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1. Introduction

By combining modular techniques, inspired by the proof of Fermat’s Last Theorem, with other
highly nontrivial methods, it was finally shown in [10] that the only perfect powers in the Fibonnaci
sequence are 1, 8 and 144. Fibonnaci is just one example of an infinite sequence (hm) of integers

. . . ,h−2,h−1,h0,h1,h2, . . .

satisfying hm | hn whenever m | n and, up to sign,

hm+nhm−n = hm+1hm−1h2
n − hn+1hn−1h2

m
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for all m,n ∈ Z, where h2h3 �= 0. Gezer and Bizim [27] have recently described the squares in some
of these sequences but (hm) was first studied in general by Ward [49] and is related to a Weierstrass
equation

y2 + a1xy + a3 y = x3 + a2x2 + a4x + a6 (1.1)

with integer coefficients. See [43,44] for background on Weierstrass equations and elliptic curves.
The non-singular rational points on the projective closure of the curve defined by (1.1) form a group
Ens(Q) and for P ∈ Ens(Q) different from the identity we can write

(
x(P ), y(P )

) =
(

A P

B2
P

,
C P

B3
P

)
, (1.2)

where A P , B P , C P ∈ Z and gcd(A P C P , B P ) = 1. Let (hm) be a sequence of integers as above with
h0 = 0 and h1 = 1. Building on work of Ward, Shipsey [39] has given a formula for a Weierstrass
equation (1.1) such that hm = ψm(0,0), where ψm is the mth division polynomial (see Section 3.2)
and hm = ±Bm(0,0) if gcd(a3,a4) = 1. For example, up to sign, (0,0) on

y2 + xy + y = x3 − 2x2

generates the Fibonacci sequence (Bm(0,0)). In [49] Ward calls (hm) an elliptic divisibility sequence;
however, as in the Fibonacci case, the Weierstrass equation for (hm) may have a singular point and so
not define an elliptic curve.

Let E/Q be an elliptic curve and (1.1) a Weierstrass equation for E . Via the work of Everest [21,23],
Ingram [29], Silverman [31,41] et al., it has now become conventional to use the following

Definition 1.1. Let P ∈ E(Q) be a non-torsion point. For m ∈ N take BmP , as in (1.2), to be positive and
denote it by Bm . The sequence (Bm) is an elliptic divisibility sequence.

In the current paper, we are interested in analogues for elliptic divisibility sequences (in the sense
of Definition 1.1) to the result for Fibonacci numbers. There are certainly perfect powers in some
elliptic divisibility sequences. For example,

E: y2 + xy = x3 + x2 − 7x + 5

with P = (2,−3) gives Bm = 1 for m = 1,2,3,4,7 and B12 = 27. However, the following theorem
shows that one can often prove that there are only finitely many perfect powers in such sequences.

Theorem 1.2. . Let (Bm) be an elliptic divisibility sequence, generated by a non-torsion point P ∈ E(Q), whose
first term is divisible by 2 or 3. There are finitely many perfect powers in (Bm). Moreover, if Bm = zl for some
integer z and prime l then l can be effectively bounded in terms of (1.1) and P .

The proof of Theorem 1.2 combines a recent Frey–Hellegouarch construction for Klein forms by
Bennett and Dahmen [3] with a primitive divisor result due to Silverman [41]. The method of proof
is so flexible that it also allows one in certain concrete cases to completely determine the set of all
perfect power terms, as was done for the Fibonacci sequence (see Proposition 1.5 and Example 1.9
below). The condition that only 2 or 3 divides the first term is because higher primes, such as 5, do
not give a Klein form as in Definition 3.7.

Siegel [40] proved that there are finitely many (non-zero) P ∈ E(Q) with B P = 1. In [24] it is
shown that for fixed l > 1, there are finitely many (non-zero) P ∈ E(Q) with B P = zl for some z ∈ Z.
Since their denominator is a perfect power, perhaps it is reasonable to give the following
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Definition 1.3. Call P ∈ E(Q) power integral if P is not the identity and B P (as in (1.2)) is equal to a
perfect power.

Note that 1 is a perfect power and so power integral points can be thought of as a generalization
of the integral points. A lot of work has been done to make Siegel’s theorem effective [2,11,25,28,34]
and there are many techniques which can find all of the integral points for large classes of elliptic
curves [26,35,46,47]. For certain curves we are now able to find all of the power integral points.

1.1. Mordell curves

Theorem 1.2 can be strengthened considerably for Mordell curves.

Theorem 1.4. Let D ∈ Z be non-zero and E: y2 = x3 + D. There are finitely many perfect powers in an elliptic
divisibility sequence (Bm) whose first term is greater than 1. As in Theorem 1.2, the bound for the possible
prime exponent is effective.

By utilizing the proofs of the theorems above in a specific case we are able to find the Mordell
curve of smallest conductor with non-zero rank and no power integral points.

Proposition 1.5. The elliptic curve E: y2 = x3 + 11 has no power integral points.

In the general case, allowing for integral points, we expect the following to hold.

Conjecture 1.6. Let D ∈ Z be non-zero and E: y2 = x3 + D. For l a sufficiently large prime, if B P (as in (1.2))
is an lth power then B P = 1.

At the end of Section 5 it is explained that Conjecture 1.6 would follow from the Frey–Mazur
conjecture [16].

1.2. Congruent number curves

A much studied class of elliptic curves is the congruent number curves E N : y2 = x3 − N2x, where
N � 1 is an integer. Let p be an odd prime and a, b non-negative integers. For N = 2a pb , a simple
algorithm for the determination of the integral points in E N (Q) has been given in [20] and [19]. In
this case we are able to find all power integral points in 2E N (Q); in fact they are all integral.

Theorem 1.7. Let N = 2a pb. If P ∈ 2EN (Q) is power integral then N = 2a3b and P = (c225, c335), where
a,b are odd, a � 3 and c = ±2(a−3)/23(b−1)/2 .

In Section 6 Theorem 1.7 is proven using Fermat’s Last Theorem, due to Wiles [50], along with the
first variants by Ribet [38], Darmon and Merel [17].

Theorem 1.8. Let N = 2a p, where a = 0 or 1. Suppose that P ∈ EN (Q) has

x(P ) ∈ −Q∗2

and

x(P ) + N ∈ pQ∗2.

Then there are no perfect powers in the elliptic divisibility sequence generated by P .
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Theorem 1.8 is proven using Theorem 1.7 along with an equation recently solved by Bennett, El-
lenberg and Ng [4].

Example 1.9. There are no perfect powers in the elliptic divisibility sequence generated by
(−(60/41)2,−455700/413) on E5: y2 = x3 − 25x.

Let N = 2a p, where a = 0 or 1. Points belonging to two cosets in E N (Q)/2EN (Q) have been consid-
ered above. The remaining cases lead to equations which currently appear unresolvable in general. As
the next example shows, there can be power integral points on E N which are not integral. However,
in the example N is equal to the odd terms of a sequence (Cm) and, since these odd terms form an
elliptic divisibility sequence, there are conjectured to be finitely many possibilities with N prime [22].
This, along with Theorem 1.7 and Theorem 1.8, suggests that the number of power integral points in
EN (Q) which are not integral could be uniformly bounded.

Example 1.10. For (−1,1) on y2 = x3 − 2x and m odd write

m(−1,1) =
(

− A2
m

B2
m

,
AmCm

B3
m

)
.

We get a power integral point on ECm : y2 = x3 − C2
mx given by x(P ) = −(Cm Am)2/B4

m . Moreover, Cm

is prime for m = 3,7 and 23.

2. Properties of elliptic divisibility sequences

In this section the required properties of elliptic divisibility sequences are collected.

Lemma 2.1. Let (Bm) be an elliptic divisibility sequence.

(i) Let p be a prime. There exists a smallest positive integer m0 such that p | Bm0 . Moreover, for every m ∈ N,

p | Bm ⇐⇒ m0 | m.

(ii) Let p be an odd prime. For any pair n,m ∈ N, if ordp(Bn) > 0 then

ordp(Bmn) = ordp(Bn) + ordp(m).

(iii) For any pair n,m ∈ N, if 2 | Bn then

ord2(Bmn) = ord2(Bn) + ord2(m)

if a1 is even and

∣∣ord2(Bmn) − (
ord2(Bn) + ord2(m)

)∣∣ � ε

otherwise, where the constant ε depends only on E and P .
(iv) For all m,n ∈ N,

gcd(Bm, Bn) = Bgcd(m,n).

Proof. See [41] and Section 4 in Chapter IV of [45]. �
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Lemma 2.2. Assume that the given Weierstrass equation for E has a1 even. For a prime p suppose that m0 = p
in Lemma 2.1. Write m = pem′ where p � m′ . If Bm is an lth power then so is Bm′ . Moreover, p � Bm′ .

Proof. By Lemma 2.1, if a prime q divides Bm′ then q �= p and

ordq(Bm) = ordq(Bm′) + ordq
(

pe) = ordq(Bm′)

so the result follows. �
Definition 2.3. A prime p | Bm such that p � Bm′ for any m′ < m is called a primitive divisor of Bm .

Theorem 2.4 (Silverman). For all but finitely many m ∈ N, Bm has a primitive divisor. Moreover, if Bm does
not have a primitive divisor then m is bounded by an effectively computable constant which depends only on
the Weierstrass equation and the non-torsion point generating (Bm).

Proof. See Section 2 of [41] or Chapter V of [45]. �
Remark 2.5. For certain minimal Weierstrass equations the number of terms without a primitive
divisor has been uniformly bounded (see [29–31]).

3. The modular approach to Diophantine equations

For a more thorough exploration see [15] and Chapter 15 in [13]. As is conventional, in what
follows all newforms shall have weight 2 with a trivial character at some level N and shall be thought
of as a q-expansion

f = q +
∑
n�2

cnqn,

where the field K f = Q(c2, c3, . . .) is a totally real number field. The coefficients cn are algebraic
integers and f is called rational if they all belong to Z. For a given level N , the number of newforms
is finite. The modular symbols algorithm [14], implemented on MAGMA [8] by William Stein, shall be
used to compute the newforms at a given level.

Theorem 3.1 (Modularity theorem). Let E/Q be an elliptic curve of conductor N. Then there exists a newform
f of level N such that ap(E) = cp for all primes p � N, where cp is the pth coefficient of f and ap(E) =
p + 1 − #Ẽ(Fp).

Proof. This is due to Taylor and Wiles [48,50] in the semi-stable case. The proof was completed by
Breuil, Conrad, Diamond and Taylor [9]. �

The modularity of elliptic curves over Q can be seen as a converse to

Theorem 3.2 (Eichler–Shimura). Let f be a rational newform of level N. There exists an elliptic curve E/Q
of conductor N such that ap(E) = cp for all primes p � N, where cp is the pth coefficient of f and ap(E) =
p + 1 − #Ẽ(Fp).

Proof. See Chapter 8 of [18]. �
Given a rational newform of level N , the elliptic curves of conductor N associated to it via the

Eichler–Shimura theorem shall be computed using MAGMA.
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Proposition 3.3. Let E/Q be an elliptic curve with conductor N and minimal discriminant �min . Let l be an
odd prime and define

N0(E, l) := N/
∏

primes p‖N
l|ordp(�min)

p.

Suppose that the Galois representation

ρ E
l : Gal(Q̄/Q) → Aut

(
E[l])

is irreducible. Then there exists a newform f of level N0(E, l). Also there exists a prime L lying above l in the
ring of integers O f defined by the coefficients of f such that

cp ≡
{

ap(E) mod L if p � lN,

±(1 + p) mod L if p ‖ N and p � lN0,

where cp is the pth coefficient of f . Furthermore, if O f = Z then

cp ≡
{

ap(E) mod l if p � N,

±(1 + p) mod l if p ‖ N and p � N0.

Proof. This arose from combining modularity with level-lowering results by Ribet [36,37]. The
strengthening in the case O f = Z is due to Kraus and Oesterlé [33]. A detailed exploration is given,
for example, in Chapter 2 of [15]. �
Remark 3.4. Let E/Q be an elliptic curve with conductor N . Note that the exponents of the primes
in the factorization of N are uniformly bounded (see Section 10 in Chapter IV of [42]). In particular,
only primes of bad reduction divide N and if E has multiplicative reduction at p then p ‖ N .

Corollary 3.5. Keeping the notation of Proposition 3.3, if p is a prime such that p � N0 and p | N then

l < (1 + √
p)2[K f :Q].

Proof. See Theorem 37 in [15]. �
Applying Proposition 3.3 to carefully constructed Frey curves has led to the solution of many

Diophantine problems. The most famous of these is Fermat’s Last theorem [50] but there are now
constructions for other equations and we shall make use of those described below.

3.1. Recipes for Diophantine equations with signature (l, l,3)

Consider the equation

Axl + B yl = C z3,

with non-zero pairwise coprime terms and l � 5 prime. Assume any prime q satisfies ordq(A) < l,
ordq(B) < l and ordq(C) < 3. Without lost of generality also assume that Ax �≡ 0 mod 3 and
B yl �≡ 2 mod 3. Construct the Frey curve

Ex,y: Y 2 + 3C zXY + C2 B ylY = X3.

(We use the notation Ex,y since z depends on x and y.)
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Theorem 3.6. (See Bennett, Vatsal and Yazdani [5].) The conductor Nx,y of Ex,y is given by

Nx,y = 3α rad3(ABxy) rad3(C)2,

where

α =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if 9 | (2 + C2 B yl − 3C z),

3 if 3 ‖ (2 + C2 B yl − 3C z),

4 if ord3(B yl) = 1,

3 if ord3(B yl) = 2,

0 if ord3(B yl) = 3,

1 if ord3(B yl) � 4,

5 if 3 | C .

Suppose that Ex,y does not correspond to one of the equations

1 · 25 + 27 · (−1)5 = 5 · 13,

1 · 27 + 3 · (−1)7 = 1 · 53,

2 · 12 + 27 · (−1)5 = 25 · (−1)3, or

2 · 17 + 3 · (−1)7 = (−1)3.

Then there exists a newform of level

N0 = 3β rad3(AB) rad3(C)2,

where

β =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2 if 9 | (2 + C2 B yl − 3C z),

3 if 3 ‖ (2 + C2 B yl − 3C z),

4 if ord3(B yl) = 1,

3 if ord3(B yl) = 2,

0 if ord3(B) = 3,

1 if ord3(B yl) � 4 and ord3(B) �= 3,

5 if 3 | C .

3.2. Frey–Hellegouarch curves for Klein forms

Let E be an elliptic curve defined over Q with Weierstrass coordinate functions x, y. For any
integer n ∈ Z, the nth division polynomial of E is the polynomial ψn ∈ Q[x, y] ⊂ Q(E) as given on
p. 39 of [7]. In particular,

ψ2
2 = 4x3 + b2x2 + 2b4x + b6,

ψ3 = 3x4 + b2x3 + 3b4x2 + 3b6x + b8,
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ψ2
n ∈ Q[x] and there exists θn ∈ Q[x] such that the x-coordinate of the multiplication by n map is

given by

[n]x = θn

ψ2
n

. (3.1)

Definition 3.7. Associate to ψ2
2 (x) and ψ3(x) the homogeneous polynomials:

K E
n (x, y) =

{
ψ2

2 (x/y)y3 for n = 2,

ψ3(x/y)y4 for n = 3.

The notion of a Klein form arose from Klein’s classification [32] of the finite subgroups of AutQ̄(P1).
For our purposes it is enough to note that any separable cubic binary form in Q[x, y] is a Klein form
and that a separable quartic

α0x4 + α1x3 y + α2x2 y2 + α3xy3 + α4 y4 ∈Q[x, y]

is a Klein form precisely when

12α0α4 − 3α1α3 + α2
2 = 0. (3.2)

Lemma 3.8. Let E be an elliptic curve defined over Q. Then K E
2 (x, y) and K E

3 (x, y) are Klein forms.

Proof. Since the multiplication by n map is separable (see Chapter III of [43]), K E
n (x, y) is separable.

A small calculation checks that the coefficients of K E
3 (x, y) satisfy (3.2). �

For S a fixed finite set of primes, let

ZS := {
x ∈Q: ordp(x) � 0 for all p /∈ S

}
and let Z∗

S be the set of units in ZS . Let F be a Klein form with integer coefficients of degree k ∈
{3,4,6,12} (k = 3 or 4 is enough for our purposes). The index of F is n = 6 − 12/k. Denote by �F the
discriminant of F and let S F be the set of primes which divide n�F . In [3,15] Bennett and Dahmen
construct a Frey–Hellegouarch curve for the Diophantine equation

F (A, B) = uCl, (3.3)

where gcd(A, B) = 1, C �= 0, l is prime and u ∈ Z∗
S F

. Define

H(x, y) = 1

(k − 1)2

∣∣∣∣ Fxx Fxy

Fxy F yy

∣∣∣∣
and the Jacobian determinant of F and H by

G(x, y) = 1

k − 2

∣∣∣∣ Fx F y

Hx H y

∣∣∣∣ ,
where Fx , F y , etc., refer to corresponding partial derivatives. Then

4H(A, B)3 + G(A, B)2 = dn F (A, B)n,
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where d2 = −27�F and d3 = 28√−�F /27 are integers. So

E A,B : Y 2 = X3 + 3H(A, B)X + G(A, B)

has discriminant −24 · 33dn F (A, B)2.

Proposition 3.9. (See [3].) There exists t ∈ {±1,±3} such that for all primes p /∈ S F we have that the quadratic
twist

E(t)
A,B : Y 2 = X3 + 3H(A, B)t2 X + G(A, B)t3

is semistable at p and

ordp
(
�min

(
E(t)

A,B

)) = n ordp
(

F (A, B)
)
.

Proof. This is Proposition 4.2 of [3]. �
Proposition 3.10. (See [3].) Let l > 163 in (3.3) and let t be as in Proposition 3.9. Denote by N A,B the conductor

of E(t)
A,B . Then the Galois representation

ρ A,B
l : Gal(Q̄/Q) → Aut

(
E(t)

A,B [l])
is modular of level

N0 =
∏

p∈S F

pordp(N A,B ). (3.4)

In particular, there exists a newform f of level N0 .

Proof. This is Proposition 8.1 in [3]. �
3.3. A similar Frey curve for cubic forms

The Frey curve already given in Section 3.2 can be seen as sufficient; however, for ease of reference
we give a construction from [6].

Let

F (x, y) = t0a3 + t2
1 y + t2xy2 + t3 y3 ∈ Z[x, y]

be a separable cubic binary form. In [6] a Frey curve is given for the Diophantine equation

F (a,b) = dcl, (3.5)

where gcd(a,b) = 1, d ∈ Z is fixed and l � 7 is prime. Define a Frey curve Ea,b by

Ea,b: y2 = x3 + a2x2 + a4x + a6, (3.6)

where
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a2 = t1a − t2b,

a4 = t0t2a2 + (3t0t3 − t1t2)ab + t1t3b2,

a6 = t2
0t3a3 − t0

(
t2

2 − 2t1t3
)
a2b + t3

(
t2

1 − 2t0t2
)
ab2 − t0t2

3b3.

Then Ea,b has discriminant 16�F F (a,b)2. Consider the Galois representation

ρa,b
l : Gal(Q̄/Q) → Aut

(
Ea,b[l]

)
.

Theorem 3.11. (See [6].) Let S be the set of primes dividing 2d�F . There exists a constant α(d, F ) � 0 such
that if l > α(d, F ) and c �= ±1 then:

• the representation ρa,b
l is irreducible;

• at any prime p /∈ S dividing F (a,b) Eq. (3.6) is minimal, the elliptic curve Ea,b has multiplicative reduction
and l | ordp(�min(Ea,b)).

Proof. This is Theorem 2.3 and Lemma 2.4 in [6]. �
4. Proof of Theorem 1.2

Proof of Theorem 1.2. Let n = 2 or 3 and let S be the set of primes dividing n�E . Assume that Bm

is an lth power. Note that by Theorem 1.1 in [24] it is enough to bound l in terms of the Weierstrass
equation (1.1) for E and P . To do this we shall derive an equation of the form (3.3) and prove the
existence of a prime divisor p0 to which Corollary 3.5 can be applied.

Using Theorem 2.4, fix e0 � 1 such that

• Bne0 is divisible by a prime p0 � n�E ,
• p0 � Bne for all 0 � e < e0.

Note that e0 does not depend on m. From Lemma 2.1, since ordn(B1) > 0,

ordn(Bm) − (
ordn(B1) + ordn(m)

) = O (1).

Hence, since l | ordn(Bm), we can assume that l is large enough so that

ordn(m) � e0. (4.1)

For Q ∈ E(Q), using (3.1) gives

AnQ

B2
nQ

= θn(A Q /B2
Q )

ψ2
n (A Q /B2

Q )
= B2n2

Q θn(A Q /B2
Q )

B2
Q ψ2

n (A Q /B2
Q )B2(n2−1)

Q

, (4.2)

where

ψ2
n

(
A Q /B2

Q

)
B2(n2−1)

Q =
{

K E
2 (A Q , B2

Q ) if n = 2,

(K E
3 (A Q , B2

Q ))2 if n = 3

(see Definition 3.7). Since θn is monic and the leading coefficient of ψ2
n is n2, B Q is coprime with the

numerator of (4.2) and if BnQ is an lth power then B Q is a power of n multiplied by an lth power.
Write m = nordn mm′ with n � m′ . From (4.1) it follows that Bne0 m′ is a power of n multiplied by an
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lth power. Write Q = ne0−1m′ P then ne0m′ P = nQ . The primes which divide the numerator and the
denominator of (4.2) also divide the discriminant �E (see [1]). So

K E
n

(
A Q , B2

Q

) = uCl, (4.3)

where u ∈ Z∗
S . Moreover, p0 � B Q (since gcd(B Q , Bne0 ) = Bne0−1 ) and so C ∈ Z is divisible by p0. In

characteristic away from n the multiplication by n map is separable (see Chapter III of [43]) so the
set of primes which divide the discriminant of K E

n is equal to S . Applying Proposition 3.10 shows that
there exists a newform f of level N0 (as in (3.4)). It follows that there are finitely many choices for f .
We have p0 � lN0 and p0 | N A Q ,B Q (see Proposition 3.9 and denote the conductor of the appropriately
twisted Frey curve by N A Q ,B Q ) so Corollary 3.5 bounds l. �
Remark 4.1. Note that K E

n (A Q , B2
Q ), as in (4.3), does not belong to Z∗

S so Proposition 8.1 in [3] along
with Silverman’s primitive divisor theorem proves the existence of an effectively computable bound
for l which depends only on the Weierstrass equation (1.1) for E and P . However, keeping in mind
that p0 � lN0, in practice a much better bound is obtained by computing the newforms at level N0
and applying Proposition 3.3 directly.

Remark 4.2. Let S be a finite set of fixed primes and let (Bm) be an elliptic divisibility sequence
whose first term is divisible by 2 or 3. The results in Section 3.2 hold with the primes in S added
to S F . Using this the proof above can be extended to show that there are finitely many terms in (Bm)

equal to a perfect power multiplied by an S-unit.

5. The Mordell curves y2 = x3 + D

Proof of Theorem 1.4. Write D = d2 D ′ , where D ′ is square free. Suppose that P ∈ E(Q) with x(P ) �= 0
and B P = zl for some prime l. Factorizing over K = Q(

√
D ′),

A3
P = C2

P − Dz6l = (
C P + d

√
D ′z3l)(C P − d

√
D ′z3l).

If D ′ = 1 then C P + dz3l = ua3 and C P − dz3l = vb3, where a,b ∈ Z are coprime, u, v divide 2d and
uv is a cube. Subtracting the two factors gives

2dz3l = ua3 − vb3. (5.1)

In general the ring of T -integers

OK T := {
x ∈ K : ordp(x) � 0 for all p /∈ T

}
is a principal ideal domain for some finite set T of prime ideals. Include in T the primes in OK
dividing 2d

√
D ′ . Using Dirichlet’s unit theorem, O∗

K T /O∗ 3
K T is a finite set. Hence, if D ′ �= 1 then

C P + d
√

D ′z3l = (
u + √

D ′v
)(

a + b
√

D ′)3
,

where a,b ∈ Z are coprime and there are finitely many choices for u, v ∈ Q. Subtracting the two
conjugate factors gives

dz3l = va3 + 3ua2b + 3D ′vab2 + uD ′b3. (5.2)

Now suppose that (Bm) is an elliptic divisibility sequence generated by a point on E . Multiplying
through by the denominators of u, v in (5.1) or (5.2) gives an equation

F (a,b) = dcl
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as in (3.5) with cl = B3
m . Note that u and v are non-zero in (5.1) and at least one of u, v is non-zero

in (5.2); it follows that the cubic forms considered are separable. Construct a Frey curve Ea,b as in
(3.6). Let S be the set of primes dividing 2d�F .

Assume that n | B1 and n > 1 is prime. Using the Siegel–Mahler theorem about finiteness of S-
integral points on elliptic curves, fix e0 � 1 such that Bne0 is divisible by a prime p0 /∈ S . Note that e0
does not depend on m. From Lemma 2.1, since ordn(B1) > 1,

ordn(Bm) − (
ordn(B1) + ordn(m)

) = O (1).

Hence, since l | ordn(Bm), we can assume l is large enough so that

ordn(m) � e0.

Then Bne0 | Bm and, in particular, p0 | Bm . Applying Theorem 3.11, Proposition 3.3 and Corollary 3.5
with p = p0 gives that l is bounded. (Note that p0 divides the conductor of the Frey curve but not
the level of the newform.) The finiteness claim follows from Theorem 1.1 in [24]. �
Proof of Proposition 1.5. Let D ∈ Z be square-free. For P ∈ 2E(Q) write P = 2Q . Using the duplication
formula,

A P

B2
P

= A Q (A3
Q − 8D B6

Q )

4B2
Q (A3

Q + D B6
Q )

= A Q (A3
Q − 8D B6

Q )

4B2
Q C2

Q

. (5.3)

Any prime dividing C Q and A3
Q − 8D B6

Q also divides 3D . Suppose that B P is an lth power and that
B Q is even. Since D is square-free, gcd(A Q , C Q ) = 1 so only 3 can divide both C Q and the numerator
of (5.3). If gcd(3, C Q ) = 1 then C Q and 2B Q must be an lth powers.

Note that E(Q) = 〈(−7/4,19/8)〉. Let P = m(−7/4,19/8) for some m � 1 and denote B P , as in
(1.2), by Bm . Assume that B P is an lth power. Using Lemma 2.2 we can assume that 3 � B P and 3 � m.
From Lemma 2.1,

ord2(Bm) = ord2(B1) + ord2(m) = 1 + ord2(m) � l (5.4)

so m is even. Thus P = 2Q for some Q ∈ E(Q). By (5.3) it follows that C Q and 2B Q are lth powers.
To continue the proof, we need the following lemma.

Lemma 5.1. If l > 2 then 13,19 and 619 divide B Q . Also 7 | A Q but 7 � B Q C Q .

Proof. If l > 2 then (5.4) gives that m = 4m′ thus Q = 2m′(−7/4,19/8) for some m′ � 1 so B2 | B Q
and, in particular, 19 | B Q . Using Lemma 2.1 again,

ord19(B Q ) = ord19(B2) + ord19
(
m′) = 1 + ord19

(
m′) � l

so ord19(m′) > 0 and, in particular, 13 | B Q . Similarly, B13 | B Q so 619 | B Q .
Since 7 | B3 and gcd(B P , B3) = 2, we have that 7 � B P so, from (5.3), 7 � B Q C Q . Reducing the

equation C2
Q − 11B6

Q = A3
Q modulo 7 shows that A Q ≡ 0 mod 7. �

Assume that l � 5. Consider the (l, l,3) triple given by

C2
Q − 11B6

Q = A3
Q ,

where the three terms are pairwise coprime. As in Theorem 3.6 construct a Frey Curve

E Q : Y 2 + 3A Q XY − 11B6
Q Y = X3
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with conductor N Q = 3α · 11 rad3(C Q B Q ), where α = 2 or 3. The Galois representation ρ
E Q

l :
Gal(Q̄/Q) → Aut(E Q [l]) arises from a cuspidal newform f of weight 2 and level N0 = 2 · 3α · 11.
This newform is one of

f1 = q − q2 + q4 + 2q7 − q8 + q11 + · · · ,
f2 = q − q2 + q4 + 4q5 − 2q7 − q8 − 4q10 − q11 + · · · ,
f3 = q − q2 + q4 − 2q5 − 4q7 − q8 + 2q10 + q11 + · · · ,
f4 = q + q2 + q4 + 2q7 + q8 − q11 + · · · ,
f5 = q + q2 + q4 + 2q7 + q8 + q11 + · · · ,

for α = 2 or (up to conjugacy) one of

f6 = q − q2 + q4 − 2q5 + q7 − q8 + 2q10 − q11 + · · ·
f7 = q − q2 + q4 + q5 + 4q7 − q8 − q10 − q11 + · · ·
f8 = q − q2 + q4 − 3q5 − 4q7 − q8 + 3q10 − q11 + · · ·
f9 = q − q2 + q4 − 2q5 − q7 − q8 + 2q10 + q11 + · · ·

f10 = q + q2 + q4 + 2q5 − q7 + q8 + 2q10 − q11 + · · ·
f11 = q + q2 + q4 − q5 + 4q7 + q8 − q10 + q11 + · · ·
f12 = q + q2 + q4 + 2q5 + q7 + q8 + 2q10 + q11 + · · ·
f13 = q + q2 + q4 + 3q5 − 4q7 + q8 + 3q10 + q11 + · · ·
f14 = q − q2 + q4 + θq5 + 2q7 − q8 − θq10 + q11 + · · ·
f15 = q + q2 + q4 + θq5 + 2q7 + q8 + θq10 − q11 + · · ·

for α = 3, where the last two are defined over a quadratic number field and θ2 + 2θ − 9 = 0. Applying
Proposition 3.3 with p = 13, 19, 619 gives l = 5 if f = f2 and l < 5 (a contradiction) otherwise. If
f = f2 then applying Proposition 4.2 in [5] with p = 5 gives a contradiction; note that 5 is a prime
of good reduction and f2 is rational so the restriction l �= 5 in the proposition can be removed.

To eliminate the possibilities of l = 2 or 3 consider the parameterizations given in (5.2)
with D = 11. Then K = Q(

√
11) and OK = Z[√11] is a principal ideal domain with fun-

damental unit 10 + 3
√

11. Also 2
√

11 = (10 − 3
√

11)
√

11(3 + √
11)2. It follows that (u, v) =

(1,0), (10,3), (10,−3), (199,60) or (199,−60).
If (u, v) = (1,0) then C Q = a(a2 + 33b2) and B3

Q = b(3a2 + 11b2), where b is even (since 4 | B3
Q ).

Since 33 � C Q , a is an lth power. Write a = Cl . Since 2 | b and 3 � b, b = 23(l−1) B3l . Write a2 + 33b2 = C̄
and 3a2 + 11b2 = B̄ . Then

3C2l + 26(l−1)11B6l = B̄3l, (5.5)

C2l + 26(l−1)33B6l = C̄ l, (5.6)

B̄3l − 3C̄ l = 26l−311B6l, (5.7)

C̄ l − 3B̄3l = −8C2l, (5.8)
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where the terms in each of the ternary equations are nonzero and pairwise coprime. If l = 2 then
(5.7) becomes −3C̄2 + (B̄2)3 −2311(2B2)6 = 0 and Proposition 6.5.9 in [12] gives a (non-zero) rational
point on the elliptic curve given by Y 2 = X3 − 2376, but there are no such points. If l = 3 then (5.8)
becomes C̄3 + 3(−B̄3)3 + (2C2)3 = 0 and Proposition 6.4.14 in [12] gives a (non-zero) rational point
with non-zero coordinates on the elliptic curve given by Y 2 = X3 + 144, but there are no such points.

For the other parameterizations details are given only for (u, v) = (10,3). The other cases are
similar. Assume that (u, v) = (10,3). Then A Q = a2 − 11b2,

B3
Q = 3a3 + 30a2b + 99ab2 + 110b3

and

C Q = 10a3 + 99a2b + 330ab2 + 363b3.

Suppose that l = 2. Since C Q and 2B Q are squares, multiplying the two expressions gives a rational
point on the hyperelliptic curve

F : Y 2 = 60X6 + 1194X5 + 9900X4 + 43780X3 + 108900X2 + 144474X + 79860.

But computations implemented in MAGMA confirm that the Jacobian of F has rank 0 and, via the
method of Chabauty, F (Q) is empty. Finally, suppose that l = 3. By Lemma 5.1, A Q ≡ 0 mod 7. Hence,
a/b ≡ 2 or 5 mod 7. Substituting these in the parametrization of B3

Q shows that a/b ≡ 5 mod 7, but
this cannot be a solution if C Q is a cube. This completes the proof of Proposition 1.5. �

By (5.1) and (5.2) we see that Conjecture 1.6 would follow from

Conjecture 5.2. (See [6].) Let F be a separable homogeneous cubic binary form with integer coefficients, d a
fixed integer � 1 and l a prime number. There exists a constant Cd,F > 0 depending only on d and F such that
if l > Cd,F and

F (a,b) = dcl

with gcd(a,b) = 1 then c = ±1.

In [6] it is explained that Conjecture 5.2 would follow from the Frey–Mazur conjecture.

Remark 5.3. A more direct Frey curve for C2
P = A3

P + D B6
P with B P an lth power is

E P : Y 2 = X3 − 3A P X + 2C P .

However, parametrizing as above highlights the connection with cubic binary forms and, as in the
proof of Proposition 1.5, helps resolve specific cases.

6. The congruent number curves y2 = x3 − (2a pb)2x

Let EN be the elliptic curve given by y2 = x3 − N2x, where N is a congruent number. For a non-
torsion point P ∈ EN (Q) there exist non-zero integers z1, z2, z3 so that

A P = α1z2
1,

A P + N B2
P = α2z2

2,

A P − N B2
P = α3z2

3,
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where the αi are square free. Note that α1 | N , α2 | 2N and gcd(z2
1, z2

2) | N . So, in particular,
gcd(z1, z2) = 1 if N is square free. We have

α2z2
2 − α1z2

1 = N B2
P ; (6.1)

α1z2
1 − α3z2

3 = N B2
P ; (6.2)

α2z2
2 − α3z2

3 = 2N B2
P ; (6.3)

2α1z2
1 − α2z2

2 = α3z2
3. (6.4)

Theorem 6.1. Suppose that l is an odd prime, r is a non-negative integer and U , V , W are non-zero pairwise
coprime integers with

Ul + 2r V l + W l = 0. (6.5)

Then r = 1 and (U , V , W ) = ±(−1,1,−1).

Proof. The result is due to Wiles [50] for r = 0, Ribet [38] for r � 2, and Darmon and Merel [17] for
r = 1. �
Lemma 6.2. Suppose that r is a non-negative integer and U , V , W are non-zero pairwise coprime integers. If

U 4 − 2r V 4 + W 4 = 0 (6.6)

then r = 1 and |U | = |V | = |W | = 1. There are no solutions to the equation

2r U 4 − V 4 + W 4 = 0. (6.7)

Proof. See, for example, Section 6.5 of [12]. �
Proof of Theorem 1.7. The only torsion points in E N (Q) are 2-torsion. If b is even then the rank of
EN (Q) is zero (since it is zero when b = 0), so assume that b is odd. Assume that P ∈ 2E N (Q) is
non-zero. The fundamental 2-descent map (see, for example, Section 8.2.3 in [12]) shows that:

A P = z2
1;

A P − 2a pb B2
P = z2

2;
A P + 2a pb B2

P = z2
3.

Suppose that p divides A P exactly e times. Then e is even, e < b, and, by replacing A P by A P /pe and
b by b − e, we can assume that p does not divide A P . Eqs. (6.2)–(6.4) become:

−2a pb B2
P = (z2 − z1)(z2 + z1);

2a pb B2
P = (z3 − z1)(z3 + z1);

2a+1 pb B2
P = (z3 − z2)(z3 + z2).

Now gcd(z j − zi, z j + zi) divides 2z j and 2a+1 pb B2
P , so is a power of 2.



J. Reynolds / Journal of Number Theory 132 (2012) 998–1015 1013
Suppose that B P is a perfect power. Now p divides z2 + (−1)s1 z1 and z3 + (−1)s2 z1, where s1, s2 ∈
{0,1}. So p divides z3 + (−1)s3 z2, where s3 = s1 + s2 + 1. Siegel’s identity:

(−1)s3+1 z2 + (−1)s1 z1

z3 + (−1)s3 z2
− z3 + (−1)s2 z1

z3 + (−1)s3 z2
+ 1 = 0

gives (6.5), (6.6) or (6.7). Thus

(−1)s3+1 z2 + (−1)s1 z1

z3 + (−1)s3 z2
= u and − z3 + (−1)s2 z1

z3 + (−1)s3 z2
= v,

where (u, v) = (1,−2), (−2,1) or (− 1
2 ,− 1

2 ). So

−2a pb B2
P = (−1)s3+1u

(
z2 + (−1)s1+1z1

)(
z3 + (−1)s3 z2

)
and

2a pb B2
P = −v

(
z3 + (−1)s2+1z1

)(
z3 + (−1)s3 z2

)
.

Dividing the two equations gives

u

v
= (−1)s3+1 z3 + (−1)s2+1z1

z2 + (−1)s1+1z1
.

But

z3 + (−1)s3 z2

z2 + (−1)s1+1z1
− z3 + (−1)s2+1z1

z2 + (−1)s1+1z1
= (−1)s3 ,

thus u �= v ,

z2 + (−1)s1+1z1

z3 + (−1)s3 z2
= (−1)s3

v

v − u
,

and

(
z2 + (−1)s1+1z1

z3 + (−1)s3 z2

)(
z2 + (−1)s1 z1

z3 + (−1)s3 z2

)
= uv

u − v
= −2a pb B2

P

(z3 + (−1)s3 z2)2
.

So

−uv

2a pb(u − v)

is a square. Hence (u, v) = (1,−2), p = 3, a is odd, B P = 1 and

(
z3 + (−1)s3 z2

)2 = 2a−13b+1.

Thus

z3 = 1

2

(
z3 + (−1)s3 z2 + z3 + (−1)s3+1z2

) = ±1

2

(
2

a−1
2 3

b+1
2 + 2a+13b

a−1 b+1

)

2 2 3 2
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and

A P = z2
3 − 2a3b = 2a−33b−125.

From which it follows that a � 3 and P is as required. �
Proof of Theorem 1.8. Let N = 2a p where a = 0 or 1. Let P ∈ EN (Q) non-torsion point with x(P ) ∈
−Q∗ 2 and x(P ) + N ∈ pQ∗ 2. If m is even then the result follows from Theorem 1.7. If m is odd then
the fundamental 2-descent map (see, for example, 8.2.3 in [12]) shows that α1 = −1 and α2 = p so
α3 = −p.

Now (6.3) becomes z2
2 + z2

3 = 2a+1 B2
P and (6.4) becomes 2z2

1 + pz2
2 = pz2

3 so

z2
2 + 2p(z1/p)2 = z2

3.

Corollary 6.3.6 in [12] with the particular solution (1,0,1) gives dz2 = s2 − 2pt2, dz1 = 2pst , dz3 =
s2 + 2pt2 where s, t are coprime integers and d | 2p.

If d = ±1 then |z2| = s2 − 2pt2, |z1| = 2pst and |z3| = s2 + 2pt2. Since z1 is even, a = 0 and
substituting into (6.3) gives (s2 − 2pt2)2 + (s2 + 2pt2)2 = 2B2

P so

s4 + 4p2t4 = B2
P .

Now applying Theorem 1 in [4] shows that B P cannot be a perfect power.
If d = ±2 then |z2| = 2s2 − pt2, |z1| = 2pst and |z3| = 2s2 + pt2, where s, t are coprime integers.

So a = 0 and substituting into (6.3) gives

4s4 + p2t4 = B2
P .

So 4s4 = B2
P − p2t4 = (B P + pt2)(B P − pt2). Since 2 � B P and p � B P , we have B P + pt2 = ±2s′4 and

B P − pt2 = ±2t′4 where s′, t′ are coprime and odd. Thus ±s′4 ± t′4 = B P . Again applying Theorem 1
in [4] shows that if B P is a perfect power then it is a square or a cube, but these remaining cases are
well known (see 6.5.2 of [12] and 14.6.6 of [13]).

Finally, the cases d = ±p and d = ±2p give the same two parametrizations already considered
above. �
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