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one-parameter exponential sums t �→

∑
x ψ(xd + tx) over Fp

has finite monodromy or not, and work out some explicit cases 
where this is computable.
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1. Introduction

Consider the affine line A1
k over a finite field k of characteristic p > 0. Let � �= p be 

a prime, and F an �-adic sheaf on A1
k of rank n, which can be regarded as a continuous 

representation
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ρ : π1(A1
k, η̄) → GL(n, Q̄�)

where η̄ is a geometric generic point of A1
k. The arithmetic and geometric monodromy 

groups Garith and Ggeom of F are defined to be the Zariski closures of the images of ρ
(resp. of its subgroup π1(A1

k̄
, η̄)). According to [Del80] (see [Kat88, Chapter 3] for a more 

explicit statement), under certain conditions (which are usually fulfilled after taking a 
Tate twist of F), these groups govern the distribution of the Frobenius traces of the 
sheaf F : more precisely, if Ggeom = Garith, the Frobenius traces are equidistributed as 
the traces of random elements of a maximal compact subgroup of Ggeom as #k grows.

These groups also determine the asymptotic values of the higher moments associated 
to the trace function of F , which are related to the dimension of the invariant subspaces 
of certain tensor powers of the given representation of Ggeom via ρ. See [Kat05] for a 
detailed exposition of the topic.

In this article we will be concerned with a special class of sheaves, which are a subset 
of the class of so-called Airy sheaves, lisse sheaves on A1

k of rank n with a single slope 
n+1
n at infinity, which can also be characterized as the Fourier transform of lisse sheaves 

of rank 1 with slope > 1 at infinity. The monodromy of these sheaves was extensively 
studied by O. Šuch in [Šuc00], who gave a full classification of their possible non-finite 
monodromy groups [Šuc00, Propositions 11.6, 11.7].

Let d ≥ 2 be a prime to p integer. Let k = Fp and let ψ : k → C be the additive 
character given by ψ(t) = exp(2πit/p). Let [d] : A1

k → A1
k be the d-th power map, and 

Lψ(td) = [d]∗Lψ the pull-back of the Artin–Schreier sheaf Lψ on A1
k associated to ψ. 

It is a lisse sheaf on A1
k of rank 1, with slope d at infinity. Its Fourier transform Fd is 

then a lisse Airy sheaf on A1
k of rank d − 1 with a single slope d

d−1 at infinity [Kat90, 
Theorem 7.5.4]. The Frobenius trace of Fd at a point t ∈ k is given (up to sign) by

∑
x∈k

ψ(xd + tx).

The main goal of this article is giving a numerical criterion to determine whether 
the geometric monodromy (and therefore the arithmetic one after a suitable Tate twist) 
of Fd is finite. This is done in Proposition 1, and some specific cases are worked out 
explicitly in section 4. Moreover we show that, in the case where the monodromy is not 
finite, the given representation of the monodromy group is Lie irreducible, which allows 
to completely determine the arithmetic and geometric monodromy groups via the results 
in [Šuc00].

The most important case for applications is p = 2. In that case, we show that the 
monodromy of Fd is finite for d of the form 2a + 1 or 2a+1

2b+1 , and we conjecture that 
these are the only cases where the monodromy is finite. This case is important for its 
relation with almost perfect nonlinear and exceptional functions. A function F2n → F2n

is almost perfect nonlinear (APN) if the equation f(x + a) + f(x) = b has at most two 
solutions for every a �= 0, b ∈ F2n . These functions are quite useful in cryptography, see 
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e.g. [BLCCC06]. A function is exceptional if it is APN on F2n and also on infinitely many 
extensions of F2n .

If the monodromy of Fd is not finite, then both Ggeom and Garith are the full 
symplectic group Sp(d − 1, C). In particular, the (arithmetic) fourth moment of the 
trace function of Fd is 3. But this fourth moment can be computed explicitly, and 
it is equal to the number of (absolute) irreducible components of the polynomial 
xd+yd+zd+(x +y+z)d ∈ k[x, y, z] minus one. So, if Fd does not have finite monodromy, 
the polynomial

xd + yd + zd + (x + y + z)d

(x + y)(x + z)(y + z)

is absolutely irreducible. By [AMR10] this implies that the function f(x) = xd is not 
almost perfect nonlinear on F2n for any sufficiently large n, and therefore is not excep-
tional. This gives a new algebro-geometric approach to the study of such problems.

The author would like to thank Daqing Wan for bringing this problem to his attention, 
and the anonymous referees for their useful comments and suggestions, particularly the 
simplified proofs of Lemma 2 and Proposition 4.

2. A numerical criterion for the finiteness of the monodromy of Fd

Let k = Fp and Fd be as in the introduction, with d ≥ 3 prime to p. We want to 
determine the values of (p, d) such that Fd has finite geometric monodromy.

Lemma 1. The determinant of the Tate-twisted sheaf Fd(1/2) is geometrically trivial and 
arithmetically of finite order.

Proof. The determinant detFd(1/2) is a lisse rank one sheaf on A1
k, which is geometri-

cally trivial by [Kat87, Theorem 17]. So it is of the form αdeg for some �-adic unit α. 
Then detFd(1/2) will be arithmetically of finite order over A1

k if and only if α is a 
root of unity. In order to prove this, we will explicitly evaluate the action of Frobenius 
on detFd(1/2) at t = 0, which is equal to α. By replacing k with a finite extension if 
necessary, we may assume that d|q − 1, where q = #k.

Let r ≥ 1, and let kr be the extension of k of degree r inside a fixed algebraic closure k̄. 
The trace of the action of Frobenius on Fd(1/2) at t = 0 ∈ kr is given by

1
qr/2

∑
x∈kr

ψr(xd)

where ψr(x) = ψ(Trkr/Fp
(x)). Let Sr :=

∑
x∈kr

ψr(xd), then we have

Sr =
∑

ψr(u) · #{xd = u} =
∑

ψr(u)
∑
d

χ(u)

u∈kr u∈kr χ =1
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where the inner sum is taken over the set of multiplicative characters of kr with trivial 
d-th power. Since d|q − 1, every such character is obtained, by composition with the 
norm map, from one such multiplicative character of k. Then we have

∑
u∈kr

ψr(u)
∑
χd=1

χ(u) =
∑
χd=1

∑
u∈kr

ψr(u)χ(u) = −
∑

χ �=1;χd=1

G(ψr, χ)

where

G(ψr, χ) = −
∑
u∈k×

r

ψr(u)χ(u)

is the Gauss sum associated to χ. Using the Hasse–Davenport relation G(ψr, χ) =
G(ψ1, χ)r, we deduce

exp
∑
r≥1

Sr
T r

r
= exp

⎛
⎝−

∑
r≥1

∑
χ �=1;χd=1

(G(ψ1, χ)T )r

r

⎞
⎠ =

=
∏

χ �=1;χd=1

exp

⎛
⎝−

∑
r≥1

(G(ψ1, χ)T )r

r

⎞
⎠ =

∏
χ �=1;χd=1

(1 −G(ψ1, χ)T )

So the Frobenius eigenvalues at t = 0 ∈ k are G(ψ1, χ) for the d − 1 non-trivial 
multiplicative characters χ of k such that χd = 1. The determinant is then the product 
of these Gauss sums. Using the well-known relation G(ψ1, χ)G(ψ1, χ−1) = χ(−1)q we 
see that this product is ±q(d−1)/2 if d is odd, or ±q(d−2)/2G(ψ1, ρ) if d is even, where in 
the latter case ρ denotes the unique order 2 multiplicative character. Since G(ψ1, ρ)2 =
G(ψ1, ρ)G(ψ1, ρ−1) = ρ(−1)q, in both cases the product is q(d−1)/2 times a root of unity. 
So Frobenius acts on detFd(1/2) = (detFd)((d − 1)/2) by multiplication by a root of 
unity. �

The following corollary is simply a restatement of [Kat90, Theorem 8.14.4]:

Corollary 1. The sheaf Fd(1/2) has finite arithmetic monodromy if and only if it has 
finite geometric monodromy, if and only if for every finite extension kr of k and every 
t ∈ kr, the trace of the action of Frobenius on Fd(1/2) at t is an algebraic integer.

The last condition is equivalent to the trace of the action of Frobenius on Fd being a 
multiple of √q as an algebraic integer. Let us spell out what this means explicitly:

Corollary 2. The sheaf Fd has finite geometric monodromy if and only if for every r ≥ 1
and every t ∈ kr, 

∑
x∈kr

ψr(xd + tx) is divisible by pr/2 as an algebraic integer.

For our purposes we will need the following equivalent statement:
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Proposition 1. The sheaf Fd has finite geometric monodromy if and only if for every 
r ≥ 1 the sum 

∑
x∈kr

ψr(xd) is divisible by pr/2 as an algebraic integer and, for every 
non-trivial multiplicative character χ : k×r → C×, Gr(χ) ·

∑
x∈k×

r
ψr(xd)χ̄(x) is divisible 

by pr/2 as an algebraic integer. It is sufficient that the condition holds for every r which 
is a multiple of a certain r0 ≥ 1.

Proof. This is an explicit version of [Kat90, Theorem 8.14.6]. Suppose that for every 
r ≥ 1 and every t ∈ kr, 

∑
x∈kr

ψr(xd + tx) is divisible by pr/2 as an algebraic integer. 
Then, in particular, 

∑
x∈kr

ψr(xd) is divisible by pr/2. Furthermore, for every non-trivial 
multiplicative character χ : k×r → C×, the sum

∑
t∈k×

r

χ(t)
∑
x∈kr

ψr(xd + tx) =
∑
x∈kr

ψr(xd)
∑
t∈k×

r

χ(t)ψr(tx) = −Gr(χ) ·
∑
x∈k×

r

ψr(xd)χ̄(x)

is also divisible by pr/2.
Conversely, if 

∑
x∈k×

r
ψr(xd) is divisible by pr/2, so is

∑
t∈k×

∑
x∈k×

r

ψr(xd + tx) =
∑
t∈k

∑
x∈k×

r

ψr(xd + tx) −
∑
x∈k×

r

ψr(xd) = pr −
∑
x∈k×

r

ψr(xd)

Since 
∑

t∈k×
r
χ(t) 

∑
x∈kr

ψr(xd + tx) is also divisible by pr/2 for every non-trivial 
χ : k×r → C×, by Fourier inversion 

∑
x∈kr

ψr(xd + tx) is divisible by pr/2 for every 
t ∈ k×r .

The last statement is a consequence of the fact that having finite geometric mon-
odromy is invariant under extension of scalars to a finite extension of the base field. �
Lemma 2. Let z ∈ k×r and χ : k×r → C× be a multiplicative character. Then

∑
x|xd=z

χ(x) =
∑

η|ηd=χ

η(z).

Proof. Let Φ, Ψ : k×r × k̂×r → C× be the functions defined by

Φ(z, χ) =
∑

x|xd=z

χ(x), Ψ(z, χ) =
∑

η|ηd=χ

η(ζ).

We will show that their Fourier transforms coincide as functions on k̂×r × k×r , so Φ = Ψ. 
The Fourier transform of Φ is given by

(ξ, y) �→
∑
z,χ

ξ(z)χ(y)
∑
xd=z

χ(x) =
∑
x,χ

ξ(xd)χ(xy) = (pr − 1)ξ(y−d)
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and, similarly, the Fourier transform of Ψ is

(ξ, y) �→
∑
z,χ

ξ(z)χ(y)
∑
ηd=χ

η(z) =
∑
z,η

ξ(z)η(ydz) = (pr − 1)ξ(y−d). �

Using this lemma, we get
∑
x∈k×

r

ψr(xd)χ̄(x) =
∑
z∈k×

r

ψr(z)
∑
xd=z

χ̄(x) =
∑
z∈k×

r

ψr(z)
∑
ηd=χ

η̄(z) = −
∑
ηd=χ

Gr(η̄)

and
∑
x∈kr

ψr(xd) = 1 +
∑
z∈k×

r

ψr(z)#{x|xd = z} = 1 +
∑
z∈k×

r

ψr(z)
∑
ηd=1

η(z) =

= 1 +
∑
ηd=1

∑
z∈k×

r

ψr(z)η(z) = −
∑

η �=1,ηd=1

Gr(η)

This allows us to give yet another criterion for finite monodromy:

Proposition 2. The sheaf Fd has finite geometric monodromy if and only if for every 
r ≥ 1 and every non-trivial multiplicative character η : k×r → C×, the Gauss sum Gr(η)
is divisible by pr/2 if ηd is trivial, and the product Gr(η)Gr(η̄d) is divisible by pr/2 if ηd
is non-trivial. It is sufficient that the condition holds for every r which is a multiple of 
a certain r0 ≥ 1.

Proof. By Proposition 1 and the previous remark, if these products of Gauss sums are 
divisible by pr/2 then Fd has finite monodromy. Conversely, suppose that Fd has finite 
monodromy. Then for every r ≥ 1 and every non-trivial χ : k×r → C×, the sums Ar =∑

η �=1,ηd=1 Gr(η) and Br(χ) =
∑

ηd=χ Gr(χ)Gr(η̄) are divisible by pr/2 as algebraic 
integers. We need to show that the individual summands are also divisible by pr/2. By 
the Hasse–Davenport relation, by passing to a finite extension of kr we may assume that 
d|pr − 1. Then for every m ≥ 1 there are either 0 (in which case there is nothing to 
prove) or d characters η of k×rm such that ηd = χ, which are obtained from those of 
k×r by composition with the norm map. By the Hasse–Davenport relation we have that 
Ars = ± 

∑
η �=1,ηd=1 Gr(η)s and Brs(χ) =

∑
ηd=χ Gr(χ)sGr(η̄)s are divisible by prs/2 as 

algebraic integers. The result is then a consequence of the following lemma. �
Lemma 3. Let α1, . . . , αd be algebraic integers such that αs

1 + · · ·+αs
d is divisible by ps/2

for every s ≥ 1. Then αi is divisible by p1/2 for every i = 1, . . . , d.

Proof. This is a well known result, see e.g. [Ax64]. Let K be the completion of 
Q(α1, . . . , αd) at a prime over p. Since αs

1 + · · · + αs
d is divisible by ps/2, the power 

series
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g(T ) :=
∞∑
s=0

(αs
1 + · · · + αs

d)T s

converges for |T |p < p1/2, so all the poles x must have |x|p ≥ p1/2, that is, (p1/2x)−1 are 
p-adic integers. But the poles are α−1

1 , . . . , α−1
d , since

g(T ) = 1
1 − α1T

+ · · · + 1
1 − αdT

.

So (p1/2α−1
i )−1 = p−1/2αi is an algebraic integer for all i = 1, . . . , d, that is, αi is divisible 

by p1/2. �
Finally we can make this more explicit thanks to Stickelberger’s theorem. Fix r ≥ 1. 

For every integer 1 ≤ x ≤ pr − 1 let [x]p,r be the sum of the p-adic digits of x. It is an 
integer between 1 and r(p −1): for instance, [1]p,r = [p]p,r = 1, and [pr−1]p,r = r(p −1). 
If x is an arbitrary integer, we define [x]p,r := [y]p,r, where 1 ≤ y ≤ pr − 1 is the unique 
integer such that x ≡ y (mod pr − 1).

It is easy to see from this definition that [px]p,r = [x]p,r and [−x]p,r = r(p −1) − [x]p,r
for every x ∈ Z which is not a multiple of pr − 1. If x is not a multiple of pr − 1 we have 
the following well-known explicit formula for [x]p,r, where {x} denotes the fractional part 
of a real number x:

[x]p,r = (p− 1)
r−1∑
i=0

{
pix

pr − 1

}
.

Theorem 1. The sheaf Fd has finite geometric monodromy if and only if for every r ≥ 1
and every integer 1 ≤ x ≤ pr − 2, we have

[dx]p,r ≤ [x]p,r + r(p− 1)
2 .

It is sufficient that the condition holds for every r which is a multiple of a certain r0 ≥ 1.

Proof. Fix r ≥ 1. The Gauss sums on k×r take values in the finite extension of Q generated 
by the p(pr−1)-th roots of unity. By the Stickelberger theorem [BEW98, Theorem 11.2.1], 
if ω denotes the Teichmüller character of k×r (which generates the character group), the 
p-adic valuation of the Gauss sum associated to ωj for 1 ≤ j ≤ pr − 2 is given by 

1
p−1 [j]p,r.

Applying this to the criterion of Proposition 2, we get that Fd has finite monodromy 
if and only if for every 1 ≤ j ≤ pr − 2 we have [j]p,r ≥ r(p−1)

2 if dj is divisible by pr − 1, 
and [j]p,r + [−dj]p,r ≥ r(p−1)

2 otherwise.
If dj is divisible by pr − 1 this can be rewritten as

[dj]p,r = r(p− 1) ≤ [j]p,r + r(p− 1)

2
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and, if dj is not a multiple of p − 1, it is equivalent to

[dj]p,r = r(p− 1) − [−dj]p,r ≤ r(p− 1) + [j]p,r −
r(p− 1)

2 = [j]p,r + r(p− 1)
2 . �

For computational purposes, it is convenient to have a sufficient condition for the 
monodromy of Fd to be finite. We have the following criterion, which is a generalization 
of [Kat07, Lemma 13.5].

Proposition 3. For r ≥ 1 an integer, let fr : [0, 1] → R be the piecewise linear function 
defined by

fr(x) =
r−1∑
i=0

{pix} +
r−1∑
i=0

{−dpix}.

Suppose that for some integer r0 ≥ 1 we have

1. fr0(ad ) ≥ r0
2 for a = 1, . . . , d − 1

2. limx→ a

pr0−1d

− fr0(x) ≥ r0
2 for a = 1, . . . , pr0−1d

Then the monodromy of Fd is finite.

Proof. Since the function fr is piecewise linear with constant negative slope and its 
points of discontinuity are a

pr−1d for a = 1, . . . , pr−1d, the two conditions imply that 
fr0(x) ≥ r0

2 for every x ∈ Z(p) ∩ (0, 1).
Let r be a multiple of r0, and 1 ≤ x ≤ pr − 1 an integer. Then

fr

(
x

pr − 1

)
= fr0

(
x

pr − 1

)
+ fr0

(
pr0x

pr − 1

)
+ · · · + fr0

(
p(r/r0−1)r0x

pr − 1

)
≥

≥ r

r0

r0
2 = r

2 .

Then, if dx is a multiple of pr − 1,

[x]p,r = (p− 1)
r−1∑
i=0

{
pix

pr − 1

}
= (p− 1)fr

(
x

pr − 1

)
≥ (p− 1)r2 ,

and otherwise,

[x]p,r + [−dx]p,r = (p− 1)fr
(

x

pr − 1

)
≥ (p− 1)r2 ,

so Fd has finite monodromy by Theorem 1. �
For instance, for p = 2, d = 5 satisfies the condition for r = 4, as one can easily check.
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3. Explicit results

In this section we will use Theorem 1 to give some explicit results. First of all, we 
can recover the known fact [Kat87, Proposition 5] that, if p > 2d − 1 ≥ 5, then the 
monodromy is not finite.

Corollary 3. Suppose that p ≥ 2d + 1 ≥ 7. Then Fd does not have finite monodromy.

Proof. Let p = qd + r with q ≥ 2 and 1 ≤ r ≤ d. We claim that [dq]p,1 > [q]p,1 + p−1
2 , so 

Fd can not have finite monodromy by Theorem 1.
Since q < dq ≤ p − 1, [dq]p,1 = dq and [q]p,1 = q. So the inequality is equivalent to 

2(d − 1)q > p − 1 = qd + r − 1 or, equivalently, q(d − 2) > r − 1. Now

q(d− 2) ≥ 2(d− 2) = d + d− 4 ≥ d− 1 ≥ r − 1

with equality if and only if d = r = 3, q = 2, in which case p = 9 is not prime. �
Lemma 4. For every r ≥ 1 and x, y ∈ Z we have [x + y]p,r ≤ [x]p,r + [y]p,r.

Proof. It suffices to prove it for 1 ≤ x, y ≤ pr − 1. First of all, it is clear that, if an 
integer z ≥ 1 can be written as a sum of m powers of p, then [z]p,r ≤ m for every r ≥ 1. 
Conversely, if 1 ≤ z ≤ pr − 1, then z can be written as a sum of [z]p,r powers of p.

So x (resp. y) can be written as a sum of [x]p,r (resp. [y]p,r powers of p), and therefore 
x + y can be written as a sum of [x]p,r +[y]p,r powers of p. We conclude that [x + y]p,r ≤
[x]p,r + [y]p,r. �
Corollary 4. Let d = pa + 1 for some integer a ≥ 1. Then Fd has finite monodromy.

Proof. We need to show that [dx]p,r ≤ [x]p,r + r(p−1)
2 for every r ≥ 1 and every 1 ≤

x ≤ pr − 2. If [x]p,r ≥ r(p−1)
2 this is obvious, since [dx]p,r ≤ r(p − 1). Suppose that 

[x]p,r ≤ r(p−1)
2 . Then

[dx]p,r = [(pa + 1)x]p,r ≤ [pax]p,r + [x]p,r = 2[x]p,r ≤ [x]p,r + r(p− 1)
2

for every 1 ≤ x ≤ pr − 2. �
Corollary 5. Let d = pa+1

pb+1 , with a > b ≥ 1. Then Fd has finite monodromy.

Proof. By Lemma 4, [(pb + 1)z]p,r ≤ 2[z]p,r for every z ∈ Z. Taking z = −dx and using 
that [−x]p,r = r(p − 1) − [x]p,r, we get
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r(p− 1) − [(pa + 1)x]p,r = r(p− 1) − [(pb + 1)dx]p,r = [−(pb + 1)dx]p,r ≤
≤ 2[−dx]p,r = 2r(p− 1) − 2[dx]p,r ⇒

⇒ [dx]p,r ≤ r(p− 1)
2 + 1

2[(pa + 1)x]p,r ≤ [x]p,r + r(p− 1)
2 . �

Remark 1. In the situation of the previous corollary, a must be of the form bc with c
odd. Indeed, let a = bc + r with 0 ≤ r < b. Since pa + 1 is a multiple of pb + 1, we have

0 ≡ pa + 1 = pbcpr + 1 ≡ (−1)cpr + 1(mod pb + 1).

Since |(−1)cpr + 1| < |pb + 1|, we conclude that (−1)cpr = −1, that is, r = 0 and c is 
odd.

In the case p = 2 we conjecture that the only cases where the monodromy is fi-
nite are the ones covered in the previous corollaries. This has been checked to be true 
computationally for d up to 10000.

Conjecture 1. Let p = 2. Then Fd has finite monodromy if and only if d has the form 
2a + 1 for some a ≥ 1 or 2a+1

2b+1 for some b ≥ 1 and a = bc with odd c ≥ 3.

4. The monodromy in the non-finite case

In this section we will completely determine the geometric monodromy group of Fd

in the case where it is infinite. By [Šuc00, Proposition 11.1], if the monodromy is not 
finite, then Fd is either Lie-irreducible or Artin–Schreier induced. We will see that the 
latter case is not possible.

Proposition 4. Suppose that the monodromy of Fd is not finite. Then Fd is Lie-
irreducible.

Proof. Suppose that Fd were Artin–Schreier induced. Then the proof of [Šuc00, Propo-
sition 11.1] shows that Fd ⊗ F̂d contains an Artin–Schreier subsheaf Lψ(at) for some 
a ∈ k̄∗. That is,

Hom(Fd ⊗ F̂d,Lψ(at)) �= 0

for some a ∈ k̄∗ or, equivalently (since Fd is irreducible),

Fd
∼= Fd ⊗ Lψ(at).

By taking Fourier transform this implies

Lψ(td)
∼= τ∗aLψ(td) = Lψ((t+a)d)
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where τa : A1
k̄
→ A1

k̄
is the translation by a. Then Lψ(td−(t+a)d) would be geometrically 

trivial, which is only possible if ta − (t + a)d is Artin–Schreier equivalent to a constant, 
that is, xd − (x + a)d = g(x)p − g(x) for some g(x) ∈ k̄[x].

Since xd − (x + a)d = − 
∑d

i=1
(
d
i

)
aixd−i has degree ≤ d − 1, such a polynomial g

would have degree ≤ d−1
p . In particular, every monomial with non-zero coefficient in f

of degree > d−1
p would have degree a multiple of p. In other words, for every i < d − d−1

p

such that d − i is not a multiple of p, the binomial coefficient 
(
d
i

)
would be a multiple 

of p.
We already know that for d of the form pr + 1 the monodromy of Fd is finite, so the 

result is then a consequence of the following lemma. �
Lemma 5. Suppose that d is not of the form pr + 1 for some r ≥ 1. Then there exists 
some positive integer l < d − d−1

p such that d − l is not a multiple of p and 
(
d
l

)
is not a 

multiple of p.

Proof. Let r = ordp(d − 1). We will see that l = pr satisfies the stated conditions. Since 
d − 1 is not a power of p, we have d − 1 ≥ 2pr = 2l, so

l ≤ d− 1
2 = d− d + 1

2 < d− d− 1
2 ≤ d− d− 1

p
.

Also, d − l is not a multiple of p: if r = 0 then d − l = d − 1 is not a multiple of p by 
definition of r. If r > 0 then d − l = (d − 1) − l + 1 with d − 1 and l multiples of p, so d
is not a multiple of p. It remains to check that 

(
d
l

)
is not a multiple of p. That is, that 

ordp(d(d − 1) · · · (d − l + 1)) = ordp((d − 1) · · · (d − l + 1)) = ordp(l!).
In fact, we will check that ordp(d − 1 − j) = ordp(l − j) for every j = 0, 1, . . . , l − 2. 

For j = 0 it is clear by definition of l. For j ≥ 1, since j < l = pr, we have ordp(j) < r, 
so ordp(l − j) = ordp(j) = ordp(d − 1 − j). �

Using results of Katz and Šuch, this allows to completely determine the geometric 
monodromy groups in the non-finite case

Corollary 6. Let G be the geometric monodromy group of Fd. If G is not finite, then

1. If p = 2, then G = Spd−1.
2. If p �= 2 and d is odd, then G = Spd−1.
3. If p �= 2 and d is even, then G = SLd−1.

Proof. By Proposition 4, G is Lie-irreducible in its given representation. If p = 2, then 
Fd is self-dual (as it has real Frobenius traces), so by [Šuc00, Proposition 11.7], the Lie 
algebra of G is either spd−1 in its standard representation or e7 in its 56-dimensional 
representation. But for d = 57 = 29+1

3 the monodromy of Fd is finite by Corollary 4, so 
2 +1
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we must be in the former case. So the identity component G0 of G must be Spd−1, and 
therefore G = Spd−1 by self-duality of Fd.

Suppose now that p �= 2. By [Šuc00, Proposition 11.6], G0 is then either Spd−1 or 
SLd−1 in their standard representations. If d is even the former case is not possible, so 
G0 = SLd−1 and G = det−1(det(G)). But by [Kat87, Theorem 17], the determinant of 
Fd is geometrically trivial, so G = SLd−1. If d is odd, then Fd is again self-dual (as it 
has real Frobenius traces), so by the previous argument G must be Spd−1. �
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