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Fix p an odd prime. Let E be an elliptic curve over Q with 
semistable reduction at p. We show that the adjoint p-adic 
L-function of E evaluated at infinitely many integers prime 
to p completely determines up to a quadratic twist the isogeny 
class of E. To do this, we prove a result on the determination 
of isobaric representations of GL(3, AQ) by certain L-values of 
p-power twists.
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1. Introduction

In this paper we will prove the following result concerning the p-adic L-function of the 
symmetric square of an elliptic curve over Q, denoted Lp(Sym2 E, s) for s ∈ Zp. More 
specifically, Theorem 1 gives a generalization of the result obtained in [14] concerning 
p-adic L-functions of elliptic curves over Q:

Theorem 1. Let p be an odd prime and E, E′ be elliptic curves over Q with semistable 
reduction at p. Suppose
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Lp(Sym2 E, n) = CLp(Sym2 E′, n) (1.1)

for all integers n prime to p in an infinite set Y and some constant C ∈ Q. Then E′ is 
isogenous to a quadratic twist ED of E. If E and E′ have square free conductors, then 
E and E′ are isogenous over Q.

Suppose E has good reduction at p. We follow the definition in [5] of the p-adic 
L-function for the symmetric square of an elliptic curve E over Q which is defined as the 
Mazur–Mellin transform of a p-adic measure μp := μp(E). If χ : Z×

p → C×
p is a non-trivial 

wild p-adic character of conductor pmχ , which can be identified with a primitive Dirichlet 
character, then

Lp(Sym2 E,χ) =
∫
Z
×
p

χdμp = CE · α−2mχ
p τ(χ)2pmχL(Sym2 E,χ, 2) (1.2)

where CE is a constant that depends on E, τ(χ) is the Gauss sum of χ and αp is a root 
of the polynomial X2 − apX + p, with ap = p + 1 − #E(Fp). It is proved in [5] that if 
E has good ordinary reduction at p then μp(E) is a bounded measure on Z×

p , while if E
has good supersingular reduction at p then μp(E) is h-admissible with h = 2 (cf. [23]).

Similarly, if E has bad multiplicative reduction at p, then for a non-trivial even Dirich-
let character as above we have

Lp(Sym2 E,χ) =
∫
Z
×
p

χdμp = C ′
Eτ(χ)2pmχL(Sym2 E,χ, 2), (1.3)

with μp(E) a bounded measure on Z×
p .

Set

Lp(Sym2 E,χ, s) := Lp(Sym2 E,χ · 〈x〉s)

where 〈·〉 : Z×
p → 1 + pZp, with 〈x〉 = x

ω(x) and ω : Z×
p → Z×

p the Teichmüller character.
Using the theory of h-admissible measures developed in [23], by Lemma 4 in Section 6

identity (1.1) implies that

Lp(Sym2 E,χ, s) = CLp(Sym2 E′, χ, s)

holds for all s ∈ Zp and χ a wild p-adic character.
Let f , f ′ be the newforms of weight 2 associated to E and E′, and π, π′ the unitary 

cuspidal automorphic representations of GL(2, AQ) generated by f and f ′ respectively. 
Then

L(Sym2 E, s) = L(Sym2 π, s− 1) (1.4)
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where Sym2 π is the automorphic representation of GL(3, AQ) associated to π by Gelbart 
and Jacquet in [6]. Sym2 π is cuspidal only if E is non-CM, otherwise it is an isobaric 
sum of unitary cuspidal automorphic representations. Note that the critical strip for 
L(Sym2 E, s) is 1 < Re(s) < 2, with the center at s = 3/2. This corresponds to the 
critical strip 0 < Re(s) < 1 of L(Sym2 π, s), with the center at s = 1/2.

Theorem 1 is then a consequence of the following result on the determination of 
isobaric automorphic representations of GL(3) over Q:

Theorem 2. Suppose π and π′ are two isobaric sums of unitary cuspidal automorphic 
representations of GL(3, AQ) with the same central character ω. Let Xw

(p) be the set of 
p-power order characters of conductor pa for some a. Suppose L(π⊗χ, s) and L(π′⊗χ, s)
are entire for all χ ∈ Xw

(p), and that there exist constants B, C ∈ C such that

L(π ⊗ χ, β) = BaCL(π′ ⊗ χ, β) (1.5)

for some 1 ≥ β > 2
3 and for all χ ∈ Xw

(p),a primitive p-power order characters of 
conductor pa for all but a finite number of a. Then π ∼= π′. Moreover, if π and π′ are 
isobaric sums of tempered unitary cuspidal automorphic representations then the same 
result holds if (1.5) is satisfied for some 1 ≥ β > 1

2 (if the generalized Ramanujan 
conjecture is true this condition is automatically satisfied).

Note that in [17] a result was proved concerning the determination of GL(3) forms 
by twists of characters of almost prime modulus of the central L-values. In our case, we 
twist over a more sparse set of characters.

Using Theorem 4.1.2 in [18], the following is a consequence of Theorem 2:

Theorem 3. Suppose π and π′ are two unitary cuspidal automorphic representations of 
GL(2, AQ) with the same central character ω. Suppose there exist constants B, C ∈ C

such that

L(Ad(π) ⊗ χ, β) = BaCL(Ad(π′) ⊗ χ, β) (1.6)

for some 1 ≥ β > 2
3 and for all χ ∈ Xw

(p),a primitive p-power order characters of 
conductor pa for all but a finite number of a. Then there exists a quadratic character ν
such that π ∼= π′ ⊗ ν. If π and π′ are tempered then the same result holds if (1.6) is true 
for some 1 ≥ β > 1

2 .

To prove Theorem 2, we will show the following more general result on isobaric sums 
of unitary cuspidal automorphic representations of GL(n, AQ) for n ≥ 3:

Theorem 4. Let π be an isobaric sum of unitary cuspidal automorphic representations 
of GL(n, AQ) with n ≥ 3 and s, r be integers relatively prime to p. If L(π ⊗ χ, s) and 
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L(π′ ⊗ χ, s) are entire for all χ p-power order characters of conductor pa for some a, 
then

lim
a→∞

p−a
∑∗

χ mod pa
χ(s)χ(r)L(π ⊗ χ, β) = 1

p

(
1 − 1

p

)
aπ(s/r)
(s/r)β (1.7)

where 
∑∗ denotes the sum over primitive p-power order characters of conductor pa

and 1 ≥ β > n−1
n+1 if π is an isobaric sum of tempered unitary cuspidal automorphic 

representations and 1 ≥ β > n−1
n in general. Here the elements aπ(s/r) represent the 

coefficients of the Dirichlet series that defines L(π, s) in the right half-plane Re(s) > 1, 
with aπ(1) = 1 and aπ(s/r) := 0 if r � s.

This result generalizes Proposition 2.2 in [14]. Theorem 4, together with the General-
ized Strong Multiplicity One Theorem (see Section 2) can be used to prove Theorem 2.

Even though the identity in Theorem 4 holds for isobaric sums of unitary cuspidal au-
tomorphic representation of GL(n, AQ), we cannot generalize the result of Theorem 2 to 
GL(n, AQ), because knowing the coefficients aπ(n) will no longer be enough to determine 
the two representations if n > 3. Moreover, if π is an arbitrary cuspidal automorphic 
representation of GL(2, AF ) with F a number field, it is known that Symm π is auto-
morphic only when m ≤ 4 (see [10,11]). If F = Q and π is holomorphic of weight 2, 
these results have been extended to small m ≥ 5 by recent work of Clozel and Thorne, 
and of Dieulefait. The author is not aware of any constructions of p-adic L-functions for 
Symm E with m ≥ 3. However, in [1] a p-adic L-function was constructed for certain 
automorphic representations π of GL(2n, AQ) under certain conditions, such as the non-
vanishing of the twisted complex L-function L(π ⊗ χ, 1/2) by some Hecke character χ
trivial at infinity.

As a consequence of Theorem 4, the following non-vanishing result holds:

Corollary 1. Let π be an isobaric sum of unitary cuspidal automorphic representations of 
GL(n, AQ) with n ≥ 3. There are infinitely many primitive p-power order characters χ
of conductor pa for some a, such that if L(π⊗χ, s) is entire for all such characters then 

L(π ⊗ χ, β) 
= 0 for all β /∈
[

2
n+1 , 1 − 2

n+1

]
if π is an isobaric sum of tempered unitary 

cuspidal automorphic representations and for β /∈
[ 1
n , 1 − 1

n

]
in general.

A similar nonvanishing result involving p-power twists of cuspidal automorphic repre-
sentations of GL(n, AQ) was proved in [24] for β /∈

[
2

n+1 , 1 − 2
2n+1

]
. In [2] a nonvanishing 

result for β in the same intervals as in Corollary 1 was proved for all twists of L-functions 
of GL(n), instead of just for p-power twists. In [13], the result in [2] was further improved 
to the interval β /∈

[ 2
n , 1 − 2

n

]
. Note that the set of primitive characters of p-power order 

and conductor pa for some a is more sparse than the set of characters considered in [2]
and [13].
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We should also note that for n = 2 Rohrlich [19] proves that if f is a newform of 
weight 2, then for all but finitely many twists by Dirichlet characters the L-function is 
nonvanishing at s = 1.

We now present an outline of the rest of the paper. In Section 2 we give an overview of 
the basic properties of the standard L-function associated to an isobaric representation 
of GL(n, AQ). In Section 3 we prove a simple lemma involving Gauss sums. In Section 4
we present a proof of Theorem 4, while in Section 5 we provide proofs of Theorem 2 and 
Theorem 3. In Section 6 we recall the basic properties of the symmetric square p-adic 
L-function of an elliptic curve and prove a lemma that will be crucial for the proof of 
Theorem 1. In Section 7 we provide a proof for Theorem 1.

2. Preliminaries

2.1. The standard L-function of GL(n)

Let π be an irreducible automorphic representation of GL(n, AQ) and L(π, s) its as-
sociated standard L-function. Write π = ⊗′

vπv as a restricted direct product with πv

admissible irreducible representations of the local groups GL(n, Qv). The Euler product

L(π, s) =
∏
v

L(πv, s) (2.1)

converges for Re(s) large. There exist conjugacy classes of matrices Av(π) ∈ GL(n, C)
such that the local L-functions at finite places v with πv unramified are

L(πv, s) = det(1 −Av(π)v−s)−1 (2.2)

We can take Av(π) = [α1,v(π), · · · , αn,v(π)] to be diagonal representatives of the conju-
gacy classes.

For S a set of places of Q we can define

LS(π, s) =
∏
v/∈S

Lv(π, s) (2.3)

called the incomplete L-function associated to set S.
Let � be the isobaric sum introduced in [9]. We can define an irreducible automorphic 

representation, called an isobaric representation, π1�· · ·�πm of GL(n, AQ), n =
∑m

i=1 ni, 
for m cuspidal automorphic representations πi ∈ GL(ni, AQ). Such a representation 
satisfies

LS(�m
j=1πj , s) =

m∏
j=1

LS(πj , s)

with S a finite set of places.
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We say that an isobaric representation is tempered if each πi in the isobaric sum 
π = π1�· · ·�πm is a tempered cuspidal automorphic representation, or more specifically 
if each local factor πi,v is tempered.

Since we will want bound (2.6) on the coefficients of the Dirichlet series (2.5) to hold, 
we will consider a subset of the set of isobaric representations of GL(n, AQ), more specif-
ically those given by an isobaric sum of unitary cuspidal automorphic representations. 
We denote this subset by Au(n). We will also consider the case when the unitary cuspi-
dal automorphic representations in the isobaric sum are tempered, which is expected to 
always hold given the generalized Ramanujan conjecture.

The following generalization of the Strong Multiplicity One Theorem for isobaric 
representations is due to Jacquet and Shalika [9]:

Theorem (Generalized Strong Multiplicity One). Consider two isobaric representations 
π1 and π2 of GL(n, AQ) and S a finite set of places of Q that contains ∞, such that π1
and π2 are unramified outside set S. Then π1,v ∼= π2,v for all v /∈ S implies π1 ∼= π2.

Let n ≥ 3 and let π ∈ Au(n) be an isobaric sum of unitary cuspidal automorphic 
representations of GL(n, AQ) with (unitary) central character ωπ and contragredient 
representation π̃. We have

L(π∞, s) =
n∏

j=1
π− s−μj

2 Γ
(
s− μj

2

)
, L(π̃∞, s) =

n∏
j=1

π− s−μj
2 Γ

(
s− μj

2

)
(2.4)

for some μj ∈ C, with π in this context denoting the transcendental number.
The L-function is defined for Re(s) > 1 by the absolutely convergent Dirichlet series

L(π, s) =
∞∑

m=1

aπ(m)
ms

(2.5)

with aπ(1) = 1. This extends to a meromorphic function on C with a finite number of 
poles.

It is known that the coefficients aπ(m) of the Dirichlet series satisfy
∑

m≤M

|aπ(m)|2 �ε M
1+ε (2.6)

for M ≥ 1 (cf. Theorem 4 in [16], see also [8,9,20,21]). For this property to hold, it is 
necessary that π be an isobaric sum of unitary cuspidal automorphic representations, 
rather than any unitary isobaric representation.

If π is in fact an isobaric sum of tempered cuspidal automorphic representations, then 
we have that the coefficients aπ(m) satisfy

|aπ(m)| �ε m
ε.
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The completed L-function Λ(π, s) = L(π∞, s)L(π, s) obeys the functional equation

Λ(π, s) = ε(π, s)Λ(π̃, 1 − s) (2.7)

where the ε-factor is given by

ε(π, s) = f1/2−s
π W (π) (2.8)

and fπ and W (π) are the conductor and the root number of π.
Let χ denote an even primitive Dirichlet character that is unramified at ∞ and with 

odd conductor q coprime to fπ. The twisted L-function obeys the functional equation 
(see for example [8])

Λ(π ⊗ χ, s) = ε(π ⊗ χ, s)Λ(π̃ ⊗ χ, 1 − s) (2.9)

where Λ(π ⊗ χ, s) = L(π∞, s)L(π ⊗ χ, s). The ε-factor is given by

ε(π ⊗ χ, s) = ε(π, s)ωπ(q)χ(fπ)q−nsτ(χ)n (2.10)

with τ(χ) the Gauss sum of the character χ (cf. Proposition 4.1 in [2]).
Since L(π⊗χ, s) does not vanish in the half-plane Re(s) > 1, it is enough to consider 

1/2 ≤ Re(s) ≤ 1. Twisting π by a unitary character | · |it if needed, we can take s ∈ R. 
Hence, from now on,

1
2 ≤ s ≤ 1. (2.11)

2.2. Approximate functional equation

We present a construction introduced in [13,14]. For a smooth function g with compact 
support on (0, ∞), normalized such that 

∫∞
0 g(u)duu = 1, we can introduce an entire 

function k given by

k(s) =
∞∫
0

g(u)us−1du

such that k(0) = 1 by normalization and k decreases rapidly in vertical strips. We then 
define two functions for y > 0,

F1(y) = 1
2πi

∫
(2)

k(s)y−s ds

s
, (2.12)

F2(y) = 1
2πi

∫
k(−s)G(−s + β)y−s ds

s
, (2.13)
(2)
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with G(s) = L(π̃∞,1−s)
L(π∞,s) and the integrals above over Re(s) = 2. The functions F1(y) and 

F2(y) obey the following relations (see [13]):

1. F1,2(y) � Cmy−m for all m ≥ 1, as y → ∞.
2. F1(y) = 1 + O(ym) for all m ≥ 1 for y small enough.
3. F2(y) �ε 1 + y1−η−Re(β)−ε for any ε > 0, where η = max1≤j≤n Re(μj) and μj as 

in (2.4). If π is tempered then η = 0 and in general the following inequality holds 
(see [15]):

0 ≤ η ≤ 1
2 − 1

n2 + 1 . (2.14)

The following approximate functional equation was first used in [14] for cuspidal 
automorphic representations of GL(n) over Q. It also holds for π ∈ Au(n) such that 
L(π⊗χ, s) is entire (see for example [7]). A similar approximate functional equation was 
proved in [3] for L(π, β) at the center β = 1

2 , for slightly different rapidly decreasing 
functions.

Proposition. If π ∈ Au(n) and χ is a primitive Dirichlet character of conductor q such 
that L(π ⊗ χ, s) is entire, then for any 1

2 ≤ β ≤ 1

L(π ⊗ χ, β) =
∞∑

m=1

aπ(m)χ(m)
mβ

F1

(
my

fπqn

)

+ ωπ(q)ε(0, π)τ(χ)n(fπqn)−β
∞∑

m=1

aπ̃(m)χ(mf ′
π)

m1−β
F2

(
m

y

)
,

where f ′
π is the multiplicative inverse of fπ modulo q.

2.3. Dihedral representations

We now review some results on dihedral representations. Let π be a cuspidal auto-
morphic representation of GL(2, AQ) with conductor fπ. We have the symmetric square 
L-function L(π, s, Sym2) given by an Euler product with local factors

Lv(π, s,Sym2) = (1 − α2
vv

−s)−1(1 − αvβvv
−s)−1(1 − β2

vv
−s)−1

for primes v with v � fπ and Av(π) = {αv, βv} the diagonal representatives of the 
conjugacy classes attached to πv.

By [6], there exists an isobaric automorphic representation Sym2(π) of GL(3, AQ)
whose standard L-function agrees with L(π, s, Sym2) at least at primes v with v � fπ. 
We have that Sym2(π) is cuspidal if and only if π is dihedral. A dihedral representation 
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is a representation induced by an idele class character η of a quadratic extension K of 
Q. If π = IQK(η) is a dihedral representation then

L(IQK(η), s) = L(η, s).

Let π be a (unitary) cuspidal automorphic representation of GL(2, AQ). Suppose π is 
dihedral, of the form IQK(η) for a (unitary) character η of CK . We can express Sym2 π as 
follows (see also [12]). Let τ be the non-trivial automorphism of the degree 2 extension 
K/Q. Note that

ηητ = η0 ◦NK/Q, (2.15)

where η0 is the restriction of η to CQ. We have

IQK(ηητ ) ∼= η0 � η0δ (2.16)

where δ is the quadratic character of Q associated to K/Q.
If λ, μ are characters of CK , then by applying Mackey:

IQK(λ) � IQK(μ) ∼= IQK(λμ) � IQK(λμτ ). (2.17)

Taking λ = μ = η in (2.17) and using (2.15) and (2.16),

π � π ∼= IQK(η2) � η0 � η0δ.

Since π � π = Sym2(π) � ω with ω = η0δ,

Sym2(π) ∼= IQK(η2) � η0. (2.18)

3. A simple lemma involving Gauss sums

For an odd prime p, define the sets (following the notations in [14])

X(p) = {χ a Dirichlet character of conductor pa for some a},

Xw
(p) = {χ ∈ X(p)|χ has p-power order}.

The characters of Xw
(p) are called wild at p.

If χ ∈ X(p), then χ : (Z/paZ)× → C× for some a. Note that (Z/paZ)× ∼= Z/pa−1Z ×
Z/(p − 1)Z. A character in X(p) is an element in Xw

(p) if and only if it is trivial on the 
elements of exponent p − 1.

We denote the integers mod pa of exponent p −1 by Sa and the sum over all primitive 
wild characters of conductor pa by 

∑∗
χ mod pa .
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Consider the set

G(pa) := ker((Z/paZ)× → (Z/p)×) ∼= Z/pa−1Z. (3.1)

Using the orthogonality of characters we get that summing over the primitive wild 
characters of conductor pa gives (see [14])

∑∗

χ mod pa
χ = |G(pa)|δSa

− |G(pa−1)|δSa−1 , (3.2)

with |G(pa)| = pa−1 from (3.1) and δSa
the characteristic function of Sa.

The following result for hyper-Kloosterman sums was proved in [25]:

Lemma 1. Let p be a prime number, 1 < n < p and q = pa with a > 1. Let x′ denote 
the inverse of x mod q and let e(x) := e2πix. Then for any integer z coprime to p the 
hyper-Kloosterman sum

∣∣∣ ∑
x1,···,xn(mod q)

(xi,p)=1

e

(
x1 + · · · + xn + zx′

1 · · ·x′
n

q

)∣∣∣

is bounded by
⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

≤ (n + 1)qn/2 if 1 < n < p− 1, a > 1
≤ p1/2qn/2 if n = p− 1, a ≥ 5
≤ pqn/2 if n = p− 1, a = 4
≤ p1/2qn/2 if n = p− 1, a = 3
≤ qn/2 if n = p− 1, a = 2.

(3.3)

As a consequence of Lemma 1 we prove the following result:

Lemma 2. Let τ(χ) denote the Gauss sum of the character χ. If (r, p) = 1, then the 
following bound holds:

∣∣∣∑∗

χ mod pa
χ(r)τn(χ)

∣∣∣� p1/2+a(n+1)/2 (3.4)

for 2 < n ≤ p.

Proof. If χ is a primitive character of conductor pa, then

τ(χ) =
pa−1∑
m=0

χ(m)e2πim/pa

.

Let
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A :=
∑∗

χ mod pa
χ(r)τn(χ),

then

A =
∑∗

χ mod pa

⎡
⎣χ(r)

(
pa−1∑
m=0

χ(m)e2πim/pa

)n⎤⎦ .
We rewrite the above sum as

A =
∑∗

χ mod pa

[
χ(r)

(
pa−1∑
x1=0

χ(x1)e2πix1/p
a

)
· · ·
(

pa−1∑
xn=0

χ(xn)e2πixn/p
a

)]
.

This in turn gives

A =
pa−1∑
x1=0

· · ·
pa−1∑
xn=0

∑∗

χ mod pa
χ(r′)χ(x1) · · ·χ(xn)e

(
x1 + · · · + xn

pa

)
.

Hence,

A =
pa−1∑
x1=0

· · ·
pa−1∑
xn=0

[∑∗

χ mod pa
χ(r′x1 · · ·xn)

]
e

(
x1 + · · · + xn

pa

)

which by Eq. (3.2) gives

A =
pa−1∑
x1=0

· · ·
pa−1∑
xn=0

e

(
x1 + · · · + xn

pa

)
(pa−1δSa

(r′x1 · · ·xn) − pa−2δSa−1(r′x1 · · ·xn)).

Thus,

A = pa−1
∑
b∈Sa

T (br, pa) − pa−2
∑

c∈Sa−1

p−1∑
i=0

T (cr + ipa−1, pa) (3.5)

where

T (u, pa) =
∑

x1,···,xn−1(mod pa)
(xi,p)=1

e

(
x1 + · · · + xn−1 + ux′

1 · · ·x′
n−1

pa

)
.

From Lemma 1, for (u, p) = 1 and a sufficiently large

|T (u, pa)| � p1/2+a(n−1)/2. (3.6)

From (3.5) and (3.6) it follows that
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|A| � pa−1(p− 1)p1/2+a(n−1)/2 + pa−2(p− 1)2p1/2+a(n−1)/2.

Thus |A| � pap1/2+a(n−1)/2. �
4. Non-vanishing of p-power twists on GL(n, AQAQAQ)

Let s, r be integers relatively prime to p. For π an isobaric sum of unitary cuspidal 
automorphic representations of GL(n, AQ) define

Ss/r(pa, π, β) = p−a
∑∗

χ mod pa
χ(s)χ(r)L(π ⊗ χ, β) (4.1)

where 
∑∗ denotes the sum over primitive wild characters of conductor pa.

In this section we prove Theorem 4, which states that:

lim
a→∞

Ss/r(pa, π, β) = 1
p

(
1 − 1

p

)
aπ(s/r)
(s/r)β (4.2)

for β > n−1
n+1 if π is tempered, and for β > n−1

n in general.
Note that in this section by π tempered we will mean an isobaric sum of tempered 

(unitary) cuspidal automorphic representations. If r � s above, then we define aπ(s/r) to 
be zero.

Proof of Theorem 4. We generalize the proof of Proposition 2.2 in [14] and use meth-
ods also developed in [13,24]. The following approximate functional equation holds (see 
Section 2):

L(π ⊗ χ, β) =
∞∑

m=1

aπ(m)χ(m)
mβ

F1

(
my

fπpan

)

+ ωπ(pa)ε(0, π)τ(χ)n(fπpan)−β
∞∑

m=1

aπ̃(m)χ(mf ′
π)

m1−β
F2

(
m

y

)
,

where χ is a character of conductor pa and f ′
π is the multiplicative inverse of fπ mod-

ulo pa.
Define x such that xy = pan. Write

Ss/r(pa, β) = S1,s/r(pa, β) + S2,s/r(pa, β), (4.3)

where

S1,s/r(pa, β) = p−a
∑∗

χ mod pa

∞∑ aπ(m)χ(ms′r)
mβ

F1

(
m

fπx

)
(4.4)
m=1
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and

S2,s/r(pa, β) = p−aωπ(pa)
∑∗

χ mod pa
ε(0, π)τ(χ)n(fπpan)−β

×
∞∑

m=1

aπ̃(m)χ(ms′rf ′
π)

m1−β
F2

(
m

y

)
. (4.5)

Let

Zs/r(pa, β) =
∑
b∈Sa

∑
rm≡bs(pa)

m≥1

aπ(m)
mβ

F1

(
m

fπx

)
. (4.6)

Then applying Eq. (3.2) gives

S1,s/r(pa) = p−a
∞∑

m=1

aπ(m)
mβ

F1

(
m

fπx

)[
pa−1δSa

(ms′r) − pa−2δSa−1(ms′r)
]
,

hence

S1,s/r = 1
p

[
Zs/r(pa, β) − p−1Zs/r(pa−1, β)

]
. (4.7)

If r|s, consider the term in (4.6) with b = 1 and m = s/r. This is a solution to the 
equation rm ≡ bs(mod pa) for all a. We will want to set the necessary condition for 
this to be the only dominant contribution. If r � s this term will not appear in the sum 
and the argument remains as below, requiring the condition that there is no dominant 
contribution and that the limit of Ss/r(pa, π, β) as a → ∞ is zero.

Now if m 
= s/r, then m = bs/r+ kpa. If k = 0 then b 
= 1 and since b ∈ Sa, it follows 
that b � pa/(p−1) which implies

m � pa/(p−1).

If k 
= 0, then m � kpa.
Decompose

Zs/r(pa, β) = Σ1,a + Σ2,a,

where

Σ1,a = aπ(s/r)
(s/r)β F1

(
s

rfπx

)
(4.8)

and
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Σ2,a =
∑
b∈Sa

∑
rm≡bs(pa)
m≥1,m
=s/r

aπ(m)
mβ

F1

(
m

fπx

)
. (4.9)

Since F1

(
m
fπx

)
= 1 + O

(
m
fπx

)
,

Σ1,a = aπ(s/r)
(s/r)β

(
1 + O

(
1
x

))
. (4.10)

Following [14], let

bm,a :=
{

1 if m = bs/r + kpa

0 otherwise.
(4.11)

Then

Σ2,a �
∣∣∣ ∑
1≤m�x1+ε

m
=s/r

aπ(m)
mβ

bm,aF1

(
m

fπx

)∣∣∣+ ∣∣∣ ∑
m�x1+ε

m
=s/r

aπ(m)
mβ

bm,aF1

(
m

fπx

)∣∣∣. (4.12)

Define

P2,a =
∣∣∣ ∑
1≤m�x1+ε

m
=s/r

aπ(m)
mβ

bm,aF1

(
m

fπx

)∣∣∣ and Q2,a =
∣∣∣ ∑
m�x1+ε

m
=s/r

aπ(m)
mβ

bm,aF1

(
m

fπx

)∣∣∣.

Since F1

(
m
fπx

)
= 1 + O(xε) for m � x1+ε and F1

(
m
fπx

)
� xt

mt for any integer t and 

m � x1+ε

P2,a � xε
∣∣∣ ∑
1≤m�x1+ε

m
=s/r

aπ(m)
mβ

bm,a

∣∣∣ and Q2,a � xt
∣∣∣ ∑
m�x1+ε

m
=s/r

aπ(m)
mβ+t

bm,a

∣∣∣. (4.13)

If π is tempered then by (4.13)

P2,a � xε
∑

1≤m�x1+ε

m
=s/r

mε−βbm,a � p−ax1−β+ε and Q2,a � p−ax1−β+ε (4.14)

hence

Σ2,a � p−ax1−β+ε. (4.15)

We want Σ2,a → 0 as a → ∞. Substituting with x = pan(1−υ) gives the condition

υ > 1 − 1
. (4.16)
n(1 − β + ε)
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If π is not tempered, then applying Cauchy–Schwarz’s inequality in (4.13) gives

P2,a � x1/2+ε

pa/2

⎛
⎝ ∑

1≤m�x1+ε

|aπ(m)|2
m2β

⎞
⎠

1/2

.

By inequality (2.6) and summation by parts we get

P2,a � p−a/2x1−β+ε. (4.17)

Write t = t1 + t2 in (4.13), with t1, t2 large integers, and apply Cauchy–Schwarz’s 
inequality:

Q2,a � xt1+t2

( ∑
m�x1+ε

|aπ(m)|2
m2β+2t1

)1/2( ∑
m�x1+ε

b2m,a

m2t2

)1/2

� xt1+t2

⎛
⎝ ∑

i�(1+ε) log(x)

∑
2i−1<m≤2i

|aπ(m)|2
m2β+2t1

⎞
⎠

1/2
⎛
⎜⎝ ∑

k� x1+ε

pa

1
(kpa)2t2

⎞
⎟⎠

1/2

. (4.18)

Using (2.6) gives

Q2,a � p−at2x1−β+ε (4.19)

hence

Σ2,a � p−a/2x1−β+ε. (4.20)

Since we want Σ2,a → 0, we get the condition

υ > 1 − 1
2n(1 − β + ε) . (4.21)

For υ as above,

lim
a→∞

S1,s/r(pa, β) = p− 1
p2 · aπ(s/r)

(s/r)β . (4.22)

In (4.5) write

|S2,s/r| � A2,s/r + B2,s/r, (4.23)

where

A2,s/r = p−ap−anβ
∑

1+ε

[
|aπ̃(m)|
m1−β

F2

(
m

y

) ∣∣∣∑∗

χ(mod pa)
χ(ms′rf ′

π)τn(χ)
∣∣∣] (4.24)
m�y
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and

B2,s/r = p−ap−anβ
∑

m�y1+ε

[
|aπ̃(m)|
m1−β

F2

(
m

y

) ∣∣∣∑∗

χ(mod pa)
χ(ms′rf ′

π)τn(χ)
∣∣∣] . (4.25)

If π is tempered then |aπ̃(m)| � mε. Also, F2

(
m
y

)
� 1 +

(
m
y

)1−β−ε

for m � y1+ε, 

which gives F2

(
m
y

)
� yε(1−β). Applying Lemma 2,

|A2,s/r| � p−ap−anβp1/2+a(n+1)/2yε(1−β)
y1+ε∑
m=1

mε+β−1

hence for any ε > 0

|A2,s/r| � p−anβ+a(n−1)/2yε+β . (4.26)

Assume now π is not tempered. By Cauchy–Schwarz’s inequality we obtain

|A2,s/r| � p−ap−anβyε

⎛
⎝ ∑

m�y1+ε

|aπ̃(m)|2
m2−2β

⎞
⎠

1/2

×
( ∞∑

m=−∞
H

(
m

y

) ∣∣∣∑∗

χ mod pa
χ(ms′rf ′

π)τn(χ)
∣∣∣2
)1/2

,

where

H(u) := 1
π(1 + u2) .

A simple computation shows that

∑
m�y1+ε

|aπ̃(m)|2
m2−2β � y2β−1+ε. (4.27)

Hence,

|A2,s/r| � yβ−1/2+εp−a−anβ

×
( ∞∑

m=−∞
H

(
m

y

) ∣∣∣∑∗

χ mod pa
χ(ms′rf ′

π)τn(χ)
∣∣∣2
)1/2

. (4.28)

Define
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D :=
∞∑

m=−∞
H

(
m

y

) ∣∣∣∑∗

χ mod pa
χ(ms′rf ′

π)τn(χ)
∣∣∣2. (4.29)

We have

D �
∑∗

χ mod pa

∑∗

ψ mod pa

∣∣∣τn(χ)τn(ψ)
∞∑

m=−∞
χψ(ms′rf ′

π)H
(
m

y

)∣∣∣.
Following the general approach of [13,24], we consider the diagonal and off-diagonal 
contributions separately. Let’s first compute the terms corresponding to χ = ψ:

∑∗

χ mod pa

∣∣∣τn(χ)τn(χ)
∞∑

m=−∞
H

(
m

y

)∣∣∣� pa+na
∞∑

m=−∞
H

(
m

y

)

since there are � pa primitive p-power characters and since |τn(χ)| = pan/2 from the 
properties of the Gauss sum of a primitive character. Using the Fourier transform prop-
erty F{g(xA)} = 1

A ĝ
(
ν
A

)
for A > 0 (see also [13,24]) we get that

∞∑
m=−∞

H

(
m

y

)
= y

∞∑
ν=−∞

T (yν).

Function T (ν) is the Fourier transform of H(m) and is given by T (ν) = e−2π|ν|, hence ∑
m∈Z H

(
m
y

)
� y. Note we have used the Poisson summation formula. Thus the con-

tribution to D is � pa+nay.
For the terms in D that have χ 
= ψ, even if χ and ψ are primitive the product χψ

can be non-primitive because the conductors are not relatively prime. We have that for 
g : Z/qZ → C:

∞∑
m=−∞

g(m)f
(
m

q

)
=

∑
b mod q

g(b)F
(
b

q

)
=

∞∑
ν=−∞

ĝ(−ν)f̂(ν)

where F (x) =
∑∞

ν=−∞ f̂(ν)e−2πiνx. Applying this in our case,

∞∑
m=−∞

χψ(m)H
(
m

y

)
= y

pa

∞∑
ν=−∞

⎛
⎝ ∑

b mod pa

χψ(b)e−2πiνb/pa

⎞
⎠T

(
yν

pa

)
.

The interior sum is � pa since the number of characters is � pa, and for ν = 0 it is zero 
since χψ is non-trivial. Thus,

∣∣∣ ∞∑
χψ(m)H

(
m

y

)∣∣∣� y
∑

T

(
yν

pa

)
.

m=−∞ ν∈Z,ν 
=0
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Assuming υ > 1
n (which will be part of our constraint) gives that y/pa → ∞. We have

∑
ν∈Z,ν 
=0

T

(
yν

pa

)
� 2

e2πyp−a − 1
� 1

y
.

Putting everything together, these terms of D contribute � p2a+na. Thus, we conclude 
that the two contributions for χ = ψ and χ 
= ψ combined give

D � pa+nay. (4.30)

From (4.28) and (4.30), even if π is not tempered,

|A2,s/r| � yβ+εp−anβ+a(n−1)/2. (4.31)

For m � y1+ε, F2

(
m
y

)
� yt

mt for any integer t ≥ 1, and applying Cauchy–Schwarz’s 
inequality in (4.25) gives

|B2,s/r| � p−ap−anβyt

⎛
⎝ ∑

m�y1+ε

|aπ̃|2
m2−2β+2t

⎞
⎠

1/2

D1/2.

Using summation by parts and (2.6), as well as the bound in (4.30) gives

|B2,s/r| � yβ+εp−anβ+a(n−1)/2. (4.32)

From (4.23), (4.31) and (4.32) we conclude that

|S2,s/r| � yβ+εp−anβ+a(n−1)/2. (4.33)

We want S2,s/r → 0 as a → ∞. Taking y = panυ in (4.33) gives the condition

υ <
1 − n + 2nβ
2n(β + ε) . (4.34)

If π is tempered then we need to check that υ satisfies conditions (4.16) and (4.34). 
Thus, for a general n, the desired condition is

β >
n− 1
n + 1 . (4.35)

If π is not tempered, then conditions (4.21) and (4.34) need to be satisfied. This gives 
the condition

β >
n− 1

. �

n
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Proof of Corollary 1. Take s = r = 1 in Theorem 4 and use the functional equation. Note 
that if β > 1, L(π⊗χ, β) has an Euler product expansion and hence is nonvanishing. �
5. Determination of GL(3) cusp forms

Let π ∈ Au(3) be an isobaric sum of unitary cuspidal automorphic representations 
of GL(3, AQ). The local components π� are determined by the set of nonzero complex 
numbers {α�, β�, γ�}, which we represent by the diagonal matrix A�(π).

The L-factor of π at a prime � is given by

L(π�, s) = det(I −Al(π)�−s)−1

=
n∏

j=1
(1 − α��

−s)−1(1 − β��
−s)−1(1 − γ��

−s)−1. (5.1)

Let S0 = {� : π� unramified and tempered}, and let S1 = {� : π� is ramified}. Note that 
S1 is finite. Take the union

S = S0 ∪ S1 ∪ {∞}.

Since π is unitary, π� is tempered iff |α�| = |β�| = |γ�| = 1.

Lemma 3. If � /∈ S then

A�(π) = {u�t, u�−t, w}, (5.2)

with |u| = |w| = 1 and t 
= 0 a real number. If � ∈ S0 then

A�(π) = {α, β, γ}

with |α| = |β| = |γ| = 1.

Proof. Suppose first that � /∈ S. We may assume that |α�| 
= 1. Then it can be written 
as α� = u�t, for some |u| = 1 complex and t 
= 0 real. By unitarity,

{α�, β�, γ�} = {α−1
� , β−1

� , γ−1
� }.

Clearly α� 
= α−1
� . Without loss of generality, take β−1

� = α�. Hence, this gives β� = u ·�−t. 
So, we must have γ� = γ−1

� , thus γ� = w with |w| = 1. Hence

A�(π) = {u�t, u�−t, w}

with |u| = |w| = 1.
Now suppose that � ∈ S0. Then |α�| = |β�| = |γ�| = 1. �
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Proof of Theorem 2. Let T = {�|π� or π′
� is ramified}. This is a finite set.

Consider � /∈ T an arbitrary finite place with � 
= p. Let A�(π) = {α�, β�, γ�} and 
A�(π′) = {α′

�, β
′
�, γ

′
�}. Applying Theorem 4, aπ(n) = BaCaπ′(n) for all (n, p) = 1 and 

all but finitely many a. Since aπ(1) = aπ′(1), we conclude that B = C = 1. Thus, 
aπ(�) = aπ′(�).

We want to show that Al(π) = Al(π′). Indeed,

α� + β� + γ� = α′
� + β′

� + γ′
� (5.3)

and since π and π′ have the same central character

α�β�γ� = α′
�β

′
�γ

′
�. (5.4)

To show that {α� β�, γ�} = {α′
�, β

′
�, γ

′
�}, by Vieta’s formulas (cf. [22]) and the above 

two relations, it is enough to check that

α�β� + α�γ� + β�γ� = α′
�β

′
� + α′

�γ
′
� + β′

�γ
′
�.

Suppose A�(π) = {u�t, u�−t, w} with |u| = |w| = 1. Then

α�β� + α�γ� + β�γ� = u2 + uw(�t + �−t) = 1
u2 + 1

uw
(�t + �−t) = w + u(�t + �−t)

u2w
,

hence α�β� + α�γ� + β�γ� = α�+β�+γ�

α�β�γ�
.

Now suppose that A�(π) = {α�, β�, γ�} with |α�| = |β�| = |γ�| = 1. Then

α�β� + α�γ� + β�γ� = 1
α�β�

+ 1
α�γ�

+ 1
β�γ�

= α� + β� + γ�
α�β�γ�

.

Thus, whenever α� + β� + γ� = α′
� + β′

� + γ′
� and α�β�γ� = α′

�β
′
�γ

′
�, we obtain that 

α�β� + α�γ� + β�γ� = α′
�β

′
� + α′

�γ
′
� + β′

�γ
′
�.

We have thus shown that for � /∈ T ∪ {p} ∪ {∞}, Al(π) = A�(π′), hence π�
∼= π′

�. 
Since T ∪ {p} ∪ {∞} is a finite set, this implies that π ∼= π′ by the Generalized Strong 
Multiplicity One Theorem. �

Let π be a unitary cuspidal automorphic representation of GL(2, AQ) with A�(π) =
{α�, β�}. At an unramified place �, it has a� = α�+β� and central character ω(��) = α�β�, 
with �� the uniformizer at �. There exists an isobaric automorphic representation Ad(π)
of GL(3, AQ) (cf. [6]) such that at an unramified place �,

a�(Ad(π)) = α�/β� + β�/α� + 1.

Proof of Theorem 3. Theorem 2 implies that Ad(π) ∼= Ad(π′). Then, by Theorem 4.1.2 
in [18], we deduce that since π and π′ have the same central character, there exists 
a quadratic character ν such that π ∼= π′ ⊗ ν. �
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6. Adjoint p-adic L-functions

Fix p an odd prime and let E be an elliptic curve over Q with semistable reduction 
at p. We now describe a p-adic analogue to L(Sym2 E, s) by the Mazur–Mellin transform 
of a p-adic measure μp on Z×

p as introduced in [5]. For a review of the complex L-function 
associated to the symmetric square of an elliptic curve see also [4].

Consider the real and imaginary periods of a Néron differential of a minimal Weier-
strass equation for E over Z which we denote by Ω±(E). Let

Ω+(Sym2 E(1)) := (2πi)−1Ω+(E)Ω−(E) and Ω+(Sym2 E(2)) := 2πiΩ+(E)Ω−(E)

be the periods for Sym2 E at the critical twists. In [5] two p-adic distributions 
μp(Ω+(Sym2 E(1))) and μp(Ω+(Sym2 E(2))) are defined. In the present paper we will 
use the latter distribution.

Let Xp be the set of continuous characters of Z×
p into C×

p . For χ ∈ Xp, let pmχ be the 
conductor of χ. Since Z×

p
∼= (1 + pZp) × (Z/p)×, we can write X := Xp as the product of 

X((Z/p)×) with X0 = X(1 +pZp). The elements of X0 are called wild p-adic characters. 
By Section 2.1 in [23] we can give X0 a Cp-structure through the isomorphism of X0 to 
the disk

U := {u ∈ C×
p ||u− 1| < 1} (6.1)

constructed by mapping ν ∈ X0 to ν(1 +p), with 1 +p a topological generator of 1 +pZp.
We follow the definition of the p-adic distribution μp(Ω+(Sym2 E(2))) on Z×

p in [5]. 
Suppose E has good reduction at p. Let χ ∈ X0 be a non-trivial wild p-adic character, 
with conductor pmχ which can be identified with a primitive Dirichlet character. Then 
given αp(E) the root of X2 − apX + p with ap the trace of the Frobenius at p, we define

∫
Z
×
p

χdμp(Ω+(Sym2 E(2))) := αp(E)−2mχ · τ(χ)2pmχ · L(Sym2 E,χ, 2)
Ω+(Sym2 E(2))

. (6.2)

If E has good ordinary reduction at p then the distributions μp(Ω+(Sym2 E(2))) are 
bounded measures on Z×

p . If E has supersingular reduction at p then the distributions 
μp(Ω+(Sym2 E(2))) give h-admissible measures on Z×

p , with h = 2. Note that the set of 
h-admissible measures with h = 1 is larger, but contains the bounded measures.

Now suppose that E has bad multiplicative reduction at p (either split or non-split). 
Let χ ∈ X0 denote a Dirichlet character of conductor pmχ as above. Then

∫
Z
×
p

χdμp(Ω+(Sym2 E(2))) := τ(χ)2pmχ · L(Sym2 E,χ, 2)
Ω+(Sym2 E(2))

(6.3)

and the distributions μp(Ω+(Sym2 E(2))) are bounded measures on Z×
p .
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Consider μ an h-admissible measure as above. Then

χ → Lμ(χ) :=
∫
Z
×
p

χdμ (6.4)

is an analytic function of type o(logh) (cf. [23]). Note that for an analytic function F to 
be of type o(logh) it must satisfy

sup
|u−1|p<r

‖F (u)‖ = o

(
sup

|u−1|p<r

| loghp(u)|
)

for r → 1−.

An h-admissible measure μ is determined by the values Lμ(χxr
p), where χ is a wild p-adic 

character and xp is the p-th cyclotomic character given by the action on the p-power 
roots of unity, with r = 0, 1, · · · , h − 1.

Consider the p-adic distribution μ = μp(Ω+(Sym2 E(2))) as defined above. Denote 
by Lp the corresponding p-adic L-function. We have

Lp(Sym2 E,χ, s) :=
∫
Z
×
p

χ(x)〈x〉sdμ,

where 〈·〉 : Z×
p → 1 + pZp, 〈x〉 = x

ω(x) , with ω : Z×
p → Z×

p the Teichmüller character.
We prove the following lemma:

Lemma 4. Let p be an odd prime. Let E, E′ be elliptic curves over Q with semistable 
reduction at p such that Lp(Sym2 E, n) = CLp(Sym2 E′, n), for an infinite number of 
integers n prime to p in some set Y , and some constant C ∈ Q. Then for every finite 
order wild p-adic character χ,

Lp(Sym2 E,χ, s) = CLp(Sym2 E′, χ, s)

holds for all s ∈ Zp.

Proof. We follow the approach in [14]. Let

G(ν) = Lp(Sym2 E, ν) − CLp(Sym2 E′, ν)

for every ν ∈ X0. G vanishes on X1 = {αn = 〈x〉n|n ∈ Y } by hypothesis; we want to 
show that G vanishes on X0. We use the fact that G is an analytic function on X0 of 
type o(logh) (as in (6.4)). G considered as an analytic function on U (see (6.1)) vanishes 
on the subset

U1 = {(1 + p)n|n ∈ Y }.
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There exists r = 1/p such that the number of zeros z of G with |z− 1| = r is infinite. 
Indeed, for all n ∈ Y elements in an infinite set with n relatively prime to p as above, 
zn := (1 + p)n ∈ U1 is a zero of G and

|zn − 1| = |(1 + p)n − 1|p =
∣∣∣ n∑
j=1

(
n

j

)
pj
∣∣∣
p

= 1
p
.

By Section 2.5 in [23], G is identically zero on U . �
7. Proof of Theorem 1

7.1. Proof of Theorem 1 in the non-CM case

By Lemma 4, for every finite order wild p-power character χ, the identity

Lp(Sym2 E,χ, s) = CLp(Sym2 E′, χ, s) (7.1)

holds for all s ∈ Zp. By Eq. (6.2), if E has good reduction at p then

αp(E)−2mχL(Sym2 E,χ, 2) = C ′αp(E′)−2mχL(Sym2 E′, χ, 2) (7.2)

for some C ′ ∈ Q. If E has bad multiplicative reduction at p, then by (6.3),

L(Sym2 E,χ, 2) = C ′L(Sym2 E′, χ, 2). (7.3)

Let π and π′ be the unitary cuspidal automorphic representations over GL(3, AQ)
associated to Sym2 E and Sym2 E′ respectively. Then the unitarized L-functions Lu

corresponding to π and π′ satisfy Lu(π, s) = L(Sym2 E, s +1). Hence, if E has semistable 
reduction at p, from (7.2) and (7.3) there exist constants C1, C2 ∈ C such that

L(π ⊗ χ, 1) = C1C
mχ

2 L(π′ ⊗ χ, 1)

for all wild p-power characters χ of conductor pmχ with mχ sufficiently large. Then 
by Theorem 2, we conclude that π ∼= π′ and thus Ad(η) ∼= Ad(η′) where η and η′

are the unitary cuspidal automorphic representations of GL(2, Q) associated to E. By 
Theorem 4.1.2 in [18] we conclude that η′ = η ⊗ ν with ν a quadratic character since 
ωη = ωη′ = 1. Write ν(·) =

( ·
D

)
. It then follows by Faltings’ isogeny theorem that E′ is 

isogenous to ED, where for the elliptic curve E given by the equation y2 = f(x) we have 
that ED is given by the equation Dy2 = f(x). Clearly if the conductors of E and E′ are 
square free, then E and E′ are isogenous.
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7.2. Proof of Theorem 1 in the CM case

An elliptic curve E over Q is of CM-type if End(E) ⊗Q = K, with K = Q(
√
−D ) an 

imaginary quadratic number field. We have that L(E, s) = L(η, s −1/2) for some unitary 
Hecke character η of the idele class group CK . Let π = IQK(η) be the associated dihe-
dral representation of GL(2, AQ). Denote by π′ the cuspidal automorphic representation 
IQK(η2) of GL(2, AQ). By (2.18) we have

L(Sym2 π, s) = L(π′, s)L(η0, s),

where η0 is the restriction of η to CQ. Twisting by some character χ gives

L(Sym2 π ⊗ χ, s) = L(π′ ⊗ χ, s)L(η0 ⊗ χ, s).

Note that L(π′ ⊗ χ, s)L(η0 ⊗ χ, s) is entire unless η0 ⊗ χ is trivial, in which case

L(Sym2 π ⊗ η−1
0 , s) = L(π′ ⊗ η−1

0 , s)ζ(s)

has a pole at s = 1. Hence, we have that L(Sym2 π ⊗ χ, s) is entire unless χ = η−1
0 .

Proof of Theorem 1 in the CM case. Let π and π′ be the isobaric sums of unitary 
cuspidal automorphic representations over GL(3, AQ) associated to Sym2 E and Sym2 E′

respectively. Just as in the non-CM case, it follows that if E has semistable reduction at 
p we have that

L(π ⊗ χ, 1) = C1C
mχ

2 L(π′ ⊗ χ, 1)

for all wild p-power characters χ of conductor pmχ with mχ sufficiently large and by the 
discussion above, the twisted L-functions are entire. Then by Theorem 2 we conclude 
that π ∼= π′, and the proof proceeds as in the non-CM case. �
Remark. Suppose E and E′ are CM elliptic curves and let η and η′ be their associated 
idele class characters over the imaginary quadratic number fields K and K ′ respectively. 
If we let π, π′ be the representations induced by the characters η, η′, then they are 
dihedral. Just as before,

L(Sym2 π, s) = L
(
IQK(η2), s

)
L(η0, s) (7.4)

where η0 denotes the restriction of η to Q, and similarly for π′. If K = K ′ then η0 = η′0. 
Hence, Theorem 1 for E, E′ as above is a consequence of Lemma 4 and Theorem A 
in [14], since IQK(η2) is a cuspidal automorphic representation of GL(2, AQ).

It is unclear if for K 
= K ′ Theorem 1 can be reduced to a consequence of a result on the 
determination of GL(2) cusp forms. The special values L(η0⊗χ, 1) and L(η0⊗χ, 2) can be 
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expressed in terms of the generalized Bernoulli numbers B1,η0χ and B2,η0χ respectively, 
but there is no clear way to separate the contributions from η0 and χ in L(η0 ⊗ χ, 1).
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