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1. Introduction
In this work, we prove the following theorem.
Theorem 1. The equation
NX? 4 283M =y N, (1)

has no solution with N, X, Y,L,M € Z*, N > 1, and gcd(NX,Y) = 1.
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Eq. (1) is a variation of the equation N X2+ 2K = YV studied by Wang and Wang [8]
and by Luca and Soydan [5] and of the equation X? + 23 = YV studied by Luca [4].
Our proofs draw upon ideas from each of these papers.

We begin by showing that it suffices to prove Theorem 1 in the case where N is
square-free, and by reviewing a needed result on Lehmer pairs. In Section 2, we prove
the special case of Theorem 1 in which both of the exponents L and M are assumed to
be even. Then in Section 3, we prove the remaining cases, thus completing the proof of
Theorem 1.

Lemma 2. If there exists a solution to NX? +2L3M = YN as in Theorem 1, then there

exists a solution with the same values of L and M, but with N square-free.

Proof. Suppose that (N, X,Y, L, M) = (n,x,y,{,m) is a solution to N X2+2L3M = YN
with n,z,y,¢,m € Z*, n > 1, and ged(nz,y) = 1. Note that £, m > 0 implies that
ged(n, 6) = 1.

Let n = ww?, with u,v € Z* and u square-free. Suppose that u = 1. Then
(N,X,Y,L,M) = (n,vx,y,£,m) is a solution to X2 +253M = YV with N, X,Y,L,M €
Z*, N > 1, and ged(X,Y) = 1. By [4, Theorem 2.1], this implies that n = N = 3 or 4,
contradicting that ged(n,6) = 1. Thus u > 1.

Now, note that u(vr)?+2¢3™ = y" = (y”Q)“, andso (N, XY, L, M) = (u,vz, y”2, £,m)
is a solution to (1) with ged(NX,Y) = gcd(uvx,y”z) =l,and N=u>1 O

A key element in our proofs is the theory of Lehmer sequences and defective Lehmer
pairs, which we now briefly describe. For a more detailed introduction, see [7].

A pair of algebraic integers (v, d) is called a Lehmer pair if v§ € Z — {0}, (v +§)? €
7 — {0}, ged(y6, (v +6)?) =1, and % is not a root of unity. Given a Lehmer pair, (v, ),
and s € Z1, define

v=0 7
~5 6"
72_52 9

Ly (77 5) =

if s is even.

{ =0 if 5 1is odd,

The Lehmer pair (v, 9) is s-defective if, for each p | Ls(v, ),

p| (7* =8 °Li(7,8) ... Ly_1(7,6).

We need the following lemma [7, Theorem 1(ii)].

Lemma 3 (Voutier). Let s € Z" such that 6 < s < 30 and s # 8,10, or 12. If (v,9) is
an s-defective Lehmer pair, then for some k € {0,1,2,3}, i*v is one of the values listed
in Table 1.
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Table 1
Possible values of i¥~ in Lemma 3.

s i*~, for k € {0,1,2,3}

7 1+V/=7 1+v/—19 V3+V/—5
2 2 2
VEEV=T7 V13+/—3 V1d+/—22
2 2 2
9 V5+V/—3 VTEV/—1 V7TEV/—5
2 2 2
1+v/—7
13 =
14 V3+v/—13 V5+v/=3 VTtEV/—1
2 2 2
V7TEV/=5 Vi9tyV/—1 V22+/—14
2 2 2
15 VTEV/—1 Vi0+V/=2
2 2
18 1+V/=7 V3+v/=5 V=7
2 2 2
24 V3+v=5 V5+V/=3
2 2

26 VT i2\/jl

30 1+v/=7 V2+/—=10
2 2

2. Even exponents
In this section, we prove the following special case of Theorem 1.
Theorem 4. The equation
NX2 + 22L32M _ YN
has no solution with N, X, Y,L,M € Z*, N > 1, and gcd(NX,Y) = 1.
Proof. Suppose that (N, X,Y, L, M) = (n,z,y,¢,m) is a solution to NX?2 + 22£32M —
YN, withn,z,y,¢,m € Z+, n > 1, and ged(nx,y) = 1. It follows immediately that y > 1
and na? =y (mod 6). Since ged(nz,y) = 1, we have
n=y==41 (mod6) and xz==41 (mod 6).
By Lemma 2, we may assume that n is square-free.
We now apply the following lemma, proved by Heuberger and Le [3] and adapted to
this form by Wang and Wang [8].
Lemma 5 (Heuberger & Le). Let d € Z be square-free such that d > 1, and let k € Z

be odd such that k > 1 and ged(d, k) = 1. Let h(—4d) denote the number of classes of
primitive binary quadratic forms of discriminant —4d. If the equation

X2 4dY?=k?, XY, Z€Z, ged(X,Y)=1, Z>0
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has a solution, (X,Y,Z), then there exist X1, Y1, Z1, t € Z* and M\, X2 € {+1, -1},
such that

X2 4dY2 =7, ged(X0, Vi) =1,
Z =Zyt, Zy|h(—4d), and
X+Yv—-d= )\1(X1 + A Y1V —d)t.

By the lemma, since (2¢3™)2 + na? = y", with n > 1 square-free, 5 > 1 odd, and
ged(nax,y) = 1, there exist X1, Y1, Z1, t € ZT and A\j, A2 € {+1, —1}, such that

X;+nY? =y?, ged(X1, V1) =1, (2)
n=Zyt, Zp|h(—4n), and (3)
2€3m+1'\/7 = )\1(X1 +A2Y1\/ 7n)t. (4)

Note that, since ged(n, 6) = 1, ged(t,6) = ged(Z1,6) = 1. Thus ¢ is odd and y?1 =y =
n = %1 (mod 6). For ease in notation, let ¢t = 2¢; + 1.

Expanding Eq. (4) and taking the absolute value of the real and imaginary parts of
each side yields

t1 . t1 . .
s B (| e[ (o] o
j=o \*J i=o \J
and
1 ¢ .
—2j—1
r=Y jgo <2j + 1> X; 7 (). (6)

By Eq. (5), 2 and 3 are the only possible prime divisors of X;. By Eq. (6) and
ged(x,6) =1, ged(6,Y1) = 1. Thus Yy = +1 (mod 6).

By Eq. (2), X? +n =mn (mod 6), and so X; =0 (mod 6).

Rewriting Eq. (5) as 23™ = X|S|, with

t1 .
=35ty
j=0 \
we have
t t
S= (t N 1> (—nY?)"' ==£1 (mod 6).

But then, ged(S,6) = 1 and so X; = 2¢3™ and |S| = 1.
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Let y=X;+Yiv/—nandlet § = —X; +Yiv/—n.
Lemma 6. The pair (v,0) is a t-defective Lehmer pair.

Proof. An easy calculation shows that 0 = —X? —nY? = —y%! and (y+6)? = —4nY?2,
each of which is nonzero. Suppose that p is prime such that p | ged(v6, (v + §)?). Then,
since ged(n,y) = 1 and y is odd, p | ;. Additionally, p | (y%* —nY) and so p | X;. But
ged(X1,Y1) = 1, and thus ged(vd, (v + §)?) = 1. Note that since n > 1, ged(n,6) = 1,
and n is square-free, the only roots of unity in Q(v/—n) are £1. Thus, % is not a root
of unity. Therefore, (v, d) is a Lehmer pair.

Finally, by Eqgs. (4) and (5),

,yt_ét
)

1.
Xy

Li.6)| = |

_ ’2%(7t)
2R(v)

Thus, (v,d) is a t-defective Lehmer pair. O

By the work of Bilu, Hanrot and Voutier [1, Theorem 1.4], since there exists a
t-defective Lehmer pair, we have that ¢ < 30. Then, using Lemma 3 with the fact that
ged(t,6) = 1, it follows that t € {1,5}.

If t =5, then

2 . .
S _ Z ( 5> (253777,)572]*1 (7’ILY12)‘7 _ 24@34771 _ 10 . 22(32mnY12 + 5n2Y14.
=0\

Since S = +1 and n and Y; are both odd, £1 = S = 5n2Y* = 5 (mod 8), which is
impossible.

Thus, t = 1. So, by Eq. (3), Z1 = n and, hence, n | h(—4n). But, since n is greater
than 1 and square-free, by [8, Lemma 3|, n > h(—4n), a contradiction. O

3. Odd exponents

In this section, we prove the remaining cases of Theorem 1, as described in the fol-
lowing theorem.

Theorem 7. The equation
NX?4283M =y,

has no solution with N, X, Y, L.M € Z*, N > 1, gcd(NX,Y) = 1, and L and M not
both even.

We begin with a basic computational lemma.
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Lemma 8. Let t1 € Z and let t = 2t1 + 1. Then

tl tl
t t :
E . ) =271 and § , (—1)7 = 42",
25 +1 — \2j+1
7=0

Jj=0

Proof. First, let f(t) = Z;LO (2].’;1) and let g(t) = 231:0 (23) Then f(t)+g(t) = (14+1)*
and —f(t) + g(t) = (1 — 1)%. Solving these for f(t) yields the first result.

Next, let fl(_t) = X () (1) = ~i3 5 (35) @PF! and gi(t) =
i (L)@, Then fy(t) + g1(t) = —i(1 + i)t and —fy(t) + g1(t) = —i(1 — i)".
Solving for fi1(t) completes the proof. O

Proof of Theorem 7. Suppose that (N, X,Y, L, M) = (n,z,y, £, m) is a solution to N X2+
2L3M = YN with n,z,y,{,m € Z+, n > 1, ged(nz,y) = 1, and either £ or m odd.
Since ¢ and m are nonzero, nz? = y™ (mod 6). This with ged(nz,y) = 1 yields

n=y=41 (mod6) and z==41 (mod 6).

Since n > 1, this implies that, in fact, n > 5.

Let £ = 2k + e and m = 2k 4 ¢ with k, k' > 0 and e,e’ € {0,1}. Set w = 2¢3¢ €
{1,2,3,6}. By assumption, £ and m cannot both be even. Hence, w € {2, 3,6}.

Set a = 23% /w + x/—n and b = 283 \/w — 2v/—n. Then ab = y". Letting E =
Q(vw,v/—n) and F = Q(v/—wn ), we have a,b € O and a?,b* € OF.

Suppose that there exists a prime ideal p C O such that p | aOg and p | bOg. Then,
since p | abOg, p | yOgp and, since p | (a + b)Op and wOg | 60g, p | 60g. But this
is not possible, since y is relatively prime to 6 in Z. Hence aOp and bOpg are relatively
prime in Og. It follows easily that a’Or and b>Op are relatively prime in Op.

Now, (a20F)(b?0OFr) = y?"OFr = (yOr)*". By the unique factorization of ideals in O,
there exists an ideal I C Op such that a?Op = I?". Let s be the order of the ideal
class of I in the class group of Op. Then there exists @ € Op such that I* = aOp.
Since a?Op is principal, we have s | 2n, and so 2n = st for some t € ZT. Further,
a’Op = I’ = (I*)! = o'Op, and so there exists a unit ¢ € Op such that a? = cal.
Since F = Q(v/—wn ) with wn square-free and n > 5, ¢ = +1.

Suppose t is even, so t = 2tq for some tg € ZT. Then

a 2
<ato) =e=4l1.

But, as is easily verified, £ does not contain a square root of —1. So e = 1 and a =
+a'o € F, contradicting the definition of a. Thus ¢ is odd and so s is even. Further, since
t|2n, ged(t,6) = 1.

Replacing a with —q, if necessary, we may assume, without loss of generality, that
e = 1. Thus a? = ot.
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Suppose that ¢ = 1. Then s = 2n and so 2n | hp, the class number of Op. In particular,
n < hp. Let d = disc(Op). Then d = —wn or d = —4wn. By the class number formula
and a basic bound on L(1,x4) [6], we have

hp = @L(l,xd) < @(?Hogldl) = @(Hl%ﬂ)'

Thus, since |d| < 4wn < 24n,

é‘

2n < hp

2v/24
(1+10g\/|d) n( 1+ log v24n)
and so

v
m/n

Since \/\/__(1 +logv24-51) < 1 and ‘/_( 1+ logv24n) is a decreasing function of n,
for n > 1, we have a contradiction for n > 50.

(1+1logv24n) > 1

For n < 50 or, equivalently, wn < 300, we consult a class number table (for example
[2, Table 4]) to find that hp < 22. Since 2n < hp, we have n < 11 and so wn < 66.
Again consulting the table, we have hr < 8 and so n < 4, a contradiction.

Thus, t # 1.

Since t is odd, there exists ¢; € Z*, such that t = 2¢; + 1. Define v = ~it € E. Note
that

2 02 o O[t -
L ’
and therefore, v € Op.
Let A, B € Q such that
a=A+ BV—-wn

and note that since aof = a2, A, B # 0. Let Ay, B1,C1, Dy € Q such that v = A;/w +
Biy/—n + Civ/—wn + D;. A simple calculation, using 72 = a, yields that either A; =
Bi =0 or C; = D; = 0. If the former holds, then v € Op and I*/? = yOp, contrary to
the definition of s. Thus

Y= Al\/E-F Bl\/ —nNn.
Expanding v? = a and equating real and imaginary parts yields
A= A?w—Bin and B =24,B. (7)

Since B # 0, we have Ay, By # 0.
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Now, unless w = 3 and n = 1 (mod 4), Op = Z[y/—wn]. So A, B € Z. Further,
considering the possible integral bases for E, in this case, A; € Z and 2B; € Z. But, by
Eq. (7), Bin = A3w — A € Z and so B; € Z.

If we do have w = 3 and n = 1 (mod 4), then Op = Z[@} and O =
ZIV3, Y41 So we have 24,2B,24,,2B, € Z. Further, Eq. (7) implies that A, B € Z
if and only if A1, By € Z.

Expanding 2'a? = (2!, equating real and imaginary parts, yields

g = 2inat = 243 (1) 04 @B () ®)
=0
and
ok+t+1g ; _ (93) tzl (2 ‘t )(2A)t2j1(23)2j(wn)j. 9)
iz 7+ 1

By Eq. (8), 312A.
Suppose that 3 4 2Bw. From the definition of w, 3 t w implies that &’ # 0. So, reducing
Eq. (9) modulo 3 yields

0= i‘) (Qj: 1)(il)j (mod 3),

which is impossible, by Lemma 8. Thus 3 | 2Bw.

Let 6 = 4 = Ajy/w — Byy/—n. Then 4§ = A%w + B?n € QN O = Z. Since
(76)?t = (ab)? = y*™ and 2}y, we have 2 { 4.

Recall that if Ay, By ¢ Z, then w = 3, n =1 (mod 4), and 24; = 2B; =1 (mod 2).
Thus 475 = (24;1)%w + (2B1)*n = 3+ n (mod 8). Since 2t vd implies that 8 { (2v)(29),
we have n # 5 (mod 8). Thus, if A;, By ¢ Z, n =1 (mod 8).

Now,

t
. ( a ) a2t1+1 a2t1+1
’)/ = = = — =

att (at)tr T a2t

It follows that §¢ = b. Further,

,yt_i_ét
v+4
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since it is an algebraic integer fixed by every automorphism of E. Thus, since v¢ + §* =
a+b=2813% . /w, we find that, in Z,

(o)1)

Simplifying yields 24; | 2k+13%"
Lemma 9. (v,9) is a 2t-defective Lehmer pair.

Proof. First recall that v§ € Z and, since 2 { 76, 7§ # 0. Further, (y + §)? = 44%w €
7Z — {0}. Suppose that p € Z is prime such that p | ged(vd, (v + §)?). Then, since
24, | 25F13% p = 2 or p = 3. But (76)* = (ab)? = y*>" and ged(y,6) = 1. Hence no
such p exists and therefore ged(yd, (v + 6)?) = 1. Note that 3 € F, in which the only
roots of unity are £1. It follows that ¥ is not a root of unity, since A;, By # 0. Thus,
(v, 9) is a Lehmer pair.

Now suppose that p is a prime divisor of Los(7, d). Then, since

2t 2t t t t t
7 =6 (v =6)( + ") a+b
Loy(7,8) = - — Ly(y,8) %2
2k+13k'\/ﬁ 2k+13k/
- Lt(’%é) 2A1\/@ - 2A1 Lt(’yvé)a

we have that p =2, p =3, or p | L¢(7, 9).

Also, (v — 62)? = =16 A2 B?wn = —4B%wn. Since 3 | 2Bw, 3 | (v? — §?)2. Further, if
Ay, By € Z, then 2 | (2 — §%)2. If, instead, A1, By ¢ Z, then w = 3 and n = 1 (mod 8).
Thus,

73—63

4L3(v,6) =4
3(77 ) y 5

=9(24,)> - (2B)*n=9-1=0 (mod 8),
and so 2 | L3(7,d). Hence, in any case, p | (y2 — §%)2L1(7,6) ... Las_1(7,6). Thus (v, )
is a 2t-defective Lehmer pair. 0O

By Bilu, Hanrot and Voutier [1, Theorem 1.4], since there exists a 2t-defective Lehmer
pair, 2¢t < 30. Then, by Lemma 3, the only candidates for «v with 2¢ > 12 are of the form
v =i*(v/3++/=n)/2 with n = 5 (mod 8). But in each of these cases, A1, By ¢ Z which,
as shown above, implies that n = 1 (mod 8). Thus, 2¢t < 12. Finally, since ¢ > 5 is odd,
t=5.

Expanding a? = o® and equating real and imaginary parts, we find

2
213 —na® =AY (;j) AS=271 B2 (—n)) (10)
j=0
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and

2
ok+1gk’ ) _ BZ <2J‘:_ 1) A2 B2 () (11)
=0

Similarly, expanding a = 7° yields
283K — A, (Afw® — 1042 B2wn + 5Bin?) (12)
and
z = By (5Ajw? — 10A} Biwn + Bin?). (13)

Suppose, first, that Ay, By € Z. Since B = 241 By, 2 | B. By Eq. (10), ged(A4,6) =1
and so, by Eq. (11), 2¥*! | B. To see that 3% | B, suppose that k' > 0 and 3 t B.
Reducing Eq. (11),

0= B(54* — 104°B*wn + B*w’n®) = B(—1 —wn+ w®) (mod 3).

Thus, 31 w and so w = 2. Hence, 0 = Bn (mod 3), a contradiction. Therefore, if k' > 0,
3| B. Since 31544, Eq. (11) implies that 3* | B.

By Eq. (13), ged(By,6) = 1. Since B = 24, B; and 2¥+13% | B, we have 2¥3¥ | A;.
Hence, by Eq. (12),

Atw? — 1043 B3wn + 5Bin? = +1.

If k > 0, then 2 | A1, and reducing modulo 8 yields a contradiction. If k£ = 0, then we have
2| wand 21 A;. Again, reducing modulo 8 yields a contradiction, since 2wn = 4 (mod 8).

Now suppose that Ay, By ¢ Z. Then we have w = 3, n = 1 (mod 8), and (24;)? =
(2B1)? =1 (mod 8). Eq. (13) becomes

32z = (2B1) [5(241)*w? — 10(241)*(2B1)*wn + (2B1)*n’]
— (2B1)[4((241)%w)” + ((241)*w — (2B1)*n)” — 8(24,)%(2B)?wn].
Since 2B, is odd, this implies that
4((241)%w)% + ((241)%w — (2B1)°n)* — 8(241)%(2B1)’>wn =0 (mod 32).  (14)

Reducing each term: since (24;)*w? = 1 (mod 8), we have that 4((24;)*w)? = 4
(mod 32); since (24;)%w — (2B1)*n = 2 (mod 8), ((241)*w — (2B1)?n)? = 4 (mod 32);
and since —(241)2(2B;)?wn = 5 (mod 8), —8(24;)?(2B;)?wn = 8 (mod 32). Thus,
reducing congruence (14), we find 0 =4 + 4 + 8 = 16 (mod 32), a contradiction, which
completes the proof. O
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