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1. Introduction

In this work, we prove the following theorem.

Theorem 1. The equation

NX2 + 2L3M = Y N , (1)

has no solution with N,X, Y, L,M ∈ Z+, N > 1, and gcd(NX,Y ) = 1.
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Eq. (1) is a variation of the equation NX2 +2K = Y N studied by Wang and Wang [8]
and by Luca and Soydan [5] and of the equation X2 + 2L3M = Y N studied by Luca [4].
Our proofs draw upon ideas from each of these papers.

We begin by showing that it suffices to prove Theorem 1 in the case where N is
square-free, and by reviewing a needed result on Lehmer pairs. In Section 2, we prove
the special case of Theorem 1 in which both of the exponents L and M are assumed to
be even. Then in Section 3, we prove the remaining cases, thus completing the proof of
Theorem 1.

Lemma 2. If there exists a solution to NX2 + 2L3M = Y N as in Theorem 1, then there
exists a solution with the same values of L and M , but with N square-free.

Proof. Suppose that (N,X, Y, L,M) = (n, x, y, �,m) is a solution to NX2+2L3M = Y N ,
with n, x, y, �,m ∈ Z+, n > 1, and gcd(nx, y) = 1. Note that �, m > 0 implies that
gcd(n, 6) = 1.

Let n = uv2, with u, v ∈ Z+ and u square-free. Suppose that u = 1. Then
(N,X, Y, L,M) = (n, vx, y, �,m) is a solution to X2 +2L3M = Y N with N,X, Y, L,M ∈
Z+, N > 1, and gcd(X,Y ) = 1. By [4, Theorem 2.1], this implies that n = N = 3 or 4,
contradicting that gcd(n, 6) = 1. Thus u > 1.

Now, note that u(vx)2+2�3m = yn = (yv2)u, and so (N,X, Y, L,M) = (u, vx, yv2
, �,m)

is a solution to (1) with gcd(NX,Y ) = gcd(uvx, yv2) = 1, and N = u > 1. �
A key element in our proofs is the theory of Lehmer sequences and defective Lehmer

pairs, which we now briefly describe. For a more detailed introduction, see [7].
A pair of algebraic integers (γ, δ) is called a Lehmer pair if γδ ∈ Z− {0}, (γ + δ)2 ∈

Z− {0}, gcd(γδ, (γ + δ)2) = 1, and γ
δ is not a root of unity. Given a Lehmer pair, (γ, δ),

and s ∈ Z+, define

Ls(γ, δ) =
{

γs−δs

γ−δ , if s is odd,
γs−δs

γ2−δ2 , if s is even.

The Lehmer pair (γ, δ) is s-defective if, for each p | Ls(γ, δ),

p |
(
γ2 − δ2)2L1(γ, δ) . . . Ls−1(γ, δ).

We need the following lemma [7, Theorem 1(ii)].

Lemma 3 (Voutier). Let s ∈ Z+ such that 6 < s � 30 and s �= 8, 10, or 12. If (γ, δ) is
an s-defective Lehmer pair, then for some k ∈ {0, 1, 2, 3}, ikγ is one of the values listed
in Table 1.
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Table 1
Possible values of ikγ in Lemma 3.

s ikγ, for k ∈ {0, 1, 2, 3}

7 1±
√

−7
2

1±
√

−19
2

√
3±

√
−5

2√
5±

√
−7

2

√
13±

√
−3

2

√
14±

√
−22

2

9
√

5±
√

−3
2

√
7±

√
−1

2

√
7±

√
−5

2

13 1±
√

−7
2

14
√

3±
√

−13
2

√
5±

√
−3

2

√
7±

√
−1

2√
7±

√
−5

2

√
19±

√
−1

2

√
22±

√
−14

2

15
√

7±
√

−1
2

√
10±

√
−2

2

18 1±
√

−7
2

√
3±

√
−5

2

√
5±

√
−7

2

24
√

3±
√

−5
2

√
5±

√
−3

2

26
√

7±
√

−1
2

30 1±
√

−7
2

√
2±

√
−10

2

2. Even exponents

In this section, we prove the following special case of Theorem 1.

Theorem 4. The equation

NX2 + 22L32M = Y N ,

has no solution with N,X, Y, L,M ∈ Z+, N > 1, and gcd(NX,Y ) = 1.

Proof. Suppose that (N,X, Y, L,M) = (n, x, y, �,m) is a solution to NX2 + 22L32M =
Y N , with n, x, y, �,m ∈ Z+, n > 1, and gcd(nx, y) = 1. It follows immediately that y > 1
and nx2 ≡ yn (mod 6). Since gcd(nx, y) = 1, we have

n ≡ y ≡ ±1 (mod 6) and x ≡ ±1 (mod 6).

By Lemma 2, we may assume that n is square-free.
We now apply the following lemma, proved by Heuberger and Le [3] and adapted to

this form by Wang and Wang [8].

Lemma 5 (Heuberger & Le). Let d ∈ Z be square-free such that d > 1, and let k ∈ Z

be odd such that k > 1 and gcd(d, k) = 1. Let h(−4d) denote the number of classes of
primitive binary quadratic forms of discriminant −4d. If the equation

X2 + dY 2 = kZ , X, Y, Z ∈ Z, gcd(X,Y ) = 1, Z > 0
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has a solution, (X,Y, Z), then there exist X1, Y1, Z1, t ∈ Z+ and λ1, λ2 ∈ {+1,−1},
such that

X2
1 + dY 2

1 = kZ1 , gcd(X1, Y1) = 1,

Z = Z1t, Z1 | h(−4d), and

X + Y
√
−d = λ1(X1 + λ2Y1

√
−d )t.

By the lemma, since (2�3m)2 + nx2 = yn, with n > 1 square-free, y > 1 odd, and
gcd(nx, y) = 1, there exist X1, Y1, Z1, t ∈ Z+ and λ1, λ2 ∈ {+1,−1}, such that

X2
1 + nY 2

1 = yZ1 , gcd(X1, Y1) = 1, (2)

n = Z1t, Z1 | h(−4n), and (3)

2�3m + x
√
−n = λ1(X1 + λ2Y1

√
−n )t. (4)

Note that, since gcd(n, 6) = 1, gcd(t, 6) = gcd(Z1, 6) = 1. Thus t is odd and yZ1 ≡ y ≡
n ≡ ±1 (mod 6). For ease in notation, let t = 2t1 + 1.

Expanding Eq. (4) and taking the absolute value of the real and imaginary parts of
each side yields

2�3m =

∣∣∣∣∣
t1∑
j=0

(
t

2j

)
Xt−2j

1
(
−nY 2

1
)j∣∣∣∣∣ = X1

∣∣∣∣∣
t1∑
j=0

(
t

2j

)
Xt−2j−1

1
(
−nY 2

1
)j∣∣∣∣∣, (5)

and

x = Y1

∣∣∣∣∣
t1∑
j=0

(
t

2j + 1

)
Xt−2j−1

1
(
−nY 2

1
)j∣∣∣∣∣. (6)

By Eq. (5), 2 and 3 are the only possible prime divisors of X1. By Eq. (6) and
gcd(x, 6) = 1, gcd(6, Y1) = 1. Thus Y1 ≡ ±1 (mod 6).

By Eq. (2), X2
1 + n ≡ n (mod 6), and so X1 ≡ 0 (mod 6).

Rewriting Eq. (5) as 2�3m = X1|S|, with

S =
t1∑
j=0

(
t

2j

)
Xt−2j−1

1
(
−nY 2

1
)j
,

we have

S ≡
(

t

t− 1

)(
−nY 2

1
)t1 ≡ ±1 (mod 6).

But then, gcd(S, 6) = 1 and so X1 = 2�3m and |S| = 1.
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Let γ = X1 + Y1
√
−n and let δ = −X1 + Y1

√
−n.

Lemma 6. The pair (γ, δ) is a t-defective Lehmer pair.

Proof. An easy calculation shows that γδ = −X2
1 −nY 2

1 = −yZ1 and (γ+ δ)2 = −4nY 2
1 ,

each of which is nonzero. Suppose that p is prime such that p | gcd(γδ, (γ + δ)2). Then,
since gcd(n, y) = 1 and y is odd, p | Y1. Additionally, p | (yZ1 − nY 2

1 ) and so p | X1. But
gcd(X1, Y1) = 1, and thus gcd(γδ, (γ + δ)2) = 1. Note that since n > 1, gcd(n, 6) = 1,
and n is square-free, the only roots of unity in Q(

√
−n ) are ±1. Thus, γ

δ is not a root
of unity. Therefore, (γ, δ) is a Lehmer pair.

Finally, by Eqs. (4) and (5),

∣∣Lt(γ, δ)
∣∣ =

∣∣∣∣γt − δt

γ − δ

∣∣∣∣ =
∣∣∣∣2�(γt)
2�(γ)

∣∣∣∣ = X1|S|
X1

= 1.

Thus, (γ, δ) is a t-defective Lehmer pair. �
By the work of Bilu, Hanrot and Voutier [1, Theorem 1.4], since there exists a

t-defective Lehmer pair, we have that t � 30. Then, using Lemma 3 with the fact that
gcd(t, 6) = 1, it follows that t ∈ {1, 5}.

If t = 5, then

S =
2∑

j=0

(
5
2j

)(
2�3m

)5−2j−1(−nY 2
1
)j = 24�34m − 10 · 22�32mnY 2

1 + 5n2Y 4
1 .

Since S = ±1 and n and Y1 are both odd, ±1 = S ≡ 5n2Y 4
1 ≡ 5 (mod 8), which is

impossible.
Thus, t = 1. So, by Eq. (3), Z1 = n and, hence, n | h(−4n). But, since n is greater

than 1 and square-free, by [8, Lemma 3], n > h(−4n), a contradiction. �
3. Odd exponents

In this section, we prove the remaining cases of Theorem 1, as described in the fol-
lowing theorem.

Theorem 7. The equation

NX2 + 2L3M = Y N ,

has no solution with N,X, Y, L,M ∈ Z+, N > 1, gcd(NX,Y ) = 1, and L and M not
both even.

We begin with a basic computational lemma.
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Lemma 8. Let t1 ∈ Z and let t = 2t1 + 1. Then

t1∑
j=0

(
t

2j + 1

)
= 2t−1 and

t1∑
j=0

(
t

2j + 1

)
(−1)j = ±2t1 .

Proof. First, let f(t) =
∑t1

j=0
(

t
2j+1

)
and let g(t) =

∑t1
j=0

(
t
2j
)
. Then f(t)+g(t) = (1+1)t

and −f(t) + g(t) = (1 − 1)t. Solving these for f(t) yields the first result.
Next, let f1(t) =

∑t1
j=0

(
t

2j+1
)
(−1)j = −i

∑t1
j=0

(
t

2j+1
)
(i)2j+1 and g1(t) =

−i
∑t1

j=0
(
t
2j
)
(i)2j . Then f1(t) + g1(t) = −i(1 + i)t and −f1(t) + g1(t) = −i(1 − i)t.

Solving for f1(t) completes the proof. �
Proof of Theorem 7. Suppose that (N,X, Y, L,M) = (n, x, y, �,m) is a solution to NX2+
2L3M = Y N , with n, x, y, �,m ∈ Z+, n > 1, gcd(nx, y) = 1, and either � or m odd.

Since � and m are nonzero, nx2 ≡ yn (mod 6). This with gcd(nx, y) = 1 yields

n ≡ y ≡ ±1 (mod 6) and x ≡ ±1 (mod 6).

Since n > 1, this implies that, in fact, n � 5.
Let � = 2k + e and m = 2k′ + e′ with k, k′ � 0 and e, e′ ∈ {0, 1}. Set w = 2e3e′ ∈

{1, 2, 3, 6}. By assumption, � and m cannot both be even. Hence, w ∈ {2, 3, 6}.
Set a = 2k3k′√

w + x
√
−n and b = 2k3k′√

w − x
√
−n. Then ab = yn. Letting E =

Q(
√
w,

√
−n ) and F = Q(

√
−wn ), we have a, b ∈ OE and a2, b2 ∈ OF .

Suppose that there exists a prime ideal p ⊆ OE such that p | aOE and p | bOE . Then,
since p | abOE , p | yOE and, since p | (a + b)OE and wOE | 6OE , p | 6OE . But this
is not possible, since y is relatively prime to 6 in Z. Hence aOE and bOE are relatively
prime in OE . It follows easily that a2OF and b2OF are relatively prime in OF .

Now, (a2OF )(b2OF ) = y2nOF = (yOF )2n. By the unique factorization of ideals in OF ,
there exists an ideal I ⊆ OF such that a2OF = I2n. Let s be the order of the ideal
class of I in the class group of OF . Then there exists α ∈ OF such that Is = αOF .
Since a2OF is principal, we have s | 2n, and so 2n = st for some t ∈ Z+. Further,
a2OF = I2n = (Is)t = αtOF , and so there exists a unit ε ∈ OF such that a2 = εαt.
Since F = Q(

√
−wn ) with wn square-free and n � 5, ε = ±1.

Suppose t is even, so t = 2t0 for some t0 ∈ Z+. Then

(
a

αt0

)2

= ε = ±1.

But, as is easily verified, E does not contain a square root of −1. So ε = 1 and a =
±αt0 ∈ F , contradicting the definition of a. Thus t is odd and so s is even. Further, since
t | 2n, gcd(t, 6) = 1.

Replacing α with −α, if necessary, we may assume, without loss of generality, that
ε = 1. Thus a2 = αt.
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Suppose that t = 1. Then s = 2n and so 2n | hF , the class number of OF . In particular,
2n � hF . Let d = disc(OF ). Then d = −wn or d = −4wn. By the class number formula
and a basic bound on L(1, χd) [6], we have

hF =
√

|d|
π

L(1, χd) �
√

|d|
π

(
2 + log |d|

)
=

2
√
|d|

π

(
1 + log

√
|d|

)
.

Thus, since |d| � 4wn � 24n,

2n � hF � 2
√
|d|

π

(
1 + log

√
|d|

)
� 2

√
24n
π

(
1 + log

√
24n

)
and so

√
24

π
√
n

(1 + log
√

24n ) � 1.

Since
√

24
π
√

51 (1 + log
√

24 · 51 ) < 1 and
√

24
π
√
n
(1 + log

√
24n ) is a decreasing function of n,

for n � 1, we have a contradiction for n > 50.
For n � 50 or, equivalently, wn � 300, we consult a class number table (for example

[2, Table 4]) to find that hF � 22. Since 2n � hF , we have n � 11 and so wn � 66.
Again consulting the table, we have hF � 8 and so n � 4, a contradiction.

Thus, t �= 1.
Since t is odd, there exists t1 ∈ Z+, such that t = 2t1 + 1. Define γ = a

αt1 ∈ E. Note
that

γ2 = a2

α2t1
= αt

α2t1
= α,

and therefore, γ ∈ OE .
Let A,B ∈ Q such that

α = A + B
√
−wn

and note that since αt = a2, A,B �= 0. Let A1, B1, C1, D1 ∈ Q such that γ = A1
√
w +

B1
√
−n + C1

√
−wn + D1. A simple calculation, using γ2 = α, yields that either A1 =

B1 = 0 or C1 = D1 = 0. If the former holds, then γ ∈ OF and Is/2 = γOF , contrary to
the definition of s. Thus

γ = A1
√
w + B1

√
−n.

Expanding γ2 = α and equating real and imaginary parts yields

A = A2
1w −B2

1n and B = 2A1B1. (7)

Since B �= 0, we have A1, B1 �= 0.
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Now, unless w = 3 and n ≡ 1 (mod 4), OF = Z[
√
−wn ]. So A,B ∈ Z. Further,

considering the possible integral bases for E, in this case, A1 ∈ Z and 2B1 ∈ Z. But, by
Eq. (7), B2

1n = A2
1w −A ∈ Z and so B1 ∈ Z.

If we do have w = 3 and n ≡ 1 (mod 4), then OF = Z[ 1+
√
−3n

2 ] and OE =
Z[
√

3,
√

3+
√
−n

2 ]. So we have 2A, 2B, 2A1, 2B1 ∈ Z. Further, Eq. (7) implies that A,B ∈ Z

if and only if A1, B1 ∈ Z.
Expanding 2ta2 = (2α)t, equating real and imaginary parts, yields

2�+t3m − 2tnx2 = (2A)
t1∑
j=0

(
t

2j

)
(2A)t−2j−1(2B)2j(−wn)j (8)

and

2k+t+13k
′
x = (2B)

t1∑
j=0

(
t

2j + 1

)
(2A)t−2j−1(2B)2j(−wn)j . (9)

By Eq. (8), 3 � 2A.
Suppose that 3 � 2Bw. From the definition of w, 3 � w implies that k′ �= 0. So, reducing

Eq. (9) modulo 3 yields

0 ≡
t1∑
j=0

(
t

2j + 1

)
(±1)j (mod 3),

which is impossible, by Lemma 8. Thus 3 | 2Bw.
Let δ = γ = A1

√
w − B1

√
−n. Then γδ = A2

1w + B2
1n ∈ Q ∩ OE = Z. Since

(γδ)2t = (ab)2 = y2n and 2 � y, we have 2 � γδ.
Recall that if A1, B1 /∈ Z, then w = 3, n ≡ 1 (mod 4), and 2A1 ≡ 2B1 ≡ 1 (mod 2).

Thus 4γδ = (2A1)2w + (2B1)2n ≡ 3 + n (mod 8). Since 2 � γδ implies that 8 � (2γ)(2δ),
we have n �≡ 5 (mod 8). Thus, if A1, B1 /∈ Z, n ≡ 1 (mod 8).

Now,

γt =
(

a

αt1

)t

= a2t1+1

(αt)t1 = a2t1+1

a2t1
= a.

It follows that δt = b. Further,

γt + δt

γ + δ
=

t−1∑
j=0

(−γ)jδt−j−1 ∈ Z,
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since it is an algebraic integer fixed by every automorphism of E. Thus, since γt + δt =
a + b = 2k+13k′√

w, we find that, in Z,
(
γ + δ√

w

) ∣∣∣∣
(
γt + δt√

w

)
.

Simplifying yields 2A1 | 2k+13k′ .

Lemma 9. (γ, δ) is a 2t-defective Lehmer pair.

Proof. First recall that γδ ∈ Z and, since 2 � γδ, γδ �= 0. Further, (γ + δ)2 = 4A2
1w ∈

Z − {0}. Suppose that p ∈ Z is prime such that p | gcd(γδ, (γ + δ)2). Then, since
2A1 | 2k+13k′ , p = 2 or p = 3. But (γδ)2t = (ab)2 = y2n and gcd(y, 6) = 1. Hence no
such p exists and therefore gcd(γδ, (γ + δ)2) = 1. Note that γ

δ ∈ F , in which the only
roots of unity are ±1. It follows that γ

δ is not a root of unity, since A1, B1 �= 0. Thus,
(γ, δ) is a Lehmer pair.

Now suppose that p is a prime divisor of L2t(γ, δ). Then, since

L2t(γ, δ) = γ2t − δ2t

γ2 − δ2 = (γt − δt)(γt + δt)
(γ − δ)(γ + δ) = Lt(γ, δ)

a + b

γ + δ

= Lt(γ, δ)
2k+13k′√

w

2A1
√
w

= 2k+13k′

2A1
Lt(γ, δ),

we have that p = 2, p = 3, or p | Lt(γ, δ).
Also, (γ2 − δ2)2 = −16A2

1B
2
1wn = −4B2wn. Since 3 | 2Bw, 3 | (γ2 − δ2)2. Further, if

A1, B1 ∈ Z, then 2 | (γ2 − δ2)2. If, instead, A1, B1 /∈ Z, then w = 3 and n ≡ 1 (mod 8).
Thus,

4L3(γ, δ) = 4γ
3 − δ3

γ − δ
= 9(2A1)2 − (2B1)2n ≡ 9 − 1 ≡ 0 (mod 8),

and so 2 | L3(γ, δ). Hence, in any case, p | (γ2 − δ2)2L1(γ, δ) . . . L2t−1(γ, δ). Thus (γ, δ)
is a 2t-defective Lehmer pair. �

By Bilu, Hanrot and Voutier [1, Theorem 1.4], since there exists a 2t-defective Lehmer
pair, 2t � 30. Then, by Lemma 3, the only candidates for γ with 2t > 12 are of the form
γ = ik(

√
3±

√
−n )/2 with n ≡ 5 (mod 8). But in each of these cases, A1, B1 /∈ Z which,

as shown above, implies that n ≡ 1 (mod 8). Thus, 2t � 12. Finally, since t � 5 is odd,
t = 5.

Expanding a2 = α5 and equating real and imaginary parts, we find

2�3m − nx2 = A
2∑(

5
2j

)
A5−2j−1B2j(−wn)j (10)
j=0
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and

2k+13k
′
x = B

2∑
j=0

(
5

2j + 1

)
A5−2j−1B2j(−wn)j . (11)

Similarly, expanding a = γ5 yields

2k3k
′
= A1

(
A4

1w
2 − 10A2

1B
2
1wn + 5B4

1n
2) (12)

and

x = B1
(
5A4

1w
2 − 10A2

1B
2
1wn + B4

1n
2). (13)

Suppose, first, that A1, B1 ∈ Z. Since B = 2A1B1, 2 | B. By Eq. (10), gcd(A, 6) = 1
and so, by Eq. (11), 2k+1 | B. To see that 3k′ | B, suppose that k′ > 0 and 3 � B.
Reducing Eq. (11),

0 = B
(
5A4 − 10A2B2wn + B4w2n2) ≡ B

(
−1 − wn + w2) (mod 3).

Thus, 3 � w and so w = 2. Hence, 0 ≡ Bn (mod 3), a contradiction. Therefore, if k′ > 0,
3 | B. Since 3 � 5A4, Eq. (11) implies that 3k′ | B.

By Eq. (13), gcd(B1, 6) = 1. Since B = 2A1B1 and 2k+13k′ | B, we have 2k3k′ | A1.
Hence, by Eq. (12),

A4
1w

2 − 10A2
1B

2
1wn + 5B4

1n
2 = ±1.

If k > 0, then 2 | A1, and reducing modulo 8 yields a contradiction. If k = 0, then we have
2 | w and 2 � A1. Again, reducing modulo 8 yields a contradiction, since 2wn ≡ 4 (mod 8).

Now suppose that A1, B1 /∈ Z. Then we have w = 3, n ≡ 1 (mod 8), and (2A1)2 ≡
(2B1)2 ≡ 1 (mod 8). Eq. (13) becomes

32x = (2B1)
[
5(2A1)4w2 − 10(2A1)2(2B1)2wn + (2B1)4n2]

= (2B1)
[
4
(
(2A1)2w

)2 +
(
(2A1)2w − (2B1)2n

)2 − 8(2A1)2(2B1)2wn
]
.

Since 2B1 is odd, this implies that

4
(
(2A1)2w

)2 +
(
(2A1)2w − (2B1)2n

)2 − 8(2A1)2(2B1)2wn ≡ 0 (mod 32). (14)

Reducing each term: since (2A1)4w2 ≡ 1 (mod 8), we have that 4((2A1)2w)2 ≡ 4
(mod 32); since (2A1)2w − (2B1)2n ≡ 2 (mod 8), ((2A1)2w − (2B1)2n)2 ≡ 4 (mod 32);
and since −(2A1)2(2B1)2wn ≡ 5 (mod 8), −8(2A1)2(2B1)2wn ≡ 8 (mod 32). Thus,
reducing congruence (14), we find 0 ≡ 4 + 4 + 8 ≡ 16 (mod 32), a contradiction, which
completes the proof. �
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