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Abstract

Let p1,pa2, ... be the sequence of all primes in ascending order. The following result is
proved: for any given positive integer k and any given ¢;e€{0,1} (i = 1,2, ..., k), there exist
infinitely many positive integers n with

e1(n!) = g (mod 2), ex(n!) = er(mod 2), ..., ex(n!) = g (mod 2),

where ¢;(n!) denotes the exponent of the prime p; in the standard factorization of positive
integer n!. In 1997 Berend proved a conjecture of Erdos and Graham, that is, the conclusion
with all ¢; = 0.
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1. Introduction

Let p1,p2, ... be the sequence of all primes in ascending order. For a positive

integer n, let ¢;(n) be the nonnegative integer with pf’<") | n and pf"(”)H t n. In 1997,

Berend [1] proved a conjecture of Erdos and Graham (cf. [3, p. 77]) by showing that
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for every positive integer k there exist infinitely many positive integers n with
e1(n!) = 0(mod 2), ex(n!) = 0(mod 2), ..., ex(n!) = 0(mod 2).

It is clear that n = 1 is a solution. The initial value n = 1 is very useful in Berend’s
proof. For any other pattern, we do not know if an initial value exists. An interesting
generalization is (see [2]).

Problem. Given a positive integer k and ¢, ..., ¢, €{0, 1}, does there exist some n> 1
with

e;(n) =¢(mod2), i=1,2, ... k?

For 2<k <5 Chen and Zhu has verified that every pattern of length k appears, and
believes that for each positive integer k, every pattern of length k appears (see [2, p.
2]). Chen and Zhu [2] showed that if there is an initial value n, then the initial value is
bounded by an explicit bound depending on k and there are infinitely many such n
with the difference of adjacent n less than an explicit bound depending on k.
Recently, Sander [4] posed the following conjecture:

Conjecture. Let q1,q>, ...,qx be distinct primes, and let ¢;,€{0,1} (i=1,2,....k).
Then there are infinitely many positive integers n such that

€, (n!) = ei(mod 2),

where e, (n!) is the exponent of q; in the standard factorization of n!.

The conjecture is equivalent to a similar conjecture with the assumption that
q1,92, ..., qk are the first k primes if we do not fix k. Sander [4] proved the conjecture
for k = 2. In the present paper, we improve the method in Sander [4] and show that

for any pattern there exists an initial value n. This implies that the answer to the
above problem is affirmative and the above conjecture is true for all k.

Theorem 1. For any given positive integer k and any ¢;€{0,1} (i =1,2,...,k), there
exist infinitely many positive integers n with

ei(n!) = ¢1(mod 2), ex(n!) = e,(mod 2), ..., ex(n!) = gr(mod 2).

2. Proof

Lemma 1 (Sander [4]). Let n be a positive integer with p;-adic expansion n =
ngp! + - +mpi+ng, 0<n;<p; j=0,1,...,5). Then

N = 2/21 n; (mod2) fori=1,
81(7’1.) = ZZU . (mOd 2) for L
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Lemma 2. If there exist k integers ny,n, ..., n; and 25 integers my, mo, ..., my with
ni+m>0 (i=12,....k j=1,2, ., 25 and

(er((m +m))), ex((n2 +my))), ... ex((mc +m;)!)), j=1,2, L2k

represent all parities modulo 2, then there exist infinitely many positive integers n for
each of which all n+m; >0 and

(er((n+m)),ex((n+m)Y), ..., e((n+m)h), j=12,..2"
represent all parities modulo 2.

Proof. Assume that 2% >max;; {n; + m;}. By the Chinese Remainder Theorem,
there exist infinitely many positive integers n>max; n; such that

N i =1,2,. k.

n = n;(mod p;

Noting that

‘_n_ni 2t ) ) 0 ) ) 2t
n+m_,——p2t p;i +ni +my, <n; +m; <p;,
i

by Lemma I, we have

n—n;

e+ mt = ("

)!> +e((n +m;)!)  (mod2).
Thus, for j = 1,2, ...,2%, we have
(er((n+m)!), ex((n+my)!), ... ex((n +m;)!))

() (E0) o (5)

+ (e1((m1 +m)!), ex((m2 +m)!), ..., ex((ne +m;)!)) (mod2).

Lemma 2 follows from the above congruent equality by the observation that for any
given (a1, a, ...,a;) e ZF,

(ar,az, ...;ar) + (x1, X2, .0y Xk)

goes through all 2F parities modulo 2 as (xy, X, ..., xx) goes through all 2* parities
modulo 2. This completes the proof of Lemma 2. [
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Theorem 2. For any given k=1, there exist 2¥ positive integers Iy, b, ..., b such that
(e (), ea(lY), ... en()), j=1,2,...,2F
represent all parities modulo 2.

Proof. We use induction on k. For k = 1, Theorem 2 is trivial by taking /; = 1 and
l, = 2. Suppose that Theorem 2 is true for k. That is, there exist 2X positive integers
li, b, ..., L such that

(e (), ea(lY), .ooe()), j=1,2,...,2F
represent all parities modulo 2. Let ¢ be an even integer with

2'> max [,
J
and let
n = 2t+1 + 21?7

t . t+1
ni =p; (2<l<k)7 Mie41 :pk+17

—1—1 for 1<j<2,
mj = k P k+1
Y for 2° + 1<j<<2".
Then /; has the p;-adic expansion
@jap} + i—ypi '+ -+ @pi + djo
with aj;, = 0 and 0<a;, <p; — 1 for all j,i,v. For 1<j<2*, we have

np+my =2 (1= a0 )27 4+ - 4+ (1= am)2+ 1 — ajo,
m A myey =2 42" 4 a2 4 -+ a2 + apo,
ni+mp = pi — 1= n)pi + -+ (pi = 1= au)pi +pi — 1 = ao,

ni + Mgy = pi+ @ py |+ dupi+ ao,  2<i<k,
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Rt + 1 = (Pt — 1= Qg 1y)Phy + -+ it = 1= @i 1)Pist + Piest

= 1 = aj4410,

Rp1 + Mok ZPfcfl + aj(k+1)tpltc+1 T G 1)1Pk+1 T il 1)0-

By Lemma 1 and 2|¢, for 1<i<k, noting that p — 1 — a = a(mod 2) for prime p>2,
we have

ei((m+m)) = e(()) (mod2),
ei((ni +myi;)!) = ei((f;)!)  (mod?2),
err1((merr +m)!) = e ((4)!)  (mod 2), (1)

it (M1 +my)!) = 1+ e ((4)!)  (mod2). (2)

Let ¢e{0,1}(i=1,2,...,k+1). By the induction hypothesis we may take j,
1<,/ <2%, such that

61((11)') =& (mod 2), i= 1,27 ,k

For the j, by (1) and (2), we may choose u = j or 2¥ 4 j such that

ekr1 (M1 + my)!) = g1 (mod 2).

Thus
ei((mi+m,))=¢ (mod2), i=12,...,k+1.

This means that

(er((m +m)), ex((ma +my)), ..., ex((me +my)Y)), j=1,2, s

represent all parities modulo 2. By Lemma 2 there exists a positive integer n with all
n+m; >0 and

(er((n+m)l),ea((n+m)), ..., ex((n+m))), j=1,2,.. 2"
represent all parities modulo 2. This completes the proof of Theorem 2. [

Theorem 1 follows from Theorem 2 and Lemma 2.
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