn(x) is a polynomial in x alone and therefore Ψn(Q) ∈ Q. Accordingly, 
by Lemma 4.3, we obtain the given statement. �

Proposition 4.1 follows from Propositions 4.4 and 3.2 (recall that α, β are coprime 
integers).

4.2. Odd primes dividing a or β

In this case, we apply the recurrence relation for the division polynomial to obtain 
valuations.

Proposition 4.5. Suppose p | β or p | a (these cases are mutually exclusive). Then (0, 0)
is a point of order 4 and has singular reduction on Ẽ; the corresponding point in Fueter 
form has T = 1. Suppose that n is odd.

If p | β, then

vp(Ψn(0)) = 3n2 − 3
8 vp(β) and vp(Fn(1)) = −n2 − 1

8 vp(β).

If p | a, then

vp(Ψn(0)) = 5n2 − 5
8 vp(a) and vp(Fn(1)) = n2 − 1

8 vp(a).

Proof. We will proceed by induction. Recall a = α + 8β. For the base cases we have 
Ψ1(0) = 1, Ψ2(x, y) = 2y+ax +a2 so Ψ2(0, 0) = a2. Further, Ψ3 = 3x4 + b2x

3 +3b4x2 +
3b6x + b8 = 3x4 +(a2 +4βa)x3 +3βa3x2 +3β2a4x +β3a5. Hence Ψ3(0) = β3a5. We have 
Ψ4 = Ψ2(2x6 + b2x

5 +5b4x4 +10b6x3 +10b8x2 +(b2b8 − b4b6)x +(b4b8 − b26)). Evaluating 
at 0 we obtain Ψ4(0, 0) = Ψ2(0, 0)(b4b8 − b26) = Ψ2(0, 0)(β4a8 − β4a8) = 0.

First we prove that if 4 | n, then Ψn(0, 0) = 0. Suppose we have the result for all 
n < N and suppose 4 | N . Let N = 2m, so that m is even. Then

Ψ2ΨN = Ψ2Ψ2m = Ψ2
m−1ΨmΨm+2 − Ψm−2ΨmΨ2

m+1.

Now either 4 | m, or 4 | m − 2 and 4 | m + 2. Hence the result follows by induction.
Now suppose that vp(Ψn(0)) = vp(a)5n2−5

8 + vp(β)3n2−3
8 for all odd n < N . Suppose 

N is odd, and write N = 2m + 1. We have

ΨN = Ψ2m+1 = Ψm+2Ψ3
m − Ψm−1Ψ3

m+1.

Suppose first that m is even. Then either m or m + 2 is divisible by 4. Hence
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vp(ΨN (0)) = vp(Ψm−1(0)) + 3vp(Ψm+1(0))

= vp(a)
5(m− 1)2 − 5

8 + vp(β)3(m− 1)2 − 3
8

+ vp(a)3
5(m + 1)2 − 5

8 + vp(β)33(m + 1)2 − 3
8

= vp(a)
5(2m + 1)2 − 5

8 + vp(β)3(2m + 1)2 − 3
8 .

Likewise, if m is odd, either m − 1 or m + 1 is divisible by 4. Hence

vp(ΨN (0)) = vp(Ψm+2(0)) + 3vp(Ψm(0))

= vp(a)
5(m + 2)2 − 5

8 + vp(β)3(m + 2)2 − 3
8

+ vp(a)3
5m2 − 5

8 + vp(β)33m2 − 3
8

= vp(a)
5(2m + 1)2 − 5

8 + vp(β)3(2m + 1)2 − 3
8 .

This gives the stated results for Ψn. For Fn, we use the change of coordinates between 
Weierstrass and Fueter form and Proposition 3.2. �
5. Proof of the main theorem

Proof of Theorem 1.2. Suppose E is an elliptic curve defined over Q, and suppose a 
twist E′ has a rational 4-torsion point, hence can be put into Tate normal form as in (2)
with α, β ∈ Z coprime. The j-invariant of the elliptic curve is invariant under twisting. 
In Tate normal form, the discriminant and j-invariant are of the form

Δ = β4(α− 8β)(α + 8β)7, j = (α2 − 48β2)3

β4(α− 8β)(α + 8β) , α, β ∈ Z.

Therefore E′ has good reduction modulo p unless p | β(α− 8β)(α + 8β).
We now show that conditions (1), (2) and (3) of the statement are equivalent. Under 

condition (1), we have β = 1 by Proposition 3.4. In this case, requirements (2) and (3) are 
evidently equivalent. Assume condition (1) holds. For odd primes, Proposition 3.4 implies 
that p2 does not divide α± 8. For p = 2, Proposition 3.5 implies that v2(α+ 8) ∈ {0, 1}. 
This implies v2(α− 8) ∈ {0, 1} also, and we have demonstrated condition (3). Hence (1)
implies (2) and (3). Conversely, if condition (2) holds, we apply Propositions 3.4 and 3.5
to conclude that (1) holds. Thus we have demonstrated all the conditions are equivalent.

The field Kα generated by the x-coordinate of a single point of order 3 is invariant 
under the twist. Therefore we now assume E itself has a rational 4-torsion point. Change 
coordinates so that E is in Tate normal form and Fueter form as in Section 3.1 with α ∈ Z

and β = 1. We then find that the partial 3-torsion field is generated by the 3-division 
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Fueter polynomial, F3(T ) = T 4 − 6T 2 − αT − 3. Let θ be a root of this polynomial, and 
let K = Q(θ). Under the equivalent conditions of the theorem, the polynomial F3(T ) is 
irreducible, as observed in [11, Proposition 2.10], so K is a quartic field.

We apply the Montes algorithm. It calls for examining the polynomial F3 developed 
around any lift of a repeated irreducible factor modulo p; each such situation may con-
tribute a factor to the index [OK : Z[θ]]. If no such non-trivial factors appear, we can 
conclude OK = Z[θ].

We will show prime-by-prime that the only repeated factors are linear of the form 
T − T0 and that vp(F3(T0)) = 1.

Case I: p = 2. Modulo 2, the polynomial F3 becomes T 4 − αT − 1. If α is odd, this 
is irreducible with no repeated roots. If α is even, then the repeated root is 1, so we 
develop F3 around T − 1, obtaining a constant term of −α− 8, which we have assumed 
to be squarefree. Therefore in this case v2(F3(1)) = 1.

Case II: p = 3. Modulo 3, the polynomial F3 becomes T 4 − αT , and α is a repeated 
root. If 3 divides α, then a lift of this root is 0, and v3(F3(0)) = 1. If α ≡ 1 (mod 3), 
then 4 is a lift, and v3(F3(4)) = 1. Else −4 is a lift of α, and v3(F3(−4)) = 1.

Case III: p ≥ 5. Now, suppose F3 has a repeated irreducible factor modulo an odd 
prime p. The roots of F3 are the four x-coordinates of non-trivial 3-torsion; this means 
that reduction modulo p fails to be injective on E[3]. This occurs if and only if E has 
bad reduction at p, or p = 3.

Suppose p ≥ 5 is a prime of bad reduction, and suppose Q is a point on E having 
singular reduction modulo p. Specifically, if p | α + 8, take Q = (0, 0). If p | α − 8, take 
x(Q) = −25. Then, the only repeated root of F3 modulo p is T (Q) (since the failure 
of injectivity under reduction must take the form of 3-torsion points mapping to the 
singular point, as the map to the non-singular part has torsion-free kernel). Then, using 
the fact that α± 8 are not divisible by p2, we learn from Propositions 4.1 and 4.5 that 
vp(F3(T (Q))) = 1.

In each case, we find that vp(F3(T0)) = 1 where T0 is the repeated root. Therefore the 
associated Newton polygon starts at height 1 on the y-axis. Hence, the polygon cannot 
pass through any lattice points and cannot contain any lattice points, and the polygon 
has only one segment, as in Proposition 2.2. Therefore it is p-regular. By the Montes 
algorithm, this implies that the index [OK : Z[θ]] is not divisible by p.

As we have verified that the index [OK : Z[θ]] is not divisible by any prime, we 
conclude that OK = Z[θ]. �

Theorem 1.1 follows immediately.

6. Further notes

Let θ be a root of T 4 − 6T 2 − αT − 3. Consider the field Kα = Q(θ). This family 
of number fields was studied by Fleckinger and Vérant [11]. Let α ≥ 9, α ∈ Z, and 
α 
= 24. Then Fleckinger and Vérant showed that Kα is an S4 quartic field with two real 
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embeddings [11, Proposition 2.10]. They give an explicit basis for the ring of integers 
in general [11, Proposition 2.11], but it is not a power basis and they do not mention 
monogeneity. Finally, they remark that when 3 | α, then 1 + α

3 θ + 2θ2 is a unit. In fact, 
they point out that there are no other parametrized units in this field. Experimentally, 
we observed surprisingly small regulators and surprisingly large class groups for these 
fields; the existence of a simple parametrized unit is a possible explanation.

Fleckinger and Vérant also study the family of quartic fields given by

T 4 + α

2 T
3 + 6T 2 + α

2 T + 1

of discriminant −4((α/2)2−16)3, which they observe arise from a point of order four on a 
Fueter model [11]. The authors prove that this family is monogenic whenever (α/2)2−16
is odd and squarefree, and α ≥ 12 [11, Corollary 1.4]. This appears to be a D8 family. 
We leave it as an open question whether the methods of this paper may apply to this 
family.

7. Experimental data

As part of our exploration, we took a survey of elliptic curves to determine the preva-
lence of monogenic fields, using Sage Mathematics Software [34] and pari/GP [35]. Up to 
isogeny, there are 11575 curves of conductor less than 10000 whose partial 3-torsion field 
is monogenic. The torsion points of many curves share the same field of definition, and 
in all, these 11575 curves yield 1026 unique fields. In particular, the following families of 
fields are prevalent.

Polynomial Discriminant
T 4 − 6sT 2 − tT − 3s2 −33(t2 − 64s3)2

T 4 − T 3 − 3sT 2 − (4t + 3s2)T + t −33(16t2 + (24s2 + 12s + 1)t + (9s4 + s3))2

T 4 − 2T 3 − 6sT 2 − (2t + 6s2)T + t −2433(t2 + (6s2 + 6s + 1)t + (9s4 + 2s3))2

In the table above, T is the indeterminate, while s, t ∈ Z parametrize the family. Each 
of these quartic field families appears to be S4 monogenic under appropriate conditions 
on the discriminant and the parameters.
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