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1. Introduction

Let E be an elliptic curve over Q of conductor N, Xo(N) the modular curve of level N and
¢ : Xo(N) — E a surjective morphism. Let K be an imaginary quadratic field with fundamental dis-
criminant Dy, where all prime divisors of N split and CI(K) the ideal class group of K. Let Ok be
the ring of integers of K and a an ideal of Ok. Then we can define the Heegner point on Xo(N)
with coordinates j(a), j(m*a), where (N) =n-n” in K and t is the complex conjugation. We de-
note it by

(Ok,n, [a]),
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where [a] denotes the ideal class of K containing a. Following Birch, Stephens [B-S] and Gross [Gr],
let

Pi(Dk.1.1):= Y ¢((Ok.m[al))— D ¢((Ok.n.[a])).

[a]leCl(K) [a]eCl(K)

Then we have

5(Dk,1,1) € E(K).

Kolyvagin [Ko] proves that if P%(Dg,1,1) has infinite order, then E(K) has rank 1 and the
Shafarevich-Tate group IlII(E/K) of E over K is finite.

Gross and Zagier [G-Z] obtain a formula for the value of the derivative of the L-function of E over
K in terms of the height of P{(Dg,1,1). This formula, when combined with the conjecture of Birch
and Swinnerton-Dyer, gives the following conjectural formula for the order of III(E/K).

Conjecture. Assume that Dg # —3, —4.If P (D, 1, 1) has infinite order, then

[E(K):ZP{ (D, 1, 1)])2

HI(E/K)| = <
| | c- l_[q|N Cq

where c is the Manin constant of the modular parametrization ¢ of E and cq, where q|N is prime, is the index
in E(Qq) of the subgroup Eq(Qq) of points which have nonsingular reduction modulo q.

In this paper, we construct infinitely many elliptic curves E such that for a positive portion of
imaginary quadratic fields K, P§(Dg, 1,1) has infinite order and the order of the 3-primary part of
III(E/K) satisfies the conjectural formula. More precisely we have the following theorem.

Theorem 1.1. There are infinitely many elliptic curves E of conductor N = pq where p and q are dis-
tinct primes, with distinct j-invariants such that for at least % of imaginary quadratic fields K,
P%(Dk, 1, 1) has infinite order and

. pq
(p+D(@+1)

ords [III(E/K)| = 20rd3<[E(K) :ZPp (D, 1, 1)]) —0.

¢ l_[qlN Cq

In [Ja], James constructs some finite number of elliptic curves E such that for a positive proportion
of imaginary quadratic fields K, E has analytic rank zero over K and in [Jal], he proves that these
elliptic curves E satisfy a conjectural formula, following from the Birch and Swinnerton-Dyer conjec-
ture, for the order of IlI(E/K) at 3. Recently we [B-]J-K] found infinitely many elliptic curves E such
that for a positive proportion of imaginary quadratic fields K, E has analytic rank one over K. This
gives evidence for a conjecture of Goldfeld [Go] on the analytic rank of E over K. However, for the
order of III(E/K) when E has analytic rank one over K, much less is known except the first example
in this direction E = Xo(11) for the 5-part of the Shafarevich-Tate group, which is studied by Gross
[Gr] and Mazur [Ma1].
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2. Preliminaries

Let E be an elliptic curve over Q of conductor N. Let F be the associated newform, and for d|N
let wg = £1 be such that W4F = wyF, where W is the Atkin-Lehner involution.

Let p and q be distinct prime numbers such that p # 3 and g = —1 (mod 9). Let EP? be an optimal
elliptic curve over Q of conductor pq satisfying the following conditions:

(i) wp =—1, i.e,, EPY has split multiplicative reduction at p and wq =1, i.e., EP? has non-split mul-
tiplicative reduction at q.
(ii) EPY has a Q-rational 3-torsion point.

Such a curve exists thanks to [B-]-K, p. 75].
In [B-J-K, Theorem 1.3 and Proposition 3.1], we prove the following proposition.

Proposition 2.1. Let K be an imaginary quadratic field satisfying

(i) p and q splitin K,
(ii) 3 does not divide the class number of K,
(iii) EP9 has no other K -rational torsion points besides Q-rational 3-torsion points.

Then the Heegner point P§ (D, 1,1) € EP4(K) has infinite order.

Now we recall the result of Nakagawa and Horie [N-H] which is a refinement of the result of Dav-
enport and Heilbronn [D-H]. Let m and N be two positive integers satisfying the following condition:

(%) If an odd prime number p is a common divisor of m and N, then p? divides N but not m.
Further if N is even, then (i) 4 divides N and m =1 (mod 4), or (ii) 16 divides N and m=8 or 12
(mod 16).

For any positive real number X > 0, we denote by S_(X) the set of negative fundamental discrimi-
nants D > —X, and put

S_(X,m,N):={DeS_(X)| D=m (mod N)}.

Proposition 2.2 (Nakagawa and Horie). Let D < 0 be a negative fundamental discriminant and r3(D) be the
3-rank of the class group of the imaginary quadratic field Q(~/D). Then for any two positive integers m, N
satisfying (x),

lim Y 3@y M 1=2,

X—00
DeS_(X,m,N) DeS_(X,m,N)

From Proposition 2.2 and the following fact

3 3r3<D>+3< Y - ¥ 3r3<D))< T o),

DeS_(X.m.N) DeS_(X.m.N) DeS_(X.m.N) DeS_(X.m,N)
r3(D)=0 r3(D)=0

we can easily obtain the following lemma.
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Lemma 2.3. Let D < 0 be a negative fundamental discriminant and h(D) the class number of the imaginary
quadratic field Q(+/D ). Then for any two positive integers m, N satisfying (x),

. H{DeS_(X,m,N)|h(D)#0(mod3)} 1
iminf > —
X— 00 gS_(X,m, N)

\S]

3. 3-part of the Shafarevich-Tate group
Proposition 3.1. Let K(# Q(+/—3)) be an imaginary quadratic field satisfying

(i) p andq splitin K,
(ii) 3 does not divide the class number of K,
(iii) EPY has no other K -rational 3-torsion points besides Q-rational 3-torsion points.

Then III(EPY/K)[3] = 0.

Proof. Since EPY has a Q-rational 3-torsion point, the composition factors of EP9[3] are Z/37Z and 3,
so from the long exact sequence of Galois cohomology, we have the following exact sequence

0— H'(Gg . Z/3Z) — H' (Gg - EPUI31) = H' (G /> 143). (1)
For a finite set S of places of K, we define
H'(Gg /i M; S) := {& € H' (G /¢ M) | & is unramified outside S}.
Then from (1), we have the following exact sequence
0— H'(Gg . Z/32; S) — H' (Gg ., EP31; S) — H' (G- 433 S). (2)

Let S®(EPI/K) be the 3-Selmer group of EPY over K. From [Si, Corollary 4.4, Ch. X], we know
that

S (EP1/K) < H' (G - EPI3]; S1)

where S is the set of places of K containing the infinite place and the finite places dividing 3pq.
__Let v3 be a place of K which divides 3. From the condition (iii), EP9(K)[3] injects in E‘; where
E,, is the reduction of E modulo vs (see [Si, Example 6.1.1, Ch. IV]). This implies that S® (EPY/K) is
unramified at vs, since EP9/K has good reduction at vs (see [Si, Proof of Proposition 4.1, Ch. VII]). So
we have that

S®(EP1/K) € H' (G - EPI3]; S2)

where S, is the set of places of K containing the infinite place and the finite places dividing pq.

Let ¢4 be the index in EP9(Qq) of the subgroup qu((@q) of points which have nonsingular reduc-
tion modulo q. Then ¢4 is equal to 1 or 2 because wq =1 (see [Si, Theorem 14.1(d), Appendix C]).
From [S-S, Proposition 3.2], we know that

SO (EPI/K) < H' (G- EPII3]; S3)

where S3 is the set of places of K containing the infinite place and the finite places dividing p.
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Let (915( :={ae€ K |v(a) >0 for all places v of K, v ¢ S} be the ring of S-integers of K and CIS(K)
the S-ideal class group of K; it is the factor group of the ideal class group CI(K) of K by its subgroup
generated by classes of primes in S. We note that the order of CIS(K) divides the class number of K.
By class field theory, we have

H'(Gg . Z/3Z; S) = Hom(CIS (K), Z/3Z).

So if 3 does not divide the class number of K, then H1(G,-</K,Z/3Z; S) =0. From (2), we have the
following exact sequence

0— H'(Gg . EPU[3]: S) — H' (G i 143: S).
Thus we have that
SO (EPI/K) € H' (G - 1433 S3).
Since
Hl(ck/,(, m3; S3) ={be K*/K*3 | ord, (b) =0 (mod 3) for all v ¢ S3},
we have that
dimsS® (EP1/K) < 2,

where dims denotes the dimension of an F3-vector space.
From Proposition 2.1, we know that if K satisfies the above three conditions, then the Heegner
point P;(Dg,1,1) € EPA(K) has infinite order and EP9(K) has rank 1,

EPI(K)/3EPI(K) = (Z & EP1(K)tor) /3(Z ® EPY(K)tor) = Z/3Z & Z/3.

Thus from the following exact sequence

0 — EPI(K)/3EPI(K) — 5(3)(EIJQ/K) s IH(EPG/K)B] — 0,

we have that

SO (EPIK)=Z/3Z@Z/3Z and M(EP1/K)[3]=0. O
4. Proof of Theorem 1.1
Proposition 4.1. Let K be an imaginary quadratic field satisfying
(i) p and g splitin K,

(ii) 3 does not divide the class number of K,
(iii) EPY has no other K -rational 3-torsion point than Q-rational 3-torsion points.
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Let j(EP9) be the j-invariant of EP? and vy, be a finite place dividing p. Assume that ords (ord,, (j(EP?))) = 1.
Then

EPI(K):ZP%(Dg, 1,1
Ord3<[ (K) : ZP;(Dk )1)20'
C-Cp-Cq

Proof. In [B-J-K, Proposition 3.1], to prove that P§(Dg,1,1) € EPI(K) has infinite order, we show
that P§(Dg,1,1) is not trivial in Eg‘i (Q)/3Eg‘j( (Q), where E%‘f{ is the quadratic twist of EP1. We
note that E’L")‘i( (Q) is the (—)-eigenspace of o # 1 in Gal(K/Q) acting on EP9(K). We also note that
rank EP9(Q) = 0, since rank E‘B‘f{ (Q) + rank EP9(Q) = rank EP9(K) = 1. This implies that

ord3([EPI(K) : ZPF(Dk, 1, 1)]) = ord3|EPY(K)or| = 1.

Since EPY is optimal and its conductor pq is square-free, c = 1 (see [Ma, Corollary 4.1]). And
ords(cp) = 1 because wp = —1 and ords(ordy, (j(EP?))) =1 (see [Si, Corollary 15.2.1, Appendix CJ).
And ¢g =1 or 2 because wy = 1. So we have that

ords(c-cp-cq) =1
and we complete the proof. O

Proof of Theorem 1.1. Let E’ : y2 4+ a;xy 4+ asy = x>, a1, a3 € Z. Then the point (0,0) € E'(Q) is a
3-torsion point. In [B-J-K], using a result of the binary Goldbach problem for polynomials, we show
that there are infinitely many elliptic curves E'P?: y? 4+ ajxy + a3y = X3, a1, a3 € Z of discriminant
A= a%(a? — 27a3) = p3q and conductor N = pq, where p,q are different primes such that p # 3,
q=—1 (mod 9), more precisely, g = —1 (mod 27) (see [B-J-K, Proof of Theorem 1.1]) and w, = —1,
wq = 1. Let EPY be the optimal elliptic curve in the isogeny class of E'P. Since EPY has also a Q-
rational 3-torsion point by [Du,Va], EP? can be also defined by the Weierstrass equation of the form
EP9:y? 4+ bixy + b3y = x3, by, b3 € Z of discriminant A = b3(b3 — 27b3) (see [Ku, Table 3]). By a
change of variables, we can assume that by, bs € Z, b3 > 0 and there is no integer u such that u|bq
and u3|b3. Then we can see that EP9: y2 4+ bixy + b3y = x3 is a minimal Weierstrass equation for EP9
by checking the valuation of A and ¢4 = b (b13 — 24b3).

If a prime t divides b; and b3, then EPY has additive reduction at t. So we can assume that b;
and bs are relatively prime. Then for every prime factors t of b3, EP9 has split multiplicative reduc-
tion at t, for every prime factors t = —1 (mod 3) of (b? — 27b3), EPY has non-split multiplicative
reduction at t, and for every prime factors t =1 (mod 3) of (b% — 27b3), EPY has split multiplica-
tive reduction at t because the slopes of the tangent lines at the node (—b%/g, b?/27) € EPI(FF,) are
(—3b1 £b1+/=3)/6. So the condition that EPY has split multiplication at p, i.e., wp = —1 and EPY has
non-split multiplication at g, i.e,, wg =1 implies that b3 = p" and b? —27b3 = +¢°.

If

b3(bi® - 24b3)3>>

Ol‘d3 (Ordvp (](qu))) = Ord3 <0rdup (m
31

= ordz(ord,, (b373)) >1,

then b3 = p3 and b? — 27b3 = £¢q° is factored by

b3 — (3p") = (b1 — 3p") (% + 3b1p" +9p*").
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We can see that by —3p” and b? + 3b1p” +9p®" are relatively prime. So by — 3p” = =£1 or b? +
3b1p"” + 9p?” = +1. But b%—f— 3b1p/r’ +9p?” can not be equal to +1. Suppose that by — 3p" = +1.
Then by > 0 and b3 + 3b1p” 4+ 9p?" > 0.1f by —3p" =1, then

b? —27b3 = (3pr/ n 1)3 _ 27p3r’ _ 27p2r’ n gpr/ 11— 27p3r’ _

If s is odd, then the left-hand side of this equation is congruent to 1 modulo 9, but the right-hand
side of this equation is congruent to —1 modulo 9. So it is impossible. If s is even, then we have

p¥ +p"/3—p¥ =(¢° —1)/27,

and (¢° — 1)/27 is an integer, since ¢ = —1 (mod 27). So p should be equal to 3, but it is contraction
to the condition of EP9. Thus by — 3p” can not be equal to 1. Similarly, we can show that b; — 3p"
can not be equal to —1. Thus ords(ord,, (j(EP?))) should be equal to 1.

So for the imaginary quadratic field K satisfying the conditions in Proposition 3.1 and Proposi-
tion 4.1, we have that

pPq . *
ords | 1I(EPY/K)| = 20rd3<[£ (K) : ZP5(Dy, 1, 1)]) —o.

C-Cp-Cq

Now we compute the number of imaginary quadratic fields K satisfying the conditions in Propo-
sition 3.1 and Proposition 4.1. It is known that when X — oo,

3X
1S_ () ~ =,
b/

3X q

S X,mN)y~——||——=.
P ) w2o(N) v p+1

where p runs over all the prime divisors of N and q =4 if p =2, ¢ = p otherwise, and ¢ is the Euler
function (see [N-H, Proposition 2]). Thus from Lemma 2.3, we obtain the following estimates:

#(D € S_(X)|h(D)#0 (mod 3), (2)=Tand (5)=1} 1 pq
liminf > — .
X— 00 #S_(X) 8 (p+hH@+1)

And we know that there are only finitely many imaginary quadratic fields K such that E(K) has other
K-rational 3-torsion point besides Q-rational 3-torsion points (see [Si, Exercise 8.17]). So at least
%~ % of imaginary quadratic fields K satisfy the conditions in Proposition 3.1 and Proposi-
tion 4.1. Thus we complete the proof of Theorem 1.1. O
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