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1. Introduction

The idea of hyperstructures goes back to 1934 when F. Marty first suggested a notion 
of hypergroups in [17] in such a way that a group multiplication is no longer single-
valued but multi-valued. Shortly after, several aspects of hypergroups were investigated 
in relation to incidence geometry (see, [4, §2.2] for the historical development, also see 
[2] for the recent work of Connes and Consani in this direction).
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In 1956, M. Krasner introduced a notion of hyperrings which generalizes commutative 
rings and use them in [11] for the approximation of valued fields. After Krasner’s work, 
for decades, hyperstructures have been better known to computer scientists or applied 
mathematicians. This is due to uses of hyperstructures in connection with fuzzy logic 
(a form of multi-valued logic), automata, cryptography, coding theory via associations 
schemes, and hypergraphs (cf. [4,5,21]). A notion of hypergroups has been also used in 
Harmonic analysis (cf. [13]), however, algebraic aspects have not been much studied.

In recent years, the hyperstructure theory has been revitalized in connection with var-
ious fields. This is mainly done by Connes and Consani in connection to number theory, 
incidence geometry, and geometry in characteristic one (cf. [1–3]), O. Viro in connection 
to tropical geometry (cf. [19,18]), and M. Marshall in connection to quadratic forms and 
real algebraic geometry (cf. [6,16]). Furthermore, hyperstructures have certain relations 
with recently introduced algebraic objects such as supertropical algebras by Z. Izhakian 
and L. Rowen (cf. [7,8]), blueprints by O. Lorscheid (cf. [14,15]). Note that these are 
algebraic objects which aim to provide a firm algebraic foundation to tropical geometry. 
The author also applied an idea of hyperstructures to generalize the definition of val-
uations in [10] and developed the basic notions of algebraic geometry over hyperrings 
in [9].

Let us now illustrate how a concept of hypergroups can be naturally implemented to 
affine algebraic group schemes. For an introduction to the basic notions of affine group 
schemes, we refer the readers to [20].

Let X = SpecA be an affine algebraic group scheme over a field k. Then A is a 
commutative Hopf algebra over k. Let Δ : A −→ A ⊗k A be the coproduct and m :
A ⊗k A −→ A be the multiplication. For a field extension K of k, the set

X(K) = Hom(SpecK,SpecA) = Hom(A,K)

of K-rational points of X has a group structure. More precisely, the group multiplication 
∗ on the set X(K) comes from the coproduct Δ of A as follows:

f ∗ g := m ◦ (f ⊗ g) ◦ Δ, f, g ∈ Hom(A,K). (1)

However, in general, the underlying topological space SpecA itself does not carry any 
algebraic structure although X is a group object in the category of affine schemes over k.

In the paper [1], Connes and Consani adopted a notion of hyperstructures to recast the 
underlying topological space SpecA as a set of rational points of X over the ‘Krasner’s 
hyperfield’ K (cf. Example 2.9). The novelty of their approach is that such a hyperstruc-
ture canonically arises from a coproduct of A. One of main ingredients of Connes and 
Consani is the following set bijection:

Hom(A,K) = SpecA, (2)
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where K is the Krasner’s hyperfield and the homomorphisms are of hyperrings (by 
considering A as a hyperring). In the view of (1) and (2), one is induced to ask if SpecA
is a hypergroup. In [1], Connes and Consani answered this question by generalizing the 
group multiplication of (1) to impose a hyperstructure to SpecA = Hom(A, K). This 
algebraic (hyper)structure naturally emerges from a Hopf algebra structure of A. More 
precisely, Connes and Consani proved that if A is a Hopf algebra over Q or Fp obtained 
from an affine line Ga or an algebraic torus Gm, then SpecA is a (canonical) hypergroup 
(see, Theorem 3.4).

In this paper, we first prove that Connes and Consani’s definition is in fact an enrich-
ment of the classical group structure as follows:

Theorem. (cf. Proposition 3.10) Let A be a Hopf algebra over a field k with |k| ≥ 3, K be 
a field extension of k, and X = SpecA. Then we have the following injection (of sets)

i : X(K) = Hom(A,K) −→ X = SpecA

such that i(f ∗ g) ⊆ i(f) ∗h i(g), where ∗ is the group multiplication of X(K) and ∗h is 
the hyperoperation of X.

Then, we partially generalize their result to arbitrary affine algebraic group schemes 
as follows.

Theorem. (cf. Theorem 3.19) Any affine algebraic group scheme X = SpecA over a 
field k, such that |k| ≥ 3, has a canonical hyperstructure ∗ induced from the coproduct 
on A which satisfies the following conditions:

(1) ∗ is weakly-associative, i.e. f ∗ (g ∗ h) ∩ (f ∗ g) ∗ h 
= ∅ for ∀f, g, h ∈ X.
(2) ∗ is equipped with the identity element e, i.e. f ∗ e = e ∗ f = f for ∀f ∈ X.
(3) For each f ∈ X, there exists a canonical element f̃ ∈ X such that e ∈ (f ∗ f̃) ∩(f̃ ∗f).
(4) For f, g, h ∈ X, the following holds: f ∈ g ∗ h ⇐⇒ f̃ ∈ h̃ ∗ g̃.

2. Basic notions of hypergroups and hyperrings

In this section, we provide the basic definitions of hypergroup and hyperring theory. 
For a complete introduction, we refer the readers to [4].

2.1. Hypergroups

Definition 2.1. Let H be a nonempty set and P(H) be the set of nonempty subsets of H.

(1) A hyperoperation on H is a function, ∗ : H ×H → P(H).
(2) For any nonempty subsets A, B ⊆ H, we define
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A ∗B :=
⋃

a∈A,b∈B

(a ∗ b).

When a ∗ b contains a single element c, we write a ∗ b = c instead of a ∗ b = {c} for 
simplicity.

Definition 2.2. A hypergroup (H, ∗) is a nonempty set H with a hyperoperation ∗ which 
satisfies the following properties:

(1) (a ∗ b) ∗ c = a ∗ (b ∗ c) ∀a, b, c ∈ H.
(2) ∃! e ∈ H such that e ∗ a = a ∗ e = a for all a ∈ H.
(3) For each a ∈ H, ∃! b (:= a−1) such that e ∈ (a ∗ b) ∩ (b ∗ a).

We call the element e of H the identity element.

Remark 2.3. In fact, our Definition 2.2 is stronger than the first definition given by 
Marty. In [17], a hypergroup is a nonempty set H together with a hyperoperation ∗ which 
satisfies: (a ∗b) ∗c = a ∗(b ∗c) ∀a, b, c ∈ H and a ∗H = H ∗a = H. One can easily observe 
that if (H, ∗) is a hypergroup in the sense of Definition 2.2, then (H, ∗) is a hypergroup 
in the sense of Marty.

When a hypergroup (H, ∗) is commutative (i.e., a ∗b = b ∗a), we call (H, ∗) a canonical 
hypergroup. In this case, (H, ∗) satisfies the following property (reversibility):

c ∈ a ∗ b =⇒ b ∈ c ∗ a−1 and a ∈ c ∗ b−1.

In case of a canonical hypergroup, we use the + notation for a hyperoperation.

Example 2.4. Let K := {0, 1}. Then (K, +) becomes a canonical hypergroup under the 
following commutative hyperoperation:

0 + 1 = 1 = 1 + 0, 0 + 0 = 0, 1 + 1 = {0, 1}.

Example 2.5. Let S := {−1, 0, 1}. One may impose a commutative hyperoperation +
following the rule of signs:

0 + 0 = 0, 1 + 0 = 1 = 1 + 1, (−1) + 0 = (−1) = (−1) + (−1),

1 + (−1) = {−1, 0, 1}.

Then (S, +) is a canonical hypergroup.

Definition 2.6. Let (H1, ∗1) and (H2, ∗2) be hypergroups. A homomorphism f from H1
to H2 is a function f : H1 −→ H2 such that f(e1) = f(e2) and
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f(a ∗1 b) ⊆ f(a) ∗2 f(b), ∀a, b ∈ H1,

where e1 and e2 are identity elements of H1 and H2. When f(a ∗1 b) = f(a) ∗2 f(b) for 
all a, b ∈ H1, f is said to be a strict homomorphism.

2.2. Hyperrings

In this subsection, we review the basic definitions of hyperring theory. We will restrict 
ourselves to Krasner hyperring. In what follows, by a hyperring we will always mean a 
Krasner hyperring.

Definition 2.7. A (Krasner) hyperring (R, +, ·) is a nonempty set R with a hyperoperation 
+ and a binary operation · which satisfy the following conditions:

(1) (R, +, 0) is a canonical hypergroup, where 0 is the identity element,
(2) (R, ·, 1) is a commutative monoid, where 1 is the identity element,
(3) Two binary operations are compatible; ∀a, b, c ∈ R, we have a · (b + c) = a · b + a · c, 

(a + b) · c = a · c + b · c,
(4) ∀a ∈ R, a · 0 = 0 = 0 · a,
(5) 0 
= 1.

When (R \ {0}, ·) is a group, we call (R, +, ·) a hyperfield.

Definition 2.8. Let (R1, +1, ·1), (R2, +2, ·2) be hyperrings. A function f : R1 −→ R2 is 
said to be a homomorphism of hyperrings if

(1) f is a homomorphism of canonical hypergroups (R1, +1) and (R2, +2).
(2) f is a homomorphism of monoids (R1, ·1) and (R2, ·2).
(3) f is said to be strict if f is strict as a homomorphism of canonical hypergroups.

Example 2.9. Let K be as defined in Example 2.4. We impose a commutative monoid 
structure on K as follows:

1 · 1 = 1, 0 · 1 = 0 = 1 · 0.

One can observe that this monoid structure is compatible with the canonical hyper-
group structure given in Example 2.4. In fact, (K, +, ·) becomes a hyperfield called the 
Krasner’s hyperfield.

Example 2.10. Let S be as defined in Example 2.5. One may impose a commutative 
monoid structure on S as follows:

1 · 1 = 1 = (−1) · (−1), (−1) · 1 = (−1), 1 · 0 = 0 = 0 · (−1) = 0 · 0.
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Then, together with a canonical hypergroup structure given in Example 2.5, S becomes 
a hyperfield called the hyperfield of signs.

We close this subsection by providing the following theorem of Connes and Consani 
which asserts that we have a rich class of hyperrings.

Theorem 2.11. (cf. [2, Proposition 2.6]) Let A be a commutative ring and A× be the 
group of (multiplicatively) invertible elements of A. Then, for any subgroup G of A×, 
the set A/G = {aG | a ∈ A} of cosets has a hyperring structure with the following 
operations:

(1) (multiplication): aG · bG := abG, ∀aG, bG ∈ A/G.
(2) (hyperaddition): aG + bG := {cG | c = ax + by for some x, y ∈ G}, ∀aG, bG ∈ A/G.

A hyperring of this type is called a quotient hyperring.

In this way, we can see that the Krasner’s hyperfield K is isomorphic to the quotient 
hyperring k/k× for any field k with |k| ≥ 3.

3. Hyperstructure of affine algebraic group schemes

We first review how Connes and Consani generalize the group operation (1) to hyper-
structures in [1].

Definition 3.1. ([1, Definition 6.1]) Let (A, Δ) be a commutative ring with a coproduct 
Δ : A −→ A ⊗Z A and let R be a hyperring. Let X = Hom(A, R) be the set of homo-
morphisms of hyperrings (by considering A as a hyperring). For ϕj ∈ X, j = 1, 2, one 
defines

ϕ1 ∗Δ ϕ2 := {ϕ ∈ X | ϕ(x) ∈
∑

ϕ1(x(1))ϕ2(x(2)), ∀Δ(x) =
∑

x(1) ⊗ x(2)}. (3)

Note that, in general, Δ(x) can have many presentations as an element of A ⊗Z A, and 
the condition in (3) should hold for all presentations of Δ(x).

Remark 3.2. One can easily notice that when (A, Δ) is cocommutative, the hyperoperation 
as in (3) is commutative.

The following lemma of Connes and Consani will be used in sequel.

Lemma 3.3. ([1, Lemma 6.4]) Let (A, Δ) be a commutative ring with a coproduct Δ :
A −→ A ⊗Z A and Jj be ideals of A for j = 1, 2. Then, the set

J := J1 ⊗Z A + A⊗Z J2 (4)
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is an ideal of A ⊗Z A as well as the set

J1 ∗Δ J2 := {x ∈ A | Δ(x) ∈ J} (5)

is an ideal of A. Furthermore, for ϕ ∈ ϕ1 ∗Δ ϕ2, we have

Ker(ϕ1) ∗Δ Ker(ϕ2) ⊆ Ker(ϕ). (6)

In [1], the authors proved that for a commutative ring A and for the Krasner’s hyper-
field K, one has the following identification (of sets):

Hom(A,K) = SpecA, ϕ �→ Ker(ϕ). (7)

Thus, the underlying topological space SpecA can be considered as the set of ‘K-rational 
points’ of the affine scheme X = SpecA. The following theorem is the main motivation 
of the paper.

Theorem 3.4. ([1, Theorems 7.1 and 7.13]) Let K be the Krasner’s hyperfield.

(1) Let δ be the generic point of SpecQ[T ]. Then, SpecQ[T ]\{δ} and SpecQ[T, 1T ]\{δ}
are hypergroups via (3) and (7). Moreover, we have

SpecQ[T ]\{δ} � Q̄/Aut(Q̄), SpecQ[T, 1
T

]\{δ} � Q̄×/Aut(Q̄).

(2) Let Ω be an algebraic closure of the field of fractions, Fp(T ). Then, SpecFp[T ] and 
SpecFp[T, 1T ] are hypergroups via (3) and (7). We also have

SpecFp[T ] � Ω/Aut(Ω), SpecFp[T,
1
T

] � Ω×/Aut(Ω).

Remark 3.5. Note that the hypergroup structures of Q̄/ Aut(Q̄), Q̄×/ Aut(Q̄), Ω/ Aut(Ω), 
and Ω×/ Aut(Ω) are similar to the one given in Theorem 2.11. For details, see [1]. We 
further remark that the idea of quotient hyperfields (as above examples) was originally 
considered by Krasner together with the question whether any hyperfield can be realized 
as a quotient hyperfield. See, [12].

In other words, Connes and Consani defined the hyperoperation ∗ on X = SpecA
when A is a commutative ring with a coproduct and showed that in some cases, (X, ∗)
is a hypergroup (cf. Theorem 3.4). In this paper, we show that (X = SpecA, ∗) is an 
algebraic object which is more general than a hypergroup. In what follows, by K we 
always mean the Krasner’s hyperfield (cf. Example 2.9). Also note that, in general, we 
can not expect the hyperoperation ∗ on X = SpecA to be commutative unless A is 
cocommutative.
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Remark 3.6. Suppose that A is a commutative ring with a coproduct Δ. For f, g ∈
Hom(A, K), unless f |Z = g|Z, f ∗ g is an empty set ([1, Lemma 6.2]). In other words, 
the hyperoperation ∗ is non-trivial only within the fibers of the following restriction map

Φ : Hom(A,K) → Hom(Z,K) = SpecZ, f �→ f |Z.

As explained in [1], one can easily check that for the generic point δ ∈ SpecZ, we have the 
identification Φ−1(δ) = Hom(A ⊗Z Q, K) which is compatible with the hyperoperations. 
Also, for ℘ = (p) ∈ SpecZ, we have the identification Φ−1(℘) = Hom(A ⊗Z Fp, K) which 
is also compatible with the hyperoperations.

In the view of Remark 3.6, in the following we will focus on the case of a commutative 
Hopf algebra over a field k. Also, in the sequel, all Hopf algebras will be assumed to be 
commutative.

We begin with a lemma showing that if we work over a field, our hyperoperation is 
always non-trivial.

Lemma 3.7. Let A be a Hopf algebra over a field k with a coproduct Δ : A → A ⊗k A. 
If f, g ∈ Hom(A, K), then the set

P := Δ−1(Ker(f) ⊗k A + A⊗k Ker(g))

is a prime ideal of A.

Proof. Trivially, P is an ideal by being an inverse image of an ideal. Hence, all we have 
to show is that P is prime. Suppose that αβ ∈ P , then by definition, Δ(αβ) ∈ Ker(f) ⊗k

A + A ⊗k Ker(g). This implies that for any decomposition Δ(αβ) =
∑

γ(1) ⊗k γ(2), 
we have 

∑
f(γ(1))g(γ(2)) = 0. Assume that α /∈ P . Then, there is a decomposition 

Δα =
∑

ai ⊗k bi such that 
∑

f(ai)g(bi) = 1 or {0, 1}. If β /∈ P , then we also have a 
decomposition Δβ =

∑
cj ⊗k dj such that 

∑
f(cj)g(dj) = 1 or {0, 1}. For these two 

specific decompositions, we have

Δ(αβ) = Δ(α)Δ(β) = (
∑

ai ⊗k bi)(
∑

cj ⊗k dj) =
∑

i,j

aicj ⊗k bidj . (8)

Since αβ ∈ P , we should have
∑

i,j

f(aicj)g(bidj) =
∑

i,j

f(ai)f(cj)g(bi)g(dj)

=
∑

i,j

f(ai)g(bi)f(cj)g(dj) =
∑

i

[(f(ai)g(bi))
∑

j

f(cj)g(dj)] = 0. (9)

However, since we know that 
∑

i f(ai)g(bi) = 1 or {0, 1} and 
∑

j f(cj)g(dj) =
1 or {0, 1}, we only can have
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∑

i

[(f(ai)g(bi))
∑

j

f(cj)g(dj)] = 1 or {0, 1}.

This contradicts to (9). Hence, either α or β should be in P . �
Lemma 3.8. Let A be a Hopf algebra over a field k. If f, g ∈ Hom(A, K), then the set 
f ∗ g is not empty.

Proof. We use the same notation as in Lemma 3.7. For a non-zero element a ∈ k, we 
have f(a) = g(a) = 1. It follows that k � P and hence P 
= A. Thus, in this case, P is 
a proper prime ideal. From the identification Hom(A, K) = SpecA of (7), we have the 
homomorphism ϕ : A → K of hyperrings such that Ker(ϕ) = P . We claim that ϕ ∈ f ∗g. 
Indeed, let α ∈ A. First, suppose that α ∈ P . Then, ϕ(α) = 0. On the other hand, for 
any decomposition Δ(α) =

∑
ai ⊗ bi, we have 

∑
f(ai)g(bi) = 0 since α ∈ P . When 

α /∈ P , we have ϕ(α) = 1. However, In this case, 
∑

f(ai)g(bi) = 1 or {0, 1} in this case. 
This proves that ϕ ∈ f ∗ g. �
Remark 3.9. Under the same notation as Lemma 3.7, we consider the case of a com-
mutative A with a coproduct Δ. Let p and q be distinct prime numbers. Suppose that 
p ∈ Ker(f) and q ∈ Ker(g) for some f, g ∈ Hom(A, K). Then, one can easily see that 
p, q ∈ P . This implies that 1 ∈ P and hence P = A. Furthermore, for ϕ ∈ f ∗ g, we have 
P ⊆ Ker(ϕ) from Lemma 3.3. It follows that the only possible element ϕ in f ∗ g is the 
zero map since P = A. However, this is impossible since ϕ(1) = 1. Thus, in this case, 
we have f ∗ g = ∅ as previously mentioned in Remark 3.6.

Next, we prove that the hyperstructure which Connes and Consani defined is an 
enrichment of the classical group structure.

Proposition 3.10. Let A be a Hopf algebra over a field k with |k| ≥ 3, K be a field 
extension of k, and X = SpecA. There is an injection i from X(K) = Hom(A, K) to 
X = SpecA such that

i(f ∗ g) ⊆ i(f) ∗h i(g),

where ∗ is the group multiplication of X(K) and ∗h is the hyperoperation of X.

Proof. Define i as follows:

i : X(K) −→ X, ϕ �→ Ker(ϕ). (10)

This map is clearly injective. Suppose that h = f ∗ g. We use the set bijection (7) and 
consider X as Hom(A, K), where K is the Krasner’s hyperfield. Then the above map 
becomes:
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i : Hom(A,K) −→ Hom(A,K), ϕ �→ π ◦ ϕ, (11)

where π : K −→ K/K× = K is the canonical projection. For the notational simplicity, 
let i(f) = f̃ for each f ∈ Hom(A, K). Now, for any a ∈ A and Δ(a) =

∑
ai ⊗ bi, we 

want to show that

h̃(a) ∈
∑

f̃(ai)g̃(bi). (12)

Let us first consider the case when h̃(a) = 0. This means that a ∈ Ker(h). It follows that
∑

f(ai)g(bi) = 0.

Then either f(ai)g(bi) = 0 for all indexes i or there are at least two indexes j, l such that 
f(aj)g(bj) 
= 0 and f(al)g(bl) 
= 0. In the first case, we obtain 

∑
f̃(ai)g̃(bi) = 0 and in 

the second case, we obtain 
∑

f̃(ai)g̃(bi) = {0, 1}. Thus, in any case, we have (12).
Next, suppose that h̃(a) = 1. This implies that h(a) 
= 0. Since h(a) =

∑
f(ai)g(bi), 

it follows that either f(ar)g(br) 
= 0 for exactly one index r or there are at least two 
indexes j, l such that f(aj)g(bj) 
= 0 and f(al)g(bl) 
= 0. But, in any case, we have (12). 
This completes our proof. �
Remark 3.11. Proposition 3.10 also implies Lemma 3.8.

The following proposition shows that the hyperoperation of an affine algebraic group 
scheme X descends to a closed subgroup scheme. In the sequel, we always assume that 
any field k contains more than two elements.

Proposition 3.12. Let A be a finitely generated Hopf algebra over a field k. Let H be a 
closed subgroup scheme of the affine algebraic group scheme G = SpecA and let B :=
Γ(H, OH) be the Hopf algebra of global sections of H. Then, there exists an injection (of 
sets):

∼: Hom(B,K) ↪→ Hom(A,K)

which preserves the hyperoperations. i.e., for f, g ∈ Hom(B, K), we have

f̃ 
 g = f̃ ∗ g̃, (13)

where 
 is the hyperoperation on Hom(B, K) and ∗ is the hyperoperation on Hom(A, K)
as in Definition 3.1.

Proof. Since H is a closed subgroup scheme of G, we know that B � A/I for some Hopf 
ideal I of A. Consider the following set:

XI = {f ∈ Hom(A,K) | f(i) = 0 ∀i ∈ I}.
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Let π : A → A/I be a canonical projection map. We define the following map:

∼: Hom(B,K) = Hom(A/I,K) −→ XI , ϕ �→ ϕ̃,

where ϕ̃ is an element of Hom(A, K) such that Ker(ϕ̃) := π−1(Kerϕ). Note that from the 
identification (7), the map ∼ is well defined. Furthermore, since there is an one-to-one 
correspondence between the set of prime ideals of A containing I and the set of prime 
ideals of B � A/I given by ℘ �→ ℘/I, the map ∼ is a bijection (of sets). We remark the 
following two facts:

(1) If ϕ ∈ Hom(A/I, K) then ϕ̃(r) = ϕ([r]) for r ∈ A, where [r] = π(r). In other words, 
ϕ̃ = ϕ ◦ π. In fact, since Kerϕ = Ker(ϕ̃)/I, we have

ϕ̃(r) = 0 ⇐⇒ r ∈ Ker(ϕ̃) ⇐⇒ ϕ([r]) = ϕ(r/I) = 0. (14)

(2) For f̃ , g̃ ∈ XI , we have

f̃ ∗ g̃ ⊆ XI . (15)

Indeed, suppose that φ ∈ f̃ ∗ g̃. Then, we have to show that for i ∈ I, φ(i) = 0. 
However, since I is a Hopf ideal, we have

Δ(I) ⊆ I ⊗k A + A⊗k I.

This implies that φ(i) ∈
∑

f̃(i(1))g̃(i(2)) = {0} for any decomposition Δ(i) =∑
i(1) ⊗k i(2) since f̃(a) = g̃(a) = 0 ∀a ∈ I.

Next, we prove that the map ∼ is compatible with the hyperoperations, that is f̃ 
 g =
f̃ ∗ g̃.

Let ΔA be a coproduct of A and ΔB be a coproduct of B � A/I. Suppose that 
ϕ ∈ f 
 g and let ΔA(r) =

∑
r(1) ⊗ r(2) be a decomposition of r ∈ A. We have to show 

that

ϕ̃(r) ∈
∑

f̃(r(1))g̃(r(2)).

Since I is a Hopf ideal, we have the following commutative diagram:

A A⊗k A

A/I A/I ⊗k A/I

ΔA

π π⊗π

ΔB

(16)

It follows that ΔB([r]) =
∑

[r(1)] ⊗k [r(2)]. However, since ϕ ∈ f 
 g, we have
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ϕ([r]) ∈
∑

f([r(1)])g([r(2)]).

From the above remark (1), this implies that ϕ̃(r) ∈
∑

f̃(r(1))g̃(r(2)). Hence, ϕ̃ ∈ f̃ ∗ g̃.
Conversely, let f̃ , ̃g ∈ XI and suppose that ψ ∈ f̃ ∗ g̃. Since ∼ is a bijection, from the 

above Remark 2, ψ = ϕ̃ for some ϕ ∈ Hom(B, K). We claim that ϕ ∈ f 
 g. In other 
words, for [r] ∈ A/I and a decomposition ΔB([r]) =

∑
[r(1)] ⊗k [r(2)], we show that

ϕ([r]) ∈
∑

f([r(1)])g([r(2)]).

Since π is surjective, we have Ker(π ⊗k π) ⊆ Kerπ ⊗k A + A ⊗k Kerπ. Therefore, from 
(16), we can find the following decomposition of r:

ΔA(r) =
∑

r(1) ⊗k r(2) +
∑

i(1) ⊗k a(2) +
∑

a(1) ⊗k i(2),

where i(1), i(2) ∈ I and a(1), a(2) ∈ A. Since ϕ̃ ∈ f̃ ∗ g̃, we have

ϕ̃(r) ∈
∑

f̃(r(1))g̃(r(2)) +
∑

f̃(i(1))g̃(a(2)) +
∑

f̃(a(1))g̃(i(2)).

However, it follows from the definition of f̃ , g̃ ∈ XI that
∑

f̃(i(1))g̃(a(2)) =
∑

f̃(a(1))g̃(i(2)) = 0.

Therefore, we have ϕ̃(r) ∈
∑

f̃(r(1))g̃(r(2)). From the above remark (1), this implies that 
ϕ([r]) ∈

∑
f([r(1)])g([r(2)]). Hence, ϕ ∈ f 
 g. �

Example 3.13. Let A := Q[T ]/(T 2 − 1). It follows from Theorem 3.4 and Proposi-
tion 3.12 that the hyperstructure of SpecA should be induced from the hyperstructure 
of Q̄×/ Aut(Q̄). Therefore, in this case, the hyperstructure of SpecA coincides with the 
group structure of μ2(Q).

Example 3.14. Let A := Fp[T ]/(T p−1 − 1). Then, as in Example 3.13, one can see that 
the hyperstructure of SpecA is, in fact, the group structure of μp−1(Fp).

Let GLn be the general linear group scheme over a field k such that |k| ≥ 3. We will 
prove the following statements:

(1) The hyperstructure ∗ on GLn(K) as in Definition 3.1 is weakly-associative.
(2) The identity of (GLn(K), ∗) is given by e = ϕ ◦ ε, where ε is the counit of the Hopf 

algebra OGLn
and ϕ : k → k/k× = K is a canonical projection map.

(3) For f ∈ GLn(K), a canonical inverse f̃ of f is given by f̃ = f ◦S, where S : OGLn
−→

OGLn
is the antipode map. Furthermore, we have

f ∈ h ∗ g ⇐⇒ f̃ ∈ g̃ ∗ h̃.
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Any affine algebraic group scheme G is a closed subgroup scheme of a group scheme GLn

for some n ∈ N. Assume that the above statements are true. Then, from Proposition 3.12, 
we can derive that the set G(K) of ‘K-rational points’ of an affine algebraic group scheme 
G has the hyperstructure induced from GLn which is weakly-associative equipped with a 
canonical inverse (not unique) and the identity, and also satisfies the inversion property.

In what follows, we fix a ground field k such that |k| ≥ 3 and also we fix A = OGLn
=

k[X11, X12, ..., Xnn, 1/d], the Hopf algebra of the global sections of the general linear 
group scheme GLn over k, where d := det(Xij) =

∑
σ∈Sn

sign(σ)Xσ(1) · · ·Xσ(n). We 
first prove the statement (2). Note that we impose the condition |k| ≥ 3 so that we can 
realize the Krasner’s hyperfield K as k/k× (cf. Theorem 2.11).

Lemma 3.15. The identity of the hyperoperation ∗ on Hom(A, K) is given by e = ϕ ◦ ε, 
where ε is the counit of A = OGLn

and ϕ : k → k/k× = K is a canonical projection 
map.

Proof. Let f ∈ Hom(A, K). We first claim that f ∈ e ∗ f . Indeed, let P ∈ A. Then, for a 
decomposition ΔP =

∑
ai ⊗k bi, we have P =

∑
ε(ai)bi since ε is the counit. It follows 

that

f(P ) = f(
∑

ε(ai)bi) ∈
∑

f(ε(ai)bi) =
∑

f(ε(ai))f(bi).

Moreover, we have f(ε(ai)) = e(ai) since

f(ε(ai)) = 0 ⇐⇒ ε(ai) = 0 ⇐⇒ ai ∈ Ker(ε) ⇐⇒ e(ai) = 0.

Therefore, f(P ) ∈
∑

f(ε(ai))f(bi) =
∑

e(ai)f(bi). This shows that f ∈ e ∗ f .
Next, we claim that if g ∈ e ∗ f , then g(P ) = f(P ) ∀P ∈ k[Xij ] (P does not contain 

a term involving 1/d). Take such P and let ΔP =
∑

at ⊗k bt be a decomposition. 
Let δij be the Kronecker delta. Then, we can write at as at = αt + βt, where αt =∑

l[bl
∏

i,j(Xij − δij)ml,i,j ] for some bl ∈ k, ml,i,j ∈ Z>0, and βt ∈ k. Then, since βt ∈ k, 
it follows that

ΔP =
∑

(αt + βt) ⊗k bt =
∑

αt ⊗k bt +
∑

βt ⊗k bt =
∑

αt ⊗k bt + 1 ⊗k (
∑

βtbt).

However, since the ideal < Xij −δij > is contained in Ker(e), we have e(αt) = 0 ∀t. This 
implies that for this specific decomposition ΔP =

∑
αt ⊗k bt + 1 ⊗k (

∑
βtbt), we have

∑
e(αt)f(bt) + e(1)f(

∑
βtbt) = f(

∑
βtbt).

Therefore, we have g(P ) = f(P ) = f(
∑

βtbt) since g, f ∈ e ∗ f . In general, for q ∈ A =
k[Xij , 1/d], there exists N ∈ N such that dNq ∈ k[Xij ]. Then, from the previous claim, 
we have

f(dN )f(q) = f(dNq) = g(dNq) = g(dN )g(q).



J. Jun / Journal of Number Theory 167 (2016) 336–352 349
However, since d is invertible, we have f(dN ) = f(d)N = g(dN ) = g(d)N = 1. It follows 
that f(q) = g(q) ∀q ∈ k[Xij , 1/d] = A. Thus f = g, and {f} = e ∗ f . Similarly, one can 
show that {f} = f ∗ e. This completes our proof. �

Next, we prove the first part of (3): the existence of a canonical inverse.

Lemma 3.16. Let S : A −→ A be the antipode map and ϕ : k → k/k× = K is the 
canonical projection map. Then, for f ∈ GLn(K), we have e = ϕ ◦ ε ∈ (f ∗ f̃) ∩ (f̃ ∗ f), 
where f̃ = (f ◦ S).

Proof. Let f ∈ Hom(A, K) and f̃ = f◦S. Suppose that a ∈ A. Then, for a decomposition 
Δa =

∑
ai ⊗k bi, we have ε(a) =

∑
aiS(bi) since ε is the counit and S is the antipode 

map. This implies that

f(ε(a)) = f(
∑

aiS(bi)) ∈
∑

f(aiS(bi)) =
∑

f(ai)f(S(bi)) =
∑

f(ai)f̃(bi). (17)

However, we know that f(ε(a)) = 1 if ε(a) is non-zero and f(ε(a)) = 0 if ε(a) is zero. 
Since e = ϕ ◦ ε, it follows that e(a) = ϕ(ε(a)) = f(ε(a)). Hence, the above (17) becomes

e(a) ∈
∑

f(ai)f̃(bi).

This shows that e ∈ f ∗ f̃ . Similarly, one can show that e ∈ f̃ ∗ f . �
Now we prove the last half of (3): the inversion property.

Lemma 3.17. Let S : A −→ A be the antipode map and f, g, h ∈ Hom(A, K). Let f̃ =
f ◦ S, g̃ = g ◦ S, h̃ = h ◦ S. Then, h ∈ f ∗ g if and only if h̃ ∈ g̃ ∗ f̃ .

Proof. Suppose that h̃ ∈ g̃ ∗ f̃ . Let a ∈ A and Δa =
∑

ai ⊗k bi be a decomposition of a. 
Let t : A ⊗k A −→ A ⊗k A be the twist homomorphism, i.e., t(a ⊗k b) = b ⊗k a. Since 
Δ ◦ S = t ◦ (S ⊗k S) ◦ Δ, we have

Δ(S(a)) =
∑

S(bi) ⊗k S(ai). (18)

Since S2 = id, this implies that

h̃(S(a)) ∈
∑

g̃(S(bi))f̃(S(ai)) =
∑

f̃(S(ai))g̃(S(bi)). (19)

However, we have h̃(S(a)) = h ◦ S(S(a)) = h(a). Similarly, g̃(S(bi)) = g(bi) and 
f̃(S(ai)) = f(ai). Thus, h(a) ∈

∑
f(ai)g(bi). This shows that h ∈ f ∗ g.

Conversely, suppose that h ∈ f ∗ g. Then, for a ∈ A and a decomposition Δa =∑
ai ⊗k bi, we have h̃(a) ∈ g̃(bi)f̃(ai). However, by the exact same argument as above 

and the fact that S = S−1, one can conclude that h̃ ∈ g̃ ∗ f̃ . �
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Finally, we prove (1): the hyperoperation ∗ on Hom(A, K) is weakly-associative.

Lemma 3.18. Let A be a Hopf algebra over a field k, Δ be a coproduct of A, and H :=
(Δ ⊗ id) ◦ Δ = (id ⊗ Δ) ◦ Δ : A −→ A ⊗k A ⊗k A. For f, g, h ∈ Hom(A, K), we 
let J := Ker(f) ⊗k A ⊗k A + A ⊗k Ker(g) ⊗k A + A ⊗k A ⊗k Ker(h). Then, the set 
P := H−1(J) is a proper prime ideal of A. Moreover, if ϕ is the element of Hom(A, K)
determined by P , then ϕ ∈ f ∗ (g ∗ h) ∩ (f ∗ g) ∗ h.

Proof. The proof is similar to Lemma 3.7. For the first assertion, since P is clearly an 
ideal by being an inverse image of an ideal, we only have to prove that P is prime. Let 
αβ ∈ P . Then, since H(αβ) ∈ J , for any decomposition H(αβ) =

∑
γ(1) ⊗k γ(2) ⊗k γ(3), 

we have
∑

f(γ(1))g(γ(2))h(γ(3)) = 0. (20)

Suppose that α, β /∈ P . Then, there exist decompositions H(α) =
∑

ai ⊗k bi ⊗k ci and 
H(β) =

∑
xj ⊗k yj ⊗k zj such that

∑
f(ai)g(bi)h(ci) = 1 or {0, 1},

∑
f(xj)g(yj)h(zj) = 1 or {0, 1}. (21)

With these two specific decompositions, we have

H(αβ) = H(α)H(β) = (
∑

i

ai ⊗k bi ⊗k ci)(
∑

j

xj ⊗k yj ⊗k zj)

=
∑

i,j

aixj ⊗k biyj ⊗k cizj .

Since αβ ∈ P , we should have
∑

i,j

f(aixj)g(biyj)h(cizj) =
∑

i,j

f(ai)g(bi)h(ci)f(xj)g(yj)h(zj)

=
∑

i

[f(ai)g(bi)h(ci)
∑

j

f(xj)g(yj)h(zj)] = 0. (22)

However, (22) contradicts to (21). It follows that α ∈ P or β ∈ P . Furthermore, since 
H(1) = 1 ⊗ 1 ⊗ 1 /∈ J , P is proper. This proves the first assertion.

For the second assertion, it is enough to show that ϕ ∈ f ∗ (g ∗ h) since the argument 
for ϕ ∈ (f ∗g) ∗h will be symmetric. Let ψ ∈ g ∗h be such that Ker(ψ) = Δ−1(Ker(g) ⊗k

A + A ⊗k Ker(h)). This choice is possible by Lemma 3.7. We claim that ϕ ∈ f ∗ ψ. 
Indeed, we have to check two cases. The first case is when a ∈ A has a decomposition ∑

ai ⊗k bi such that 
∑

f(ai)ψ(bi) = 0. Then, we have to show that ϕ(a) = 0. But, 
since 

∑
f(ai)ψ(bi) = 0, we know that 

∑
ai ⊗k bi ∈ Ker(f) ⊗k A + A ⊗k Ker(ψ). Since 

Ker(ψ) = Δ−1(Ker(g) ⊗k A + A ⊗k Ker(h)), we have
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H(a) = (id⊗k Δ)(
∑

ai ⊗k bi)

∈ Ker(f) ⊗k A⊗k A + A⊗k Ker(g) ⊗k A + A⊗k A⊗k Ker(h).

Thus, ϕ(a) = 0 since ϕ is an element of Hom(A, K) which is determined by H−1(P ). The 
second case is when a ∈ A has a decomposition 

∑
xj ⊗k yj such that 

∑
f(xj)ψ(yj) = 1. 

In this case, there exist xi, yi such that f(xi) = ψ(yi) = 1 and f(xj)ψ(yj) = 0 ∀j 
= i. 
We may assume that i = 1. Then, we have

∑

i≥2
xi ⊗k yi ∈ Ker(f) ⊗k A + A⊗k Ker(ψ).

This implies that (id ⊗kΔ)(
∑

i≥2 xi⊗kyi) ∈ J . On the other hand, (id ⊗kΔ)(x1⊗ky1) /∈ J

since x1 /∈ Ker(f) and y1 /∈ Ker(ψ). It follows that H(a) /∈ J , hence ϕ(a) = 1 as 
we desired. The last case is when for any decomposition 

∑
xj ⊗k yj of a, we have 

that 
∑

f(xj)ψ(yj) = {0, 1}. In this case, clearly we have ϕ(a) =
∑

f(xj)ψ(yj). This 
completes our proof. �

By combining the above lemmas, we obtain the following result.

Theorem 3.19. Any affine algebraic group scheme X = SpecA over a field k has a 
canonical hyperstructure ∗ induced from the coproduct of A which is weakly-associative 
and it is equipped with the identity element e. For each f ∈ X, there exists a canonical 
element f̃ ∈ X such that e ∈ (f ∗ f̃) ∩ (f̃ ∗ f). Furthermore, for f, g, h ∈ X, the following 
holds: f ∈ g ∗ h ⇐⇒ f̃ ∈ h̃ ∗ g̃.

Finally, we pose the following question.

Question 3.20. When X = A1 or X = Gm, Connes and Consani’s result (Theorem 3.4) 
provides a nice description of the hypergroup structure in terms of the set of geometric 
points under the action of the absolute Galois group. Can we find a similar result with 
different affine algebraic group schemes?
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