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1. Introduction

Geometry and Number Theory are closely connected. The simplest examples may 
be Diophantine equations coming from plane geometry such as the ancient congruent 
number problem and the Pythagorean theorem that inspired the raise of Fermat’s last 
theorem. As simple as right triangles and squares are, there are many interesting ques-
tions about them, which yield unexpected relations and methods.

The congruent number problem asks about the existence of a right triangle with 
rational side lengths and whose area is equal to a given natural number. This question 
has been generalized in several directions. Fujiwara [10] proposed to extend this problem 
to other angles. A natural number is θ-congruent if there exists a rational triangle of 
area n

√
r2 − s2 with an angle equal to θ, where cos θ = s

r is a rational number. Such a 
triangle is called a θ-triangle. The cases where θ = π

3 , 
2π
3 are of particular interest, since, 

together with π2 , they correspond to rational multiples of π with rational cosine.
These types of connections extend to other geometric objects. To answer a question 

of Sands, Guy [11] found that there are no pairs of an integral right triangle and a 
rectangle with the same area and the same perimeter. Instead, he proved that there are 
infinitely many such pairs involving an integral isosceles triangle and an integral rectan-
gle. Since then, several variations of this problem have been studied. Bremner and Guy 
[6] generalized this statement to pairs involving a Heron triangle (a triangle with ratio-
nal sides and area) and a rectangle. Zhang and Peng [30] showed the analogous problem 
for Heron triangle and parallelogram pairs. The case of right triangle and parallelogram 
pairs was considered by Zhang [29], while Chern [7] studied integral right triangle and 
θ-integral rhombus pairs. Das, Juyal, and Moody [9] showed the analogous statement 
for integral isosceles triangle-parallelogram and Heron triangle-rhombus pairs. Zhang, 
Peng, and Wang studied several questions along the same lines involving trapezoids [31]. 
Recently Hirakawa and Matsumura [13] proved that there is a unique pair of a rational 
right triangle and a rational isosceles triangle with the same perimeter and the same 
area. Further questions in this direction involving pairs of Heron triangles were consid-
ered by Kramer and Luca [14], Bremner [5], and van Luijk [27]. Questions involving pairs 
of other types of triangles were considered by Choudhry [8].

It is natural to ask how we can generalize questions such as the search for pairs of 
right triangles and parallelograms to the θ-triangle case, when cos θ is rational. This is 
the aim of this paper.

Suppose that a triangle has sides of length x, y, z and that the angle between the sides 
of length x and y equals θ. Let cos θ = a = s

r , r, s ∈ Z, |s| < r, (s, r) = 1.
We look for pairs of θ-triangles and ω-parallelograms with rational sides, equal perime-

ter, and equal area. In this article we only consider pairs up to similarity.
The law of cosines implies z2 = x2 + y2 − 2axy. We also have |a| < 1. By applying 

the standard parametrization technique for a quadric, we can write

(x, y, z) = (n2 −m2, 2m(n− am),m2 − 2amn + n2),
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where n, m are rationals (or integers, if we allow scaling) satisfying conditions so that 
the quantities above are positive.

Let the sides of the corresponding parallelogram be p, q, and let the intersection angle 
between them be ω, where 0 < ω ≤ π

2 . We thus have

{√
1 − a2(n2 −m2)m(n− am) = pq sinω,

n2 + (1 − a)mn− am2 = p + q.
(1)

Since m, n, p, q are rational, we must have sinω = t
√

1 − a2, with t a rational number.
With this change of variables system (1) becomes

{
(n2 −m2)m(n− am) = tpq,

(n− am)(n + m) = p + q.
(2)

Our main result is the following.

Theorem 1. Given θ with cos θ = a ∈ Q, for all but finitely many t ∈ Q with 0 < t ≤
1√

1−a2 , there exist infinitely many pairs of integral θ-triangle and integral ω-parallelogram 
such that sinω/ sin θ = t with common area and common perimeter.

A common restriction in previous works [9,29] is to request that cosω be also rational.

Theorem 2. Given θ with cos θ = a ∈ Q, for all but finitely many τ ∈ Q with 0 < τ , 
aτ < 1, and 2aτ < τ2 + 1, there exist infinitely many pairs of integral θ-triangle and 
integral ω-parallelogram such that sin(ω/2)/ sin(ω/2 + θ) = τ with common area and 
common perimeter.

While the consideration of sin(ω/2)/ sin(ω/2 +θ) seems rather technical, it is a natural 
geometric condition that guarantees that both sinω and cosω are rational multiples of 
sin θ and cos θ respectively. When θ = π

2 this reduces to tan(ω/2) = τ .
The results are obtained by reformulating the problems in terms of families of elliptic 

curves and proving that the elliptic curves have positive rank for all but finitely many t
(or τ).

The paper is organized as follows. In Section 2 we prove Theorem 1 by relating it to 
an elliptic curve on the parameters a, t. We consider some particular cases of Theorem 1
in Section 3 by fixing the values of one of the parameters a, t or the relation between 
them. In Section 4 we study the structure of the Mordell–Weil group: we show that 
all the possible torsion groups from Mazur’s Theorem with a subgroup of order 2 are 
realized for some specific values of a, t in Subsection 4.1, and we compute the rank 
and characterize a generator in Subsection 4.2 by studying the corresponding rational 
elliptic surface resulting from fixing the value of a but letting t free as a parameter. 
By Silverman’s Specialization Theorem, this gives a lower bound for the rank of almost 
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all fibers. Theorem 2 is proven in Section 5 by relating to a different elliptic curve on 
parameters a, τ . Sections 6 and 7 treat the ranks over C(τ) and Q(τ) respectively by 
considering the elliptic K3-surface resulting from leaving τ as a variable and the elliptic 
threefold that is given when both a and τ are kept as variables.

2. Proof of Theorem 1

In this section we prove Theorem 1 by combining several auxiliary results.

Proposition 3. Let a, t ∈ Q, |a| < 1, 0 < t ≤ 1√
1−a2 . If the elliptic curve

Ea,t : Y 2 = X3 + t((1 + a)2t + 4(a− 3))X2 + 32(1 − a)t2X (3)

has infinitely many points on Ea,t(Q) satisfying the conditions

4(1 − a)t < X < 8t, |Y | < (1 + a)tX, (4)

then there exist infinitely many pairs of integral θ-triangle and integral ω-parallelogram 
with common area and common perimeter such that cos θ = a and sinω/ sin θ = t.

Proof. From system (2) we have

(n− am)2(n + m)2 − 4
t
(n2 −m2)m(n− am) = (p + q)2 − 4pq = (p− q)2.

By considering the change of variables
{

Y = 4(1 − a2)t2 p−q
(n−am)2 ,

X = 4(1 − a)t n+m
n−am ,

we obtain the Weierstrass form (3).
Given a point (X, Y ) ∈ Ea,t(Q), we can take

{
m = X − 4(1 − a)t,

n = aX + 4(1 − a)t,

{
p = 2(1 − a2)((1 + a)tX + Y ),

q = 2(1 − a2)((1 + a)tX − Y ),

and the sides of the triangle adjacent to θ to be
{

x = (1 − a2)X(8t−X),

y = 8(1 − a2)t(X − 4(1 − a)t).

For the above parameters to satisfy the conditions of our problem we need x, y, p, q >
0. Since |a| < 1 and 0 < t, it suffices to have
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Fig. 1. Construction of ω from a given t.

X(8t−X) > 0, X − 4(1 − a)t > 0, (1 + a)tX ± Y > 0.

The above inequalities can be condensed as conditions (4) of the statement. From the 
expressions for m, n, p, q, it is easy to see that any point (X, Y ) ∈ Ea,t(Q) satisfying (4)
leads to a distinctive pair.

Remark 4. Let us show how to construct ω from t. To this end, construct a triangle ABC

with angle θ at A, |AC| = t, |BC| = 1, and the angle at B acute (see Fig. 1). We denote 
this angle by α. This construction is possible precisely when 1

t > sin θ =
√

1 − a2, which 
is the condition that we have.

Then the law of sines implies

1
sin θ

= |BC|
sin θ

= |AC|
sinα

= t

sinα
,

which implies sinα = t sin θ and α = ω.

To prove Theorem 1 it remains to prove that, given a, for all but finitely many t, there 
are infinitely many points on Ea,t(Q) satisfying the conditions (4).

Lemma 5. For given a ∈ Q with |a| �= 1, the point

Pa,t = (8t, 8(1 + a)t2)

has infinite order in Ea,t for all but finitely many t. In particular, Ea,t(Q) has positive 
rank for all but finitely t ∈ Q.

Proof. First we record that the discriminant of Ea,t is given by

Δa,t = 214(1 − a)2(1 + a)2t6((1 + a)2t2 + 8(a− 3)t + 16).

Therefore, we have an elliptic curve as long as

a �= ±1 and t �= 4(3 − a) ± 8
√

2(1 − a)
(1 + a)2 .

The point Pa,t = (8t, 8(1 + a)t2) can be found by numerical experimentation. We also 
obtain the point (0, 0) of order 2. In Subsection 4.2 we will use the theory of elliptic 
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surfaces to determine that, when we keep t as a variable, the rank of Ea(Q(t)) is 1 and 
that Pa(t) is a generating point.

If we only need to prove that Pa,t is a point of infinite order, it suffices to consider 
kPa,t and kPa,t + (0, 0) for k = 1, . . . , 4. For the record, they are as follows.

Pa,t =(8t, 8(1 + a)t2)

Pa,t + (0, 0) =(4(1 − a)t,−4(1 − a2)t2)

2Pa,t =(4,−4((a− 3)t + 2))

2Pa,t + (0, 0) =(8(1 − a)t2, 8(1 − a)((a− 3)t + 2)t2)

3Pa,t =
(

8t((a− 1)t + 1)2

(2t− 1)2 ,−8(a + 1)t2((a− 1)t + 1)
(2t− 1)3

×
[
2(a− 1)t2 + (a− 3)t + 3

])

3Pa,t + (0, 0) =
(
−4(a− 1)t(2t− 1)2

((a− 1)t + 1)2 ,−4(a2 − 1)t2(2t− 1)
((a− 1)t + 1)3

×
[
2(a− 1)t2 + (a− 3)t + 3

]
4Pa,t =

(
4(2(a− 1)t2 + 1)2

((a− 3)t + 2) ,
4(2(a− 1)t2 + 1)
((a− 3)t + 2)3

×
[
2(a− 1)(a2 − 2a + 5)t4 + 8a2(a− 3)(a− 1)t3

− (a2 − 22a + 25)t2 − 4(a− 3)t− 2
])

4Pa,t + (0, 0) =
(
−8(a− 1)t2((a− 3)t + 2)2

(2(a− 1)t2 + 1)2 ,
8(a− 1)t2((a− 3)t + 2)

(2(a− 1)t2 + 1)3

×
[
2(a− 1)(a2 − 2a + 5)t4 + 8a2(a− 3)(a− 1)t3

− (a2 − 22a + 25)t2 − 4(a− 3)t− 2
])

The points above, together with all their negatives, and (0, 0), yield 17 points that are 
generically different. That is, for a fixed value of a, there are only finitely many t’s such 
that some of the points in the list coincide. Mazur’s Theorem on the torsion of elliptic 
curves over the rational numbers [15,16] implies that the torsion subgroup of Ea,t(Q)
has at most 16 elements. Hence, one of the 17 points is not torsion. In conclusion, for 
given a, Pa,t has infinite order for all but finitely many t.

In order to finish the proof of Theorem 1, we must find infinitely many points on 
Ea,t(Q) satisfying the conditions (4). To do this, we need the following result.

Theorem 6 (Poincaré and Hurwitz ([26] p. 78)). Let E be an elliptic curve over Q with 
positive rank. Then for any rational point P ∈ E(Q) and any neighborhood P ∈ U ⊂
RP 2, one can find infinitely many rational points Pi ∈ E(Q) such that Pi ∈ U .
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We have now all the elements to prove our main result.

Proof of Theorem 1. If Ea,t(Q) contains only one point of order 2, then Pa,t is dense in 
Ea,t(R). Otherwise, Ea,t(Q) contains three points of order 2 and Ea,t(Q) is dense in the 
connected component where Pa,t lies in. Take δ such that 1−a

2 < δ < 1 and set X0 = δ8t. 
We will find Y0 such that (X0, Y0) ∈ Ea,t(R).

Y 2
0

X2
0

=X0 + t((1 + a)2t + 4(a− 3)) + 32(1 − a)t2

X0

= t

δ
8
(
δ − 1 − a

2

)
(δ − 1) + (1 + a)2t2

<(1 + a)2t2.

Restricting to δ close enough to 1, we can guarantee that Y
2
0

X2
0
> 0 so (X0, Y0) ∈ Ea,t(R)

satisfies the conditions (4) and lies in the same connected component as Pa,t. By con-
tinuity and by Theorem 6 there are infinitely many points in Ea,t(Q) satisfying the 
conditions (4).

3. Particular cases for Theorem 1

In this section we consider some cases of particular interest because of their geometric 
interpretation. Because of Theorem 1, it is natural to examine the exceptional values for 
which the point Pa,t has finite order.

We recall that the parameters a, t are rational numbers satisfying |a| < 1, 0 < t ≤
1√

1−a2 .
Case a = 0. This corresponds to a right triangle. We have

E0,t : Y 2 = X3 + t(t− 12)X2 + 32t2X,

which is nonsingular for t �= 0.
Assuming t �= 0, the point P0,t = (8t, 8t2) has infinite order for t �= 1

2 , 
2
3 , 1. This 

includes Zhang’s case [29].
The following table summarizes the results for the values of t in which P0,t has finite 

order. The last column indicates the points in E0,t(Q) leading to solutions (if any), 
and the corresponding solutions up to geometric similarity and excluding symmetric 
solutions.

t ω E0,t(Q) generators solutions
1
2

π
6 Z/6Z 〈(2, 1)〉, P0, 1

2
= 2 (2, 1) none

2
3 sin−1(2/3) Z/4Z× Z/2Z 〈P0, 2

3
, (0, 0)〉 (4, 0), 

( 32
9 , 0

)
p = q = x, y = 4

3x

1 π
2 Z/6Z 〈P0,1〉 none
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Fig. 2. The case a = 1
2 , t = 1 corresponds to the equilateral triangle.

We remark that the last case when t = 1 is the one considered by Bremner and Guy 
[6]. The word “none” indicates that there are only degenerate solutions.

Since π3 and 2π
3 are the only two angles (besides π2 ) which are rational multiples of π

with rational cosine, we discuss these two cases in particular.
Case a = 1

2 . This corresponds to a π3 -triangle. The curve is given by

E 1
2 ,t

: Y 2 = X3 + t

4(9t− 40)X2 + 16t2X,

which is nonsingular for t �= 0, 89 , 8.
Assuming that t �= 0, 89 , 8, the point P 1

2 ,t
=

(
8t, 12t2

)
has infinite order for t �=

−1, 12 , 
4
5 , 1, 2. The values t = −1, 2 are irrelevant for our geometric problem.

The following table summarizes the results in this case.

t ω E 1
2
,t(Q) generators solutions

1
2 sin−1(

√
3/4) Z/6Z 〈

(
1, 3

4
)
〉, P 1

2
, 1

2
= 2

(
1, 3

4
)

none
4
5 sin−1(2

√
3/5) Z/4Z× Z/2Z 〈P 1

2
, 4

5
, (0, 0)〉 (4, 0), 

( 64
25 , 0

)
p = q = x, y = 8

5x

1 π
3 Z/8Z 〈P 1

2
,1〉 (4, ±2)

p = x = y, q = p/2

The last case corresponds to the equilateral triangle (see Fig. 2).
Case a = −1

2 . This corresponds to a 2π
3 -triangle. We obtain

E− 1
2 ,t

: Y 2 = X3 + t

4(t− 56)X2 + 48t2X,

which is nonsingular for t �= 0.
Assuming that t �= 0, P− 1

2 ,t
=

(
8t, 4t2

)
has infinite order for t �= 1

2 , 
4
7 , 

2
3 .

The following table summarizes the results in this case.

t ω E− 1
2
,t(Q) generators or point of infinite order solutions

1
2 sin−1(

√
3/4) Z/6Z 〈

(
3, 3

4
)
〉, P− 1

2
, 1

2
= 2

(
3, 3

4
)

none
4
7 sin−1(2

√
3/7) rk(E− 1

2
, 4

7
(Q)) > 0

( 12
7 , 144

49
)

3 
( 12

7 , 144
49

)
infinitely many

2
3 sin−1(1/

√
3) Z/6Z 〈P− 1

2
, 2

3
〉 none
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In the case of t = 4
7 we found a point of infinite order unrelated to P−1

2 ,
4
7

and by 
Theorem 1 we obtain infinitely many solutions. We have indicated that the triple of this 
point satisfies the conditions of Theorem 1.

Now we consider different types of conditions by either imposing values on t or rela-
tionships between a and t.
Case t = 1. We have sinω = sin θ. The curve under consideration is

Ea,1 : Y 2 = X3 + (a2 + 6a− 11)X2 + 32(1 − a)X,

which is nonsingular since a �= ±1.
Assuming that a �= ±1, the point Pa,1 = (8, 8(1 + a)) has finite order for a = 0, 12 , 

2
3 .

The following table summarizes the results in this case.

a ω Ea,1(Q) generators solutions

0 π
2 Z/6Z 〈P0,1〉 none

1
2

π
3 Z/8Z 〈P 1

2
,1〉 (4, ±2)

p = x = y, q = p/2
2
3 sin−1(

√
5/3) Z/6Z× Z/2Z 〈P 2

3
,1, (0, 0)〉 (3, 0),

( 32
9 , 0

)
y = 8

9x, p = q = 2
3x(

4,± 4
3
)
,
( 8
3 ,± 8

9
)

y = 4
3x, p = x, q = 2

3p

We remark that the cases a = 0, 12 were considered earlier.
Case a > 0, t = 2a. This implies sinω = sin(2θ). The curve is given by

Ea,2a : Y 2 = X3 + 4a(a− 1)(a2 + 3a + 6)X2 + 128a2(1 − a)X,

which is nonsingular since a �= 0, ±1.
Assuming that a �= 0, ±1, the point Pa,2a = (16a, 32a2(1 + a)) has infinite order for 

a �= 1
4 , 

1
2 .

The case a = 1
2 was considered earlier.

When a = 1
4 , we have 2θ = ω = sin−1(

√
15/8). E 1

4 ,
1
2
(Q) has positive rank, with a 

point (24, 105) of infinite order, unrelated to P 1
4 ,

1
2
. This point leads to infinitely many 

solutions. We remark that 4(24, 105) satisfies the conditions of Theorem 1.
Case a < 0, t = −2a. This happens when sinω = − sin(2θ). The curve is given by

Ea,−2a : Y 2 = X3 + 4a(a + 3)(a2 − a + 2)X2 + 128a2(1 − a)X,

which is nonsingular since a �= 0, ±1.
Assuming that a �= 0, ±1, the point Pa,−2a = (−16a, 32a2(1 + a)) has infinite order 

for a �= −1
4 , 

1
2 . We discard the value a = 1

2 because we require that a < 0 as 0 < t.
When a = −1

4 , we have ω = sin−1(
√

15/8) and θ = π−ω
2 . Also E− 1

4 ,
1
2
(Q) ∼= Z/6Z, 

generated by 
(5 , 15), where 2 

( 5 , 15) = P− 1 , 1 . This only leads to degenerate solutions.
2 16 2 16 4 2
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4. The group of rational points of Ea,t

In this section we consider the group Ea,t(Q) in generality. First we consider the 
torsion group and show that all the possible groups with a subgroup of order 2 are 
realized as torsion groups for certain values of a, t ∈ Q. Then we consider the free part 
and show that the elliptic surface Ea(Q(t)) (where a is a parameter taking a specific 
value and t is kept as a variable) has rank 1 and that Pa(t) is a generator. We do this 
by considering Ea(C(t)). By a theorem of Silverman, this implies that Ea,t(Q) has rank 
at least 1 for all but finitely many values of t.

4.1. The torsion group

By Mazur’s Theorem, there are 15 possibilities for the torsion group of an elliptic curve 
over Q. Since Ea,t has always the point (0, 0) of order two, this leaves 10 possibilities. 
By the work from Section 3, we know that the groups Z/6Z, Z/8Z, Z/4Z × Z/2Z, 
Z/6Z ×Z/2Z are all realized as Ea,t(Q)tor for particular choices of a, t ∈ Q.

It remains to see the cases Z/2Z, Z/4Z, Z/10Z, Z/12Z, Z/2Z ×Z/2Z, and Z/8Z ×
Z/2Z. We will see that these groups all appear as Ea,t(Q)tor.

A method to find these cases consists of imposing different conditions for the order 
of Pa,t. For example, we get that 3Pa,t = O iff t = 1

2 , 4Pa,t = O iff t = 2
3−a , etc. 

Some conditions are impossible. For example, we can not find a, t ∈ Q such that Pa,t =
O, (0, 0) or 2Pa,t = (0, 0). This implies that we can not have Ea,t(Q) ∼= Z/2Z, Z/4Z or 
Z/2Z × Z/2Z as a whole group (with rank zero). For the other cases, however, we can 
exhibit examples with rank zero.

We have gathered the examples in the following table.

(a, t) Ea,t(Q)tor torsion generators rk(Ea,t(Q))(
0, 1

3
)

Z/2Z 〈(0, 0)〉 > 0( 47
72 , 1

)
Z/4Z 〈

( 10
3 , 35

108
)
〉 > 0( 1

4 ,
2
9
)

Z/10Z 〈P 1
4
, 2

9
+ (0, 0)〉 0( 7

8 ,
4
3
)

Z/12Z 〈P 7
8
, 4

3
〉 0( 11

21 ,
7
8
)

Z/2Z× Z/2Z 〈(3, 0) , (0, 0)〉 > 0( 17
18 , 3

)
Z/8Z× Z/2Z 〈P 17

18
,3,

(
− 9

4 , 0
)
〉 0

4.2. The structure of Ea(C(t))

In this section we fix the value of a and think of Ea as an elliptic surface over Q(t). 
Thus consider the following elliptic surface over Q(t),

Ea : Y 2 =X3 + t((1 + a)2t + 4(a− 3))X2 + 32(1 − a)t2X,
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with discriminant

Δa = 214(1 − a)2(1 + a)2t6((1 + a)2t2 + 8(a− 3)t + 16)

and a point

Pa = (8t, 8(1 + a)t2),

which is generically of infinite order by Lemma 5.
Recall that |a| < 1 and a ∈ Q, so that Δa �= 0 and also its quadratic factor has two 

different roots t = σ± over C.

Theorem 7. Let a be such that Δa �= 0. The Mordell–Weil rank of the elliptic surface Ea

over C(t) is 1 and Pa is a generator. In addition, Ea(C(t))tor = 〈(0, 0)〉 ∼= Z/2Z.

Proof. Since the coefficients a2 and a4 of the Weierstrass form Ea are polynomials of 
degree two in t, Ea is a rational elliptic surface (see [22], 4.10 or [21], 5.13). Moreover, 
the Euler characteristic is χ(Ea) = 1 ([22], 8.3) and the rank and the discriminant of the 
Néron–Severi lattice are ρ(Ea) = 10 and disc NS(Ea) = −1 ([22], 8.8).

The singularities of Ea are at t = 0, t = ∞, and at the roots σ± of (a + 1)2t2 + 8(a −
3)t +16. By applying Tate’s algorithm ([25], IV.9) the singularity at t = 0 has type I∗0 in 
the Kodaira classification, the singularity at t = ∞ has type I4, and the singularities at 
t = σ± have type I1. By the Shioda–Tate formula ([23], Corollary 1.5 or [22], Corollary 
6.13), we have

ρ(Ea) = rkEa(C(t)) + 2 +
∑

(mv − 1), (5)

where mv is the number of components of the corresponding singular fiber. We have 
mv = n if the type is In and mv = 5 if the type is I∗0 . In our case,

10 = ρ(Ea) = rkEa(C(t)) + 2 + (5 − 1) + (4 − 1) + 2 · (1 − 1) = rkEa(C(t)) + 9.

We then conclude that rkEa(C(t)) = 1.
Recall that (0, 0) is a torsion point of order two. The points of order 2 besides (0, 0)

satisfy

X = t

2

(
−
(
(1 + a)2t + 4(a− 3)

)
± (a + 1)

√
((a + 1)t + 4)2 − 32t

)
.

We see that there are no other generic points over C(t) of order 2.
By Table (4.5) in p. 264 of [17], Ea(C(t))tor is isomorphic to either Z/2Z or Z/4Z

(because in our case the rank of the Mordell–Weil group is R = 1 and the Euler charac-
teristic is χ = 1).
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Let P = (x, y) be such that 2P = (0, 0). Then we have

x(2P ) = 0 = x4 − 26(1 − a)t2x2 + 210(1 − a)2t4

y2 =
(
x2 − 25(1 − a)t2

y

)2

.

By setting a = 1 −2k2, we get that x = ±8kt. Hence y2 = 256(1 ∓k)2k2t3
(
(1 ± k)2t− 2

)
which is not a square in C(t). Therefore we get that Ea(C(t))tor = Z/2Z.

By formula (22) in 11.10 of [22], we have

|disc NS(Ea)| = |discT (Ea) · disc MWL(Ea)|
|Ea(C(t))tor|2

, (6)

where MWL(Ea) is the Mordell–Weil lattice and T (Ea) is the trivial lattice.
Since discNS(Ea) = −1, the rank of MWL(Ea) is 1, and |E(C(t))tor| = 2, the above 

formula becomes

1 = discT (Ea) · h(R)
4 ,

where R is a generator for the infinite section.
By Definition 7.3 from [24],

discT (Ea) =
∏
v

m(1)
v , (7)

where m(1)
v is the number of simple components of the corresponding singular fiber. We 

have m(1)
v = n if the type is In and m(1)

v = 4 if the type is I∗0 . We thus get

discT (Ea) = 16.

Therefore we conclude that

h(R) = 1
4 .

Our goal is to prove that Pa is a generator of Ea(C(t)). We will do this by showing 
that its height is exactly 1

4 .
By the explicit formula for the height ([22], Section 11.8), for any section P ∈ Ea(C(t))

we have

h(P ) = 2χ(Ea) + 2P ·O −
∑
v

contrv(P ). (8)

We remark that Pa never intersects the zero section O = [0 : 1 : 0] (for t finite, this is 
clear, and we will soon see that Pa becomes the point (8s, 8s(1 + a)) upon the change 
s = 1 and therefore there is no intersection at infinity either). Therefore Pa ·O = 0.
t
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By looking at Table 4 in Section 11.9 of [22], we get that contrv(Pa) = 1 for I∗0
(corresponding to t = 0), and contrv(Pa) = 0 for I1 (corresponding to t = σ±). It 
remains to compute the correction term for t = ∞. In order to do this, consider the 
change s = 1

t , Y
′ = s3Y , X ′ = s2X, we have

Y ′ 2 = X ′ 3 + (4(a− 3)s + (1 + a)2)X ′ 2 + 32(1 − a)s2X ′, (9)

and the section Pa becomes

Pa = (8s, 8(1 + a)s).

We need the following result.

Theorem 8 (Néron [18]). Let Es be an elliptic curve defined over C[s] given by a Weier-
strass model, and denote by v the s-adic valuation. Suppose that E0 has a double point 
with distinct tangents and v(j(Es)) = −m < 0 (this happens if and only if E0 is singular 
of type Im). Then, for every integer l > m/2, there exists a Weierstrass model Es deduced 
from Es by a transformation of the form

X = x + qz,

Y = y + ux + rz,

Z = z,

with q, r, u ∈ C[s]. The Weierstrass model Es is given by

Y 2Z + λXY Z + μY Z2 = X3 + αX2Z + βXZ2 + γZ3, (10)

with coefficients satisfying

v(λ2 + 4α) = 0, v(μ) ≥ l, v(β) ≥ l, v(γ) = m, and v(j(Es)) = −m. (11)

We follow the exposition of [1,2]. A singular fiber of type Im over s = 0 is composed 
by nonsingular rational curves Θ0,0, Θ0,1, . . . , Θ0,m−1. When m = 2h, the configuration 
of these curves can be found in (P 2)h with a point [X : Y : Z] ∈ Ea over s = 0
corresponding to the point

[X : Y : Z(1)] × [X : Y : Z(2)] × · · · × [X : Y : Z(h)] ∈ (P 2)h,

where [X : Y : Z(i+1)] = [X : Y : sZ(i)].
If [X : Y : Z] satisfies equation (10), then [X : Y : Z(1)] satisfies equation

Y 2Z(1) +λXY Z(1) +(μ/s)Y (Z(1))2 = sX3 +αX2Z(1) +(β/s)X(Z(1))2 +(γ/s2)(Z(1))3.
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Under conditions (11) together with m = 2h ≥ 4, the equation above simplifies upon 
evaluation at s = 0 to

Z(1)(Y 2 + λ0XY − α0X
2) = 0,

where the subscript 0 indicates evaluation at s = 0.
We remark that in our case λ = 0 and therefore the equation above becomes

Z(1)(Y − νX)(Y + νX) = 0,

where α0 = ν2.
The components that will be relevant for us are given by

Θ0,0 =[X : Y : 0] × · · · × [X : Y : 0],

Θ0,1 =[X : νX : Z] × [1 : ν : 0] × · · · × [1 : ν : 0].

Back to equation (9), we make the change of variables X ′ = X1
(a+1)2 + 16(a−1)s2

(a+1)2 , 
Y ′ = Y1

(a+1)3 and rewrite in projective coordinates:

Y 2
1 Z =X3

1 + (48(a− 1)s2 + 4(a− 3)(a + 1)2s + (a + 1)4)X2
1Z

+ 128(a− 1)s3(6(a− 1)s + (a− 3)(a + 1)2)X1Z
2

+ 256(a− 1)2s4(16(a− 1)s2 + 4(a− 3)(a + 1)2s− (a + 1)4)Z3.

It is straightforward to check that the above Weierstrass form satisfies the conditions of 
Theorem 8.

Thus, making the change Z(1) = sZ, we obtain that [X1 : Y1 : Z(1)] satisfies

Z(1)(Y1 − (a + 1)2X1)(Y1 + (a + 1)2X1) = 0 at s = 0. (12)

The same change of variables applied to the section Pa gives in [X1 : Y1 : Z] coordi-
nates,

[
8(1 + a)2s− 16(a− 1)s2 : 8(1 + a)4s : 1

]
,

and in [X1 : Y1 : Z(1)] coordinates,

[
8(1 + a)2 − 16(a− 1)s : 8(1 + a)4 : 1

]
.

This corresponds to [8(1 + a)2 : 8(1 + a)4 : 1] in the conic (12) and indicates intersection 
with Θ0,1.

Therefore, according to the Table 4 in Section 11.9 of [22], contr∞(Pa) = 1·3
4 = 3

4 . 
Back to equation (8), we have
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Fig. 3. Construction of τ = sin(ω/2)
sin(ω/2+θ) .

h(Pa) = 2 · 1 + 2 · 0 − 1 − 2 · 0 − 3
4 = 1

4 .

Therefore Pa is a generator for the Mordell–Weil group of the surface.

Since Ea(Q(t)) ⊂ Ea(C(t)), and Pa(t), (0, 0) are also defined over Q(t), we deduce 
the same conclusions of Theorem 7 for Ea(Q(t)).

Silverman’s Specialization Theorem ([25], Theorem 11.4) tells us that for all but 
finitely many values of t the rank of Ea,t(Q) is greater than or equal to that of Ea(Q(t)). 
We then conclude that

rkEa,t(Q) ≥ 1

for all but finitely many values of t.
We finish this section by mentioning that a similar analysis can be made by fixing the 

value of t and thinking of Et as an rational elliptic surface over C(a). It can be proven, 
for instance, that the Mordell–Weil rank is again 1. This approach is less natural from 
the context of our geometric problem, therefore we do not include the discussion here.

5. Proof of Theorem 2

In this section we impose the additional restriction that cosω ∈ Q. Following an 
idea similar to what is done in the right-triangle case, where both sinω and cosω are 
parametrized in terms of tan(ω/2) and tan(ω/2) is required to be rational, consider a 
triangle ABC with angles θ and ω at A and B respectively, take the bisector of ω which 
crosses the side AC at B′ and consider the quotient τ = |AB′|

|AB| (see Fig. 3). By the law 
of sines,

τ = sin(ω/2)
sin(ω/2 + θ) .

By the law of cosines,

|BB′|2 = |AB′|2 + |AB|2 − 2a|AB′||AB| ⇒ |BB′|2
|AB|2 = τ2 + 1 − 2aτ,

and
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|AB′|2 =|BB′|2 + |AB|2 − 2 cos(ω/2)|BB′||AB|

⇒ τ2 = |BB′|2
|AB|2 + 1 − 2 cos(ω/2) |BB′|

|AB| .

Combining the above equations, we get,

cos(ω/2) = 1 − aτ√
τ2 − 2aτ + 1

.

Therefore,

sinω = 2
√

1 − a2τ(1 − aτ)
τ2 − 2aτ + 1 , cosω = (2a2 − 1)τ2 − 2aτ + 1

τ2 − 2aτ + 1 .

Notice that we have |a| < 1 as before. The fact that ω
2 < π

2 implies that aτ < 1 and 
2aτ < τ2 + 1 (so that cos(ω/2) is a positive real number). Since sinω is positive, τ > 0.

Before we continue, we remark that we could have parametrized the rational solutions 
to the equation

(1 − a2)x2 + y2 = z2.

This leads to

sinω = 2
√

1 − a2λ

λ2 + 1 − a2 , cosω = λ2 − 1 + a2

λ2 + 1 − a2 .

Notice that the change of variables

λ = 1 − aτ

τ

allows us to go between both formulations. Indeed, this implies that

λ = tan(ω/2) sin θ.

We will continue with the formulation with τ because it is more meaningful from the 
geometric point of view.1

Proposition 9. Let a, τ ∈ Q, |a| < 1, such that 0 < τ , aτ < 1, and 2aτ < τ2 + 1. If the 
elliptic curve

1 Another reason to work with τ is that the coefficients in the elliptic curve Fa,τ defined by (13) are 
polynomials of even degree in τ as opposed to the elliptic curve that we would obtain working with λ. 
Having degree even polynomials as coefficients simplifies some of the arguments used in the 2-descent from 
Section 7.



M. Lalín, X. Ma / Journal of Number Theory 202 (2019) 1–26 17
Fa,τ : Y 2 =X3 + τ(1 − aτ)(2(a− 3)(τ2 − 2aτ + 1) + (1 + a)2τ(1 − aτ))X2

+ 8(1 − a)τ2(1 − aτ)2(τ2 − 2aτ + 1)2X (13)

has infinitely many points on Fa,τ (Q) satisfying the conditions

2(1 − a)τ(1 − aτ)(τ2 − 2aτ + 1) < X < 4τ(1 − aτ)(τ2 − 2aτ + 1), (14)

|Y | < (1 + a)τ(1 − aτ)X, (15)

then there exist infinitely many pairs of integral θ-triangle and integral ω-parallelogram 
such that cos θ = a and sin(ω/2)/ sin(ω/2 + θ) = τ with common area and common 
perimeter.

Proof. We have that sin ω
sin θ = 2τ(1−aτ)

τ2−2aτ+1 . With this change of variables, system (1) becomes

{
(n2 −m2)m(n− am) = 2τ(1−aτ)

τ2−2aτ+1pq,

(n− am)(n + m) = p + q.

Combining the equations above,

(n− am)2(n + m)2 − 4τ
2 − 2aτ + 1
2τ(1 − aτ) (n2 −m2)m(n− am) = (p + q)2 − 4pq = (p− q)2.

By considering the change of variables

{
Y = 2(1 − a2)τ2(1 − aτ)2(τ2 − 2aτ + 1) p−q

(n−am)2 ,

X = 2(1 − a)τ(1 − aτ)(τ2 − 2aτ + 1) n+m
n−am ,

we obtain the Weierstrass form (13).
Now given a point (X, Y ) ∈ Fa,τ (Q), we can take

{
x = X(1 − a2)(4τ(1 − aτ)(τ2 − 2aτ + 1) −X),

y = 4(1 − a2)τ(1 − aτ)(τ2 − 2aτ + 1)(X − 2(1 − a)τ(1 − aτ)(τ2 − 2aτ + 1)),

and

p, q = (1 − a2)(τ2 − 2aτ + 1)((a + 1)τ(1 − aτ)X ± Y ).

Recall that we have the conditions |a| < 1, 0 < τ , aτ < 1 and 2aτ < τ2 + 1. In 
addition, for the solution to have geometric meaning we need x, y, p, q > 0. This happens 
if

|Y | < (1 + a)τ(1 − aτ)X, 0 < X(4τ(1 − aτ)(τ2 − 2aτ + 1) −X),
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and

2(1 − a)τ(1 − aτ)
(
τ2 − 2aτ + 1

)
< X.

These restrictions can be condensed as conditions (14) and (15).

Lemma 10. For a given a ∈ Q with |a| �= 1,

Qa,τ = (4τ(1 − aτ)(τ2 − 2aτ + 1), 4(1 + a)τ2(1 − aτ)2(τ2 − 2aτ + 1))

is a point of infinite order in Fa,τ for almost every τ . In particular, Fa,τ has positive 
rank for all but finitely many τ ∈ Q.

Proof. The discriminant of Fa,τ is given by

Δa,τ =210(a− 1)2(a + 1)2τ6(aτ − 1)6(τ2 − 2aτ + 1)4

×
[
(a4 + 2a3 − 3a2 + 12a + 4)τ4 + 2(3a3 − 14a2 − 7a− 6)τ3

+ (5a2 + 38a + 9)τ2 − 12(a + 1)τ + 4
]
.

We have an elliptic curve as long as a �= ±1 and τ is not a root of the discriminant.
The point Qa,τ can be found by numerical experimentation. We also have the point 

(0, 0) of order 2. It can be proven that Qa,τ has infinite order by computing kQa,τ and 
kQa,τ + (0, 0) for k = 1, . . . , 4 as it was done in Lemma 5.

Proof of Theorem 2. This proof uses Theorem 6 and follows the same lines as the proof 
of Theorem 1.

One can consider particular cases for Fa,τ in the same way as we considered particular 
cases of Ea,t. However, they are all included in the cases discussed in Section 3, so we 
will not provide the details here. One can also search for examples with all the possible 
torsion groups as done in Subsection 4.1. The methods are the same, so we will not 
repeat them here.

6. The rank of Fa(C(τ))

The treatments of Fa(C(τ)) and Fa(Q(τ)) are different from that of Ea(C(t)). While 
Ea is a rational elliptic surface, Fa is a K3-surface, and the bound for the rank of the 
Néron–Severi lattice ρ is less optimal. The motivation for considering the elliptic surfaces 
is, as in Section 4.2, the application of Silverman’s Specialization Theorem that gives a 
lower bound for the rank of Fa,τ (Q) for all but finitely many values of τ provided that 
we know the rank of Fa(Q(τ)). In this section, we will consider the structure over C(τ). 
We will discuss the structure over Q(τ) in the next section.
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We consider

Fa : Y 2 =X3 + τ(1 − aτ)(2(a− 3)(τ2 − 2aτ + 1) + (1 + a)2τ(1 − aτ))X2

+ 8(1 − a)τ2(1 − aτ)2(τ2 − 2aτ + 1)2X,

with discriminant

Δa =210(a− 1)2(a + 1)2τ6(aτ − 1)6(τ2 − 2aτ + 1)4

×
[
(a4 + 2a3 − 3a2 + 12a + 4)τ4 + 2(3a3 − 14a2 − 7a− 6)τ3

+ (5a2 + 38a + 9)τ2 − 12(a + 1)τ + 4
]
,

and a point

Qa = (4τ(1 − aτ)(τ2 − 2aτ + 1), 4(1 + a)τ2(1 − aτ)2(τ2 − 2aτ + 1)),

which is generically of infinite order.
Recall that |a| < 1 so that Δa �= 0 except for finitely many values of τ . The coefficients 

a2 and a4 of Fa are polynomials in τ of degrees 4 and 8 respectively (3 and 6 for a = 0). 
By Section 4.10 in [22] (or 5.13 in [21]), we have an elliptic K3-surface.

Moreover, the Euler characteristic is χ(Fa) = 2 by the discussion in Sections 5.12 and 
5.13 of [21], and the rank of the Néron–Severi lattice satisfies ρ(Fa) ≤ 20 ([22], 13.1).

The singularities of Fa are at τ = 0, τ = ∞, τ = 1
a , the roots of τ2 − 2aτ + 1 and 

the roots of the remaining polynomial factor of Δa that has degree 4 in both τ and a. 
Assume first that a �= 0. For τ = 0 and τ = 1

a , we get singularities of type I∗0 . For τ = ∞, 
the type is I0 and is therefore nonsingular. For the roots of τ2 − 2aτ + 1 the type is I4. 
For the other roots the type is I1. By Shioda–Tate formula,

ρ(Fa) = rkFa(C(τ)) + 2 + 2(5 − 1) + 2(4 − 1) + 4 · (1 − 1) = rkFa(C(τ)) + 16,

and the rank rkFa(C(τ)) is bounded by 4.
When a = 0 the singularity at τ = ∞ is of type I∗0 and the same bound applies.
Later in Section 7 we will see that the rank of F 1

2
(Q(τ)) is 1 and that the rank of the 

elliptic threefold F (Q(a, τ)) is 1.
Formula (6) implies

|disc NS(Fa)| = |discT (Fa) · discMWL(Fa)|
|Fa(C(t))tor|2

. (16)

By a similar argument to the one for Ea, one can see that there are no points of order 
2 over C(t) other than (0, 0) and one can also see that (0, 0) can not be written as 2P
or 3P over C(t). By Table (4.5) in p. 264 of [17], we get that Fa(C(t))tor ∼= Z/2Z.
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Equation (7) implies

discT (Fa) = 64.

Therefore equation (16) becomes

|disc NS(Fa)| = 16|discMWL(Fa)|.

Notice that we have a morphism

ϕ : P 1 → P 1

[τ : 1] → [2τ(1 − aτ) : τ2 − 2aτ + 1]

yielding a base change

Fa → Ea

[X : Y : Z] →
[(

2
τ2 − 2aτ + 1

)2

X :
(

2
τ2 − 2aτ + 1

)3

Y : Z
]
,

which in particular sends Qa(τ) to Pa(t).
By Proposition 11.14 of [22], since degϕ = 2,

h(Qa) = 2h(Pa) = 1
2 .

If we assume that ρ(Fa) = 1, then |disc MWL(Fa)| is given by h(R), where R is a 
generator, and 1

2 = h(Qa) = n2h(R). However, since |discNS(Fa)| is an integer, then 
16h(R) ∈ Z, and 8

n2 ∈ Z. This means that n = 1 or n = 2. One can then show that it is 
not possible to write Qa(τ) = 2P in C(τ) and from that one can conclude that Qa(τ) is 
a generator for Fa(C(τ)).

We close this section by mentioning that another possible direction of study would be 
to directly consider the elliptic threefold F (C(a, τ)). Indeed, in this case, a Shioda–Tate 
formula was given by Wazir ([28], Corollary 3.2).

7. The ranks of F (Q(τ, a)) and of Fa(Q(τ))

Because our study of the structure of Fa(C(τ)) was not entirely conclusive since we 
could not completely determine rkFa(C(τ)), we will directly discuss Fa(Q(τ)) here.

We will use the method of the 2-descent to determine the 2-Selmer group over Q(τ)
in a similar construction to the one described by Bremner in Section 3.2 of [4], which is 
based on Lemma 8 of [3].

In general, let F : y2 = x(x2+ax +b) with b, a2−4b �= 0 be an elliptic curve over a field 
K (char(K) �= 2) with a K-rational point of order 2. Let F̂ : ŷ2 = x̂(x̂2−2ax̂+(a2−4b)), 
also an elliptic curve. We have the degree 2 isogenies φ and φ̂
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F
φ→ F̂

φ̂→ F,

given by φ, φ̂ : (0, 0), O → O and for x, ̂x �= 0,

φ(x, y) =
(
y2

x2 ,
y(b− x2)

x2

)
, φ̂(x̂, ŷ) =

(
ŷ2

4x̂2 ,
ŷ((a2 − 4b) − x̂2)

8x̂2

)

and such that φ ◦ φ̂ corresponds to multiplication by 2 in F . Then one can use 
F̂ (K)/φ(F )(K) and F (K)/φ̂(F̂ )(K) to find generators for F (K)/2F (K). The points 
of F̂ (K)/φ(F )(K) correspond to classes δ ∈ K∗/(K∗)2 such that the equation

δT 2 = δ2R4 − 2aδR2S2 + (a2 − 4b)S4, (17)

has a nontrivial solution (T, R, S) (and this corresponds to the point x̂ = δR2

S2 , ŷ = δRT
S3

in F̂ ) and those of F (K)/φ̂(F )(K) correspond to classes δ ∈ K∗/(K∗)2 giving nontrivial 
solutions to

δT 2 = δ2R4 + aδR2S2 + bS4. (18)

Of course in general the quartics (17), (18) are not expected to satisfy the local-global 
principle. If they have local solutions everywhere without having global solutions they 
give rise to points in the 2-Selmer group rather than F (K)/2F (K).

In our case, we have to investigate the following equations

δT 2 =δ2R4 − 2δτ(1 − aτ)(2(a− 3)(τ2 − 2aτ + 1) + (1 + a)2τ(1 − aτ))R2S2

+ (a + 1)2τ2(1 − aτ)2
[
(a4 + 2a3 − 3a2 + 12a + 4)τ4

+ 2(3a3 − 14a2 − 7a− 6)τ3 + (5a2 + 38a + 9)τ2 − 12(a + 1)τ + 4
]
S4, (19)

δT 2 =δ2R4 + δτ(1 − aτ)(2(a− 3)(τ2 − 2aτ + 1) + (1 + a)2τ(1 − aτ))R2S2

+ 8(1 − a)τ2(1 − aτ)2(τ2 − 2aτ + 1)2S4, (20)

where δ, R, S, T ∈ Q(τ) (or Q(a, τ) if we keep a as a variable). Without loss of generality, 
we can assume that δ, R, S, T ∈ Z[τ ] (or Z[a, τ ]), δ is square-free, and that (δR, S) = 1. 
It is immediate to see that in this case δ divides the coefficient of S4.

We start by considering first the case of F as the elliptic threefold, namely, we think 
of F as an elliptic curve over Q(a, τ).

Theorem 11. The rank of F (Q(a, τ)) is 1 and its Mordell–Weil group is generated by the 
point Q(a, τ).

Proof. Consider equation (19). Then δ | (a +1)τ(1 − aτ)Φ, where Φ = (a4 +2a3 − 3a2 +
12a + 4)τ4 + 2(3a3 − 14a2 − 7a − 6)τ3 + (5a2 + 38a + 9)τ2 − 12(a + 1)τ + 4.
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By reducing modulo τ , we obtain that

δT 2 ≡ δ2R4 mod (τ).

Therefore, δ ≡ � mod (τ) (δ is a square modulo τ), or τ divides both R and T . Writing 
T = T1τ , dividing the equation by τ2, and reducing modulo τ again, we have

δT 2
1 ≡ 4S4 mod (τ).

This implies again that δ ≡ � mod (τ) or τ | S, but this last condition is a contradiction 
since (δR, S) = 1. Thus, we conclude that δ ≡ � mod (τ).

Now equation (19) can also be written as

δT 2 =(δR2 − τ(1 − aτ)(2(a− 3)(τ2 − 2aτ + 1) + (1 + a)2τ(1 − aτ))S2)2

− 32(1 − a)τ2(1 − aτ)2(τ2 − 2aτ + 1)2S4.

Assume that degτ (δ) is odd. Then the right-hand side has to have odd degree and this can 
only happen if there is some cancelation. The term involving R inside the parenthesis has 
odd degree, while the term involving S has even degree. Therefore, there is no cancelation
inside the parenthesis. By comparing the degree of the other term, the only way to have 
cancelation is that the main coefficients with S cancel each other. The main coefficient 
coming from the parenthesis is a2(a + 3)2(a2 − a + 2)2τ8 while the main coefficient from 
the second term is 32(a − 1)a2τ8, and they do not cancel (another way of seeing this 
property is that the main coefficient of S4 in equation (19) has degree 8 in τ , so there is 
no cancelation involved). Therefore, we get a contradiction and degτ (δ) must be even.

Assume that τ | δ. Then the degree considerations imply that τ(1 − aτ) | δ. From 
this we deduce that τ(1 − aτ) | T . Write δ = δ1τ(1 − aτ), T = T1τ(1 − aτ). Dividing by 
τ2(1 − aτ)2 gives

δ1τ(1 − aτ)T 2
1 =(δ1R2 − (2(a− 3)(τ2 − 2aτ + 1) + (1 + a)2τ(1 − aτ))S2)2

− 32(1 − a)(τ2 − 2aτ + 1)2S4.

Reducing modulo τ we get that 2(1 − a) ≡ � mod (τ) or τ divides S, R, both contradic-
tions.

Therefore, δ = 1 or δ = Φ. These lead to O and (0, 0) in F̂ /φ(F ), which in turn lead 
to O in F/2F .

Now consider equation (20). Then δ | 2(1 − a)τ(1 − aτ)(τ2 + 1 − 2aτ). By reducing 
modulo τ , we obtain that δ ≡ � mod (τ) or 2(1 − a)δ ≡ � mod (τ) as before. The 
equation can also be written as

4δT 2 =
(
2δR2 + τ(1 − aτ)(2(a− 3)(τ2 − 2aτ + 1) + (1 + a)2τ(1 − aτ))S2)2
− (a + 1)2τ2(1 − aτ)2ΦS4.
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As before, we can conclude that degτ (δ) is even.
If τ | δ, then τ(1 − aτ) divides both δ and T . As before, we have,

4δ1τ(1 − aτ)T 2
1 =

(
2δ1R2 + (2(a− 3)(τ2 − 2aτ + 1) + (1 + a)2τ(1 − aτ))S2)2
− (a + 1)2ΦS4.

On the one hand, reduce modulo τ . We obtain

(δ1R2 − 4S2)(δ1R2 + 2(a− 1)S2) ≡ 0 mod (τ).

Since we can not have that τ divides both R and S, we conclude that either δ1 ≡
� mod (τ) or 2(1 − a)δ1 ≡ � mod (τ).

On the other hand, reduce modulo 1 − aτ . We obtain

(
δ1R

2 + 4(1 − τ2)S2) (δ1R2 + 2(1 − a)(1 − τ2)S2) ≡ 0 mod (1 − aτ).

Since we can not have that 1 − aτ divides both R and S, we conclude that either 
(τ2 − 1)δ1 ≡ � mod (1 − aτ) or 2(1 − a)(τ2 − 1)δ1 ≡ � mod (1 − aτ).

Therefore, the possible values for δ are 1, 2(1 − a), τ2 − 2aτ + 1, 2(1 − a)(τ2 − 2aτ +
1), τ(1 − aτ)(τ2 − 2aτ + 1), 2(1 − a)τ(1 − aτ)(τ2 − 2aτ + 1).

Combining both equations we obtain at most 7 elements in F/2F , and F has a point 
of order 2 which is not the double of point. This implies that the rank is at most 1. We 
remark that the point Q(a, τ) comes from the solution δ = τ(1 −aτ)(τ2 − 2aτ +1), with 
R = 2, S = 1, T = 2(1 + a)τ(1 − aτ). Therefore, it is a generator.

Theorem 12. The rank of F 1
2
(Q(τ)) is 1 and its Mordell–Weil group is generated by the 

point Q 1
2
(τ).

Proof. Setting τ = 2σ, equation (19) becomes

δT 2 =δ2R4 − 2δσ(σ − 1)(49σ2 − 29σ + 10)R2S2

+ 9σ2(σ − 1)2(9σ2 − 5σ + 2)(17σ2 − 13σ + 2)S4

=(δR2 − σ(σ − 1)(49σ2 − 29σ + 10)S2)2 − 64σ2(σ − 1)2(4σ2 − 2σ + 1)2S4.

We have that δ | 3σ(σ − 1)(9σ2 − 5σ + 2)(17σ2 − 13σ + 2).
By reducing modulo σ as before, we have that δ ≡ � mod (σ). As in the previous 

case, we can also deduce that deg(δ) must be even.
If σ | δ, then σ(σ − 1) | δ, T . As before, this leads to

δ1(σ − 1)σT 2
1 = (δ1R2 − (49σ2 − 29σ + 10)S2)2 − 64(4σ2 − 2σ + 1)2S4.

Reducing modulo σ, we get,
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(δ1R2 − 2S2)(δ1R2 − 18S2) ≡ 0 mod (σ).

Then we must have that 2δ1 ≡ � mod (σ).
Thus, our options are δ = 1, σ(σ− 1)(9σ2 − 5σ + 2), σ(σ− 1)(17σ2 − 13σ + 2), (9σ2 −

5σ + 2)(17σ2 − 13σ + 2). This gives at most one point of infinite order. Indeed, when 
δ = σ(σ− 1)(9σ2 − 5σ + 2) we obtain the nontrivial solution R = S = 1, T = 8σ(σ− 1), 
which corresponds to the point 2Q 1

2
+ (0, 0), equivalent to (0, 0) in F/2F . The other 

values of δ yield O, (0, 0) and 2Q 1
2
. Therefore we do not obtain points of infinite order 

in this case.
Setting τ = 2σ, equation (20) becomes

δT 2 =δ2R4 + δσ(σ − 1)(49σ2 − 29σ + 10)R2S2 + 16σ2(σ − 1)2(4σ2 − 2σ + 1)2S4

4δT 2 =(2δR2 + σ(σ − 1)(49σ2 − 29σ + 10)S2)2

− 9σ2(σ − 1)2(9σ2 − 5σ + 2)(17σ2 − 13σ + 2)S4.

We have δ | 2σ(σ − 1)(4σ2 − 2σ + 1).
By reducing modulo σ as before, we have that δ ≡ � mod (σ). A similar argument 

reducing modulo σ − 1 leads to δ ≡ � mod (σ − 1). As in the previous case, we obtain 
a contradiction if deg(δ) is odd.

If σ | δ, then σ(σ − 1) | δ, T . As before,

4δ1σ(σ − 1)T 2
1 = (2δ1R2 + (49σ2 − 29σ + 10)S2)2 − 9(9σ2 − 5σ + 2)(17σ2 − 13σ + 2)S4.

On the one hand, reducing modulo σ,

(δ1R2 + 2S2)(δ1R2 + 8S2) ≡ 0 mod (σ)

and we must have −2δ1 ≡ � mod (σ).
On the other hand, evaluating at σ = 1,

(δ1R2 + 6S2)(δ1R2 + 24S2) ≡ 0 mod (σ − 1)

and we must have −6δ1 ≡ � mod (σ − 1).
This implies that δ = 1, −2σ(σ−1)(4σ2−2σ+1). Indeed, δ = 1 produces (0, 0), while 

δ = −2σ(σ − 1)(4σ2 − 2σ + 1) gives the solution R = S = 1, T = 3σ(σ − 1) yielding 
−Q 1

2
+ (0, 0). Thus, we have that Q 1

2
is a generator.

We have tried to prove version of Theorem 12 for a = 0 and a = −1
2 . However, in 

both cases we are only able to bound the rank by 2.
As a final note, this problem could be potentially approached by Nagao’s conjecture 

[19], which predicts that the rank of Fa over Q(τ) can be obtained as a certain limit 
involving a weighted average of the p-coefficients of the L-function associated to the 
fibers. Rosen and Silverman [20] proved this conjecture for rational elliptic surfaces and 
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in general when Tate’s conjecture holds. This includes the case of certain K3-surfaces. 
In fact, the analytic version of Nagao’s conjecture is true for all K3-surfaces defined 
over Q [12]. Numerical experimentation of Nagao’s conjecture seems to support that 
rkFa(Q(τ)) = 1 for a = 0, −1

2 .
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