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In this paper, we deal with the étale cohomology of a 
proper regular arithmetic scheme X with Zp(r) and Qp(r)-
coefficients, where the coefficients are complexes of étale 
sheaves that the author introduced in [SH]. We will prove 
that the étale cohomology of X with Qp(r)-coefficients agrees 
with the Selmer group of Bloch-Kato for any r � dim(X). 
Using this fundamental result, we further discuss an approach 
to the study of zeta values (or residue) at s = r, via the 
étale cohomology with Zp(r)-coefficients, relating Tamagawa 
number conjecture of Bloch-Kato with a zeta value formula. 
As a consequence, we will obtain an unconditional example of 
an arithmetic surface for which the residue of its zeta function 
at s = 2 is computed modulo rational numbers prime to p, for 
infinitely many p’s.
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1. Introduction

Let K be an algebraic number field, and let OK be its integer ring. Let X be a 
regular connected scheme which is proper flat over B := Spec(OK), and such that 
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XK = X ⊗OK
K is geometrically connected over K. We fix a prime number p, and 

assume that

(�) X has good or log smooth reduction at all places v of K dividing p.

In this paper, we give a new approach to the values or residue of the zeta function of X
at integers r � dim(X) using étale cohomology of X with Qp(r) and Zp(r)-coefficients, 
cf. [KCT], [Li2], [Mo], [FM], [FS].

1.1. Selmer groups

Let H1
f (K, V i(r)) be the Selmer group of Bloch-Kato associated with the p-adic Galois 

representation V i(r) := H i(XK , Qp)(r). The first aim of this paper is to relate this group 
with the étale cohomology group H i+1(X, Qp(r)), assuming that r � d := dim(X). Here 
H∗(X, Qp(r)) is defined as

H∗(X,Qp(r)) := Qp ⊗Zp
lim←−−
n�1

H∗(X,Tn(r))

and Tn(r) (n � 1) denotes the complex of étale Z/pnZ-sheaves on X introduced in [SH]
under the assumption that X has good or semi-stable reduction at all places v dividing 
p; we have H∗(X, Tn(r)) ∼= H∗(X[p−1], μ⊗r

pn ) when r > d. See §2 below for details on this 
object under the setting of this paper. The first main result of this paper is the following 
comparison (cf. [FM] Proposition 5.18, [Sa2] Theorem 9.1, §10):

Theorem 1.1. Assume that r � d. Then we have

H i+1(X,Qp(r)) ∼=
{
Qp (when (i, r) = (2d, d)),
H1

f (K,V i(r)) (otherwise).

The key idea of Theorem 1.1 is as follows. By a duality result of Jannsen-Saito-Sato 
[JSS] and the adjunction between RπX/B!(= RπX/B∗) and Rπ!

X/B , we have

RπX/B∗Tn(r)X ∼= RHomB,Z/pnZ(RπX/B!Tn(d− r)X ,Tn(1)B)[2 − 2d] (1.1.1)

in D+(Bét, Z/pnZ) (see Lemma 3.1 below), where the assumption r � d is crucial and 
Tn(d − r)X is a constructible sheaf placed in degree 0 by definition. Using this fact, we 
introduce the following complexes:

H�i(X,Tn(r)) := RHomB,Z/pnZ(τ�2d−2−iRπX/B!Tn(d− r)X ,Tn(1)B)[2 − 2d],

Hi(X,Tn(r)) := RHomB,Z/pnZ(R2d−2−iπX/B!Tn(d− r)X ,Tn(1)B).

By the proper base change theorem for RπX/B!, we have
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Hi(X,Tn(r)) = 0 unless 0 � i � 2d− 2,

and the filtration {H�i(X, Tn(r))}i on the right hand side of (1.1.1) yields a convergent 
spectral sequence

Ea,i
2 = Ha(B,Hi(X,Tn(r))) =⇒ Ha+i(X,Tn(r)).

The E2-terms of this spectral sequence are finite (see Proposition 4.1 below), and we 
obtain the following spectral sequence of finite-dimensional Qp-vector spaces:

Ea,i
2 = Ha(B,Hi(X,Qp(r))) =⇒ Ha+i(X,Qp(r)), (1.1.2)

where

Ha(B,Hi(X,Qp(r))) := Qp ⊗Zp
lim←−−
n�1

Ha(B,Hi(X,Tn(r))).

Concerning the spectral sequence (1.1.2), we will prove

Theorem 1.2 (§6). Assume r � d. Then the Qp-vector space Ea,i
2 is zero, unless a = 1

or (a, i, r) = (3, 2d − 2, d). Consequently, the spectral sequence (1.1.2) degenerates at 
E2-terms. Moreover, we have

E1,i
2

∼= H1
f (K,V i(r))

for any i and r � d, which is zero unless 0 � i � 2d − 2. We have E3,2d−2
2

∼= Qp, if 
r = d.

Theorem 1.1 is a consequence of this result. An important point of Theorem 1.2 is 
the vanishing of E2,i

2 for any i, which we will prove by computing the cohomology of all 
local integer rings with Hi(X, Qp(r))-coefficients and by a local-global argument using a 
Hasse principle of Jannsen [J] p. 337, Theorem 3 (c). As a consequence of the vanishing 
of E2,i

2 (and E3,i
2 with (i, r) �= (2d − 2, d)), we obtain the following result on Galois 

cohomology (cf. [J] p. 317, Conjecture 1, p. 349, Question 2, [Fl2] §3, [Ki1] 1.1.7, [Li1]
9.1, [So2] Théorème 5):

Corollary 1.3 (Corollary 6.10 (2)). Let S be a finite set of places of K including all places 
which divide p ·∞ or where X has bad reduction. Assume r � d. Then the restriction 
map

H2(GS , V
i(r)) −→

⊕
v∈S

H2(Kv, V
i(r))

is bijective for any (i, r) �= (2d − 2, d), and injective for (i, r) = (2d − 2, d). In particular, 
if r > d or XK has potentially good reduction at all finite places of K, then we have
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H 2(GS , V
i(r)) = 0 for any (i, r) �= (2d− 2, d).

1.2. p-Tate-Shafarevich groups (d = 2)

We assume that X is an arithmetic surface, i.e., d = 2. Put T i := H i(XK , Zp). In 
their paper [BK2] §5, Bloch and Kato introduced a homomorphism

αi,r : H 1(K,T i ⊗Qp/Zp(r))
H1

f (K,T i ⊗Qp/Zp(r))
−→

⊕
v∈P

H 1(Kv, T
i ⊗Qp/Zp(r))

H1
f (Kv, T i ⊗Qp/Zp(r))

, (1.2.1)

where P denotes the set of all places of K, and for each v ∈ P , Kv denotes the local field 
of K at v; H1

f (K, T i ⊗Qp/Zp(r)) (resp. H1
f (Kv, T i ⊗Qp/Zp(r))) denotes the image of 

H 1
f (K, V i(r)) (resp. H1

f (Kv, V i(r))). The cokernel Coker(αi,r) is finite and canonically 
isomorphic to the Pontryagin dual of H2−i(XK , Qp/Zp(2 − r))GK , if i − 2r � −3. They 
also proved that Ker(αi,r) =: III(p)(H i(XK)(r)), the p-Tate-Shafarevich group of the 
motive H i(XK)(r), is finite for the same (i, r). The second main result of this paper 
compares the maps αi,r with p-adic Abel-Jacobi mappings

aji,rp : H i
M (X,Z(r)) ⊗̂Zp −→ H1

f (K,T i−1(r))

assuming r � 2. Here H∗
M (X, Z(r)) denotes the motivic cohomology of X (see §7.1

below), and for an abelian group M , M ⊗̂Zp denotes its p-adic completion lim←−− n M/pn. 
We will calculate the above Abel-Jacobi mapping using the Merkur’ev-Suslin theorem 
[MS] and the Rost-Voevodsky theorem [V1], [V2], which together with Theorem 1.2 will 
play important roles in the following comparison formula:

Theorem 1.4 (§7+Corollary 8.2). Assume r � 2, and that p � 3 or B(R) = ∅. Assume 
further that H3

M (X, Z(r)){p}, the p-primary torsion part of H3
M (X, Z(r)), is finite. Let 

S′ be the set of the finite places of K which divide p or where X has bad reduction. Then 
aji,rp has finite kernel and cokernel for i = 2, 3, and we have

χ(α1,2)
χ(α0,2) =

χ(aj3,2p )
χ(aj2,2p )

· #CH0(X){p}
#Pic(OK){p} ·

∏
v∈S′

e2,1,2
v · e3,0,2

v

e2,0,2
v · e3,1,2

v

(r = 2)

χ(α1,r)
χ(α0,r) ·χ(α2,r) =

χ(aj3,rp )
χ(aj2,rp )

·#H4
M (X,Z(r)){p} ·

∏
v∈S′

e2,1,r
v · e3,0,r

v · e3,2,r
v

e2,0,r
v · e2,2,r

v · e3,1,r
v

(r � 3),

where we put χ(f) := # Coker(f)/# Ker(f) for a homomorphism f : M → N of abelian 
groups with finite kernel and cokernel; for each v ∈ S′ and a = 2, 3, we put

ea,i,rv := #Ha(Bv,H
i(X,Zp(r))), Bv := the completion of B at v.

See Corollary 5.6 (2 ) below for the finiteness of ea,i,rv .
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The finiteness of CH0(X) is due to Bloch [B1], Kato and Saito [KSa]. By the local-
ization theorem of Levine [Le], H i

M (X, Z(r)) is zero for any i > r+2 (see Lemma 7.1 (1) 
below). As natural extensions of these facts, we will prove that H4

M (X, Z(r)){p} is finite 
for any r � 3, and that H i

M (X, Z(r)) is uniquely p-divisible for any i � 5 and r � 3, see 
Propositions 7.5 and 7.6 below. The formulas in Theorem 1.4 are based on these facts 
and results.

1.3. Zeta values modulo rational numbers prime to p (d = 2)

Assuming a weak version of p-Tamagawa number conjecture (see Conjecture 9.1), we 
will relate the formula in Theorem 1.4 with the residue or value at s = r of the zeta 
function

ζ(X, s) :=
∏

x∈X0

1
1 − q−s

x
(qx := #κ(x)),

where the product on the right hand side runs through all closed points of X and con-
verges absolutely for any s with Re(s) > 2 (= d). Recall that ζ(X, s) is meromorphically 
continued to Re(s) > 3/2 and has a simple pole at s = 2, see [Se1].

Theorem 1.5 (Proposition 9.3). Assume r � 2 and the following conditions:

(i) p � r + 2.
(ii) For any v ∈ B0 dividing p, v is absolutely unramified and X has good reduction at 

v.
(iii) A weak p-Tamagawa number conjecture (see Conjecture 9.1 below) holds for the 

motives Hi(XK)(r) with i = 0, 1 (resp. i = 0, 1, 2), if r = 2 (resp. r � 3).

Then H3
M (X, Z(r)){p} is finite, and we have

Res
s=2

ζ(X, s) ≡ Res
s=1

ζK(s) ·
χ(aj3,2p ) ·#CH0(X) ·R0,2

Φ

χ(aj2,2p ) ·#Pic(OK) ·R1,2
Φ

mod Z×
(p) (r = 2)

ζ(X, r) ≡
χ(aj3,rp ) ·#H4

M (X,Z(r)){p} ·R0,r
Φ ·R2,r

Φ

χ(aj2,rp ) ·R1,r
Φ

mod Z×
(p) (r � 3)

where Z(p) denotes the localization of Z at (p). See Conjecture 9.1 below for the definition 
of the number Ri,r

Φ ∈ R×/Z×
(p), which is a p-adic modification of the Beilinson regulator 

of the motive Hi(XK)(r).

This result is deduced from Theorem 1.4 and certain comparison results between the 
alternating products of local terms that appear in Theorem 1.4 with zeta values of the 
closed fibers of X → B, see Theorems 8.4 and 8.5 below. The assumptions (i) and (ii) are 



K. Sato / Journal of Number Theory 227 (2021) 166–234 171
essential in this comparison at present, while the reduction at the closed points v ∈ B0
with v� | p is arbitrary.

Example 1.6. Let K be an imaginary quadratic field, and let E be an elliptic curve over 
K with complex multiplication by the integer ring OK of K. Let D (resp. w) be the 
discriminant of K (resp. the number of roots of unity contained in K). Let X be a 
regular model of E which is proper flat over OK . Let p be a prime number which is 
prime to 6 and good for X in the sense that X has good reduction at each place of K
lying above p. Then we obtain a formula (without assuming any conjectures)

Res
s=2

ζ(X, s) ≡
2π ·χ(aj3,2p ) ·#CH0(X) ·R0,2

Φ

w
√
−D ·χ(aj2,2p ) ·R1,2

Φ
mod Z×

(p)

from Corollary 1.3, Theorem 1.5 and results of Kings [Ki1] Theorem 1.1.5 and Huber-
Kings [HKi] Theorem 1.3.1 (see also [Ki2] Theorems 2.1.3 and 2.2.2). If we assume that 
H i+1

M (X, Z(2)) is a finitely generated abelian group for i = 0, 1, 2, then we have

rankZ H 1
M (X,Z(2)) = 1, rankZ H2

M (X,Z(2)) = 2, #H3
M (X,Z(2)) < ∞

by Theorem 1.2 (and Proposition 7.3, Corollary 7.7 (1) – (3) below), and obtain a stronger 
formula

Res
s=2

ζ(X, s) ≡ 2π ·R0,2
M ·#Ker(reg2,2

D ) ·#CH0(X)√
−D ·#Ker(reg1,2

D ) ·R1,2
M ·#H3

M (X,Z(2))
mod Z[T−1]×

by Theorem 9.6 below, where T denotes the set of all prime numbers which divide 6 or 
which are bad for X; regi+1,2

D for i = 0, 1 denotes the regulator map to the real Deligne 
cohomology with Z(2)-coefficients

regi+1,2
D : H i+1

M (X,Z(2)) −→ H i+1
D (E/R,Z(2)).

For i = 0, 1, Ri,2
M denotes the volume of Coker(regi+1,2

D ) with respect to the same Z-lattice 
of H i

dR(E/K) as used in the definition of Ri,2
Φ .

1.4. Organization of this paper

In §2, we review the definition of the étale complexes Tn(r) on Xét and establish their 
fundamental properties under the setting of this paper. In §3–§4, we further introduce 
the étale complexes H�i(X, Tn(r)) and Hi(X, Tn(r)) on Bét assuming r � d and prove 
some preliminary results on those new complexes. In §5–§6 we will prove Theorems 1.1
and 1.2. In §7, we will compute p-adic cycle class maps and p-adic Abel-Jacobi mappings 
assuming r � d = 2, and then prove the formulas in Theorem 1.4. In §8, we will relate the 
alternating product of local terms in Theorem 1.4 with zeta values of fibers of X → B. 
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Finally in §9, we will relate the formulas in Theorem 1.4 with zeta values assuming a 
weak version of p-Tamagawa number conjecture.

1.5. Notation

Throughout this paper, we fix a prime number p, and put Λn := Z/pnZ.
If p is invertible on a scheme X, we write μpn = μpn,X (n � 1) for the étale sheaf of 

pn-th roots of unity on X, and define a Λn-sheaf Λn(r) = Λn(r)X (r ∈ Z) on Xét as

Λn(r) :=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
μ⊗r
pn (r � 1)

Λn (r = 0)

Hom(Λn(−r), Λn) (r < 0).

(1.5.1)

This notation will be useful mainly in the case that r is negative.
On the other hand, if X is an Fp-scheme, then we write WnΩr

X,log (r � 0, n � 1) 
for the étale subsheaf of the logarithmic part of the Hodge-Witt sheaf WnΩr

X (see [Ill] I 
(1.12.1)). If r < 0, then we define WnΩr

X,log as the zero sheaf. If X is an equi-dimensional 
scheme which is of finite type over a field k of characteristic p, then we write νrX,n for 
the sheaf on Xét defined as the kernel of Kato’s boundary map [KCT]

∂ :
⊕
x∈X0

ix∗WnΩr
x,log −→

⊕
x∈X1

ix∗WnΩr−1
x,log,

where ix : x → X denotes the canonical map for any x ∈ X. If X is smooth over k, then 
we have νrX,n = WnΩr

X,log by Gros-Suwa [GS] and Shiho [Sh].
Unless indicated otherwise, all cohomology groups of schemes are taken over the étale 

topology.

2. Étale coefficients

Let O be a Dedekind ring whose fraction field K has characteristic 0, and let p be a 
prime number. We put

B := Spec(O), B[p−1] := Spec(O[p−1]) and Σ := Spec
(
O
/√

(p)
)
.

Let X be a regular connected scheme which is separated, flat of finite type over B =
Spec(O). For a closed point v ∈ B, we put Bloc

v := Spec(Oloc
v ) and Yv := X ×B v, where 

Oloc
v denotes the localization of O at v. Throughout this paper, we assume

(�1) for any v ∈ Σ, the reduced part (Yv)red of Yv has normal crossings on X and 
the morphism X ×B Bloc

v → Bloc
v is log smooth with respect to the log structure on 

X ×B Bloc
v associated with (Yv)red and that on Bloc

v associated with v.
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See also Remark 2.2 below for a remark on this assumption. We write πX/B : X → B

for the structure morphism, and put d := dim(X), the absolute dimension of X. Let 
Y be the disjoint union of Yv’s for all v ∈ Σ. Let j (resp. ι) be the open immersion 
X[p−1] ↪→ X (resp. closed immersion Y ↪→ X).

In this section, we define a family of complexes of étale sheaves {Tn(r)}n�1,r∈Z on X
and check several fundamental properties of them using the main results of [SS], which 
have been established in [SH] and [Sa2] in the case that X has semi-stable reduction at 
all v ∈ Σ. The coefficients {Tn(r)}n,r play key roles throughout this paper.

2.1. Étale complex Tn(r)

For r � 0, we define a complex Tn(r) = Tn(r)X ∈ Db(Xét, Λn) by the distinguished 
triangle

ι∗ν
r−1
Y,n [−r − 1] g−→ Tn(r) t−→ τ�rRj∗μ

⊗r
pn

σ−→ ι∗ν
r−1
Y,n [−r]. (2.1.1)

See [SH] (3.2.5) and (4.2.1) for the morphism σ. By the same arguments as in [SH]
4.2.2, Tn(r) is concentrated in [0, r], and the pair (Tn(r), t) is unique up to a unique 
isomorphism. For r < 0, we define Tn(r) as

Tn(r) := j!Λn(r).

See (1.5.1) for the definition of the (locally constant) sheaf Λn(r) on (X[p−1])ét.

Lemma 2.1.

(1) If p is invertible in O, then we have Tn(r) ∼= Λn(r) for any r ∈ Z.
(2) Assume that

(�2) any residue field of O of characteristic p is perfect.
Then we have Tn(r) ∼= Rj∗Λn(r) = Rj∗μ

⊗r
pn for any r > d.

Proof. (1) is obvious. We prove (2). Without loss of generality, we may assume that 
O is local and strict henselian. Let k be the residue field of O. Since k is algebraically 
closed by assumption, we have cdp(K) � 1 ([Se2] Chapter I I, §3.3). By this fact and the 
cohomological dimension of affine varieties [SGA4] X.3.2, we have τ�rRj∗μ

⊗r
pn

∼= Rj∗μ
⊗r
pn

for any r � d. On the other hand, we have νr−1
Y,n = 0 for any r > d again because k

is algebraically closed (note that dim(Y ) = d − 1). The assertion follows from these 
facts. �
Remark 2.2. Under (�2) of Lemma 2.1 (2), one does not need the log-smoothness assump-
tion (�1) to define Tn(r) for r > d, but has only to define Tn(r) := Rj∗μ

⊗r
pn . Moreover, 

one can check that all the results in §§2– 6 (resp. in §7) with ‘(r)’ in coefficients (e.g. 
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Tn(r), H∗(X, Tn(r)), H∗(X, Zp(r)), H∗(X, Qp(r)), Zp(r), Qp(r) and V m(r), in particu-
lar, Corollary 6.10) hold true for r > d (resp. r > 2) without the assumption (�1), by 
similar arguments to those in this paper. We will not get into those details, but leave 
them to the reader as exercises to simplify the presentation.

Proposition 2.3 (cf. [SH] 4.2.8). Let O′ be another Dedekind ring which is flat over O, 
and let X ′ be a scheme which is regular and flat of finite type over B′ and satisfies (�1) 
over B′. Let f : X ′ → X be an arbitrary morphism, and let g : X ′[p−1] → X[p−1] be the 
induced morphism. Then for any n � 1 and r ∈ Z, there exists a unique morphism

f � : f∗Tn(r)X −→ Tn(r)X′ in Db(X ′
ét, Λn)

that extends the natural isomorphism g∗Λn(r)X[p−1] ∼= Λn(r)X′[p−1] on X ′[p−1].

Proof. The case r � 0 is obvious. Assume r � 1 and put U1O×
X := Ker

(
O×

X → ι∗O
×
Yred

)
. 

We define a filtration

0 ⊂ U1Rrj∗μ
⊗r
pn ⊂ FRrj∗μ

⊗r
pn ⊂ Rrj∗μ

⊗r
pn

on the sheaf Rrj∗μ
⊗r
pn as

U1Rrj∗μ
⊗r
pn := the subsheaf generated étale locally by symbols of the form

{a, b1, . . . , br−1} with a ∈ U1O×
X and bj ∈ j∗O

×
X[p−1],

FRrj∗μ
⊗r
pn := the subsheaf generated étale locally by U1Rrj∗μ

⊗r
pn and the symbols

{a1, a2, . . . , ar} with aj ∈ O×
X .

We have Rrj∗μ
⊗r
pn /FRrj∗μ

⊗r
pn

∼= ι∗ν
r−1
Y,n by [SS] 1.1 (see also Remark 2.4 below) and the 

same arguments as in [SH] 3.4.2, and hence

H r(Tn(r)) ∼= FRrj∗μ
⊗r
pn . (2.1.2)

The assertion follows from this fact and [SH] 2.1.2 (1). �
Remark 2.4. The assumption in [SS] 1.1 that the base field K contains a primitive p-th 
root of unity can be removed by the following argument due to Kazuya Kato, [KSS]. 
Without loss of generality, we may assume that O is henselian local and that X is an 
affine scheme of the from

X = Spec(O[t0, t1, . . . , td]/(te00 te11 · · · tecc − π))

for some integers 0 � c � d and e0, e1, . . . , ec � 1 and some prime element π ∈ O. Put 
� := p−1

√
π and O′′ := the valuation ring of K(�). There is a finite flat extension of X
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X ′′ = Spec(O′′[T0, T1, . . . , Td]/(T e0
0 T e1

1 · · ·T ec
c −�))

with Ti := p−1
√
ti , which is quasi-log smooth over O′′ and K(�) contains a primitive 

p-th root of unity. Hence [SS] 1.1 is applicable for X ′′, and we obtain the same assertion 
for X by a standard norm argument.

Proposition 2.5 (cf. [SH] 4.3.1). For any r ∈ Z and m, n � 1, there exists a canonical 
distinguished triangle of the following form:

Tn(r)
pm

Tn+m(r) Rm

Tm(r)
δm,n

Tn(r)[1] in Db(Xét).

Here pm (resp. Rm) is a unique morphism that extends the natural inclusion Λn(r) ↪→
Λn+m(r) (resp. the natural surjection Λn+m(r) � Λm(r)) on (X[p−1])ét and satisfies

pm ◦ Rm = “×pm” : Λn+m(r) −→ Λn+m(r)

The arrow δm,n is a canonical morphism which extends the Bockstein morphism Λm(r) →
Λn(r)[1] in Db((X[p−1])ét) associated with the exact sequence 0 → Λn(r) → Λn+m(r) →
Λm(r) → 0.

Proof. On obtains the assertion by repeating the proof of [SH] 4.3.1, using [SS] 1.1 in 
place of [SH] 3.3.7 (1). �
2.2. Purity and duality

Let Z be an integral closed subscheme of Y , and let iZ : Z ↪→ Y and ιZ : Z ↪→ X be 
the natural closed immersions. Put c := codimX(Z). We define the Gysin morphism for 
ιZ as the composite

GysιZ : νr−c
Z,n [−r − c]

GysiZ−→ Ri!Zν
r−1
Y,n [−r − 1] g−→ Rι!ZTn(r) in D+(Zét, Λn). (2.2.1)

See (2.1.1) for g, and [SH] 2.2.1 for GysiZ (see also [Sa1] 2.4.1).

Proposition 2.6.

(1) GysιZ induces an isomorphism νr−c
Z,n [−r − c] ∼= τ�r+cRι!ZTn(r) for any r ∈ Z.

(2) Assume further the condition (�2) of Lemma 2.1 (2 ). Then the above GysιZ is an 
isomorphism for any r � d.

Proof. (1) We obtain the assertion by repeating the proof of [SH] 4.4.7, using [SS] 1.1 
and 4.5 in place of [SH] 3.3.7. More precisely, our task is to prove that

τ�r+c−1Ri!Z(τ�r+1ι
∗Rj∗μ

⊗r
pn ) = 0,
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which is reduced, by a standard argument using [SS] 1.1, to showing the semi-purity of 
Hagihara in our situation:

Rqi!Z(ι∗Rmj∗μ
⊗r
p ) = 0 for any m and q with q � c− 2.

This last vanishing is further reduced to the case that K contains a primitive p-th root 
of unity by the argument in Remark 2.4, and then checked by the arguments in [SH]
A.2.9 and the fact that the sheaf U1Rmj∗μ⊗m

p introduced in the proof of Proposition 2.3
has a finite descending filtration for which each graded quotient is a free (OT )p-modules 
for some irreducible component T of Y , see [SS] 4.5 and the last display in the proof of 
[SS] 4.4.

(2) Under the assumptions, the left arrow in (2.2.1) is an isomorphism by [Sa1]
1.3.2 and 4.3.2. The right arrow in (2.2.1) is an isomorphism as well by the facts 
that τ�rRj∗μ

⊗r
pn

∼= Rj∗μ
⊗r
pn for any r � d (see the proof of Lemma 2.1 (2)) and that 

Rι!Rj∗ = 0. �
Corollary 2.7 (cf. [SH] 4.4.9). For any closed immersion ιZ : Z ↪→ X of codimension 
� r + 1 and any q � 2r + 1, we have Rqι!ZTn(r) = 0.

Proof. One obtains the corollary by the same arguments as in the proof [SH] 4.4.9, using 
Proposition 2.6 (1) in place of [SH] 4.4.7. �

Let x and y be points of X such that y ∈ {x} and such that c := codimX(y) =
codimX(x) + 1. To proceed our preliminaries on the complex Tn(r), we introduce the 
following residue diagram:

H r−c+1(x,Λn(r − c + 1))

Gysιx

∂ H r−c(y, Λn(r − c))

Gysιy

H r+c−1
x (Spec(OX,x),Tn(r)) δ H r+c

y (Spec(OX,y),Tn(r)),

(2.2.2)

where the coefficient Λn(s) = Λn(s)z on a point z denotes the étale complex WnΩs
z,log[−s]

(resp. the étale sheaf defined in (1.5.1)) if ch(z) = p (resp. ch(z) �= p). If ch(z) �= p, then 
the Gysin map Gysιz for ιz : z ↪→ Spec(OX,z) is defined as the cup product with Gabber’s 
cycle class clX(z) ∈ H2c′

z (Spec(OX,z), μ⊗c′

pn ), where c′ := codimX(z). The arrow ∂ denotes 
the boundary map of Galois cohomology [KCT], and δ denotes the connecting map of a 
localization long exact sequence of étale cohomology.

Lemma 2.8. The diagram (2.2.2) is anti-commutative.

Proof. See [JSS] Theorem 3.1.1 for the case ch(y) �= p. The case ch(x) = ch(y) = p

follows from the definition of the Gysin morphism in [SH] 2.2.1. We check the case that 
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ch(x) = 0 and ch(y) = p, using the results in [SH] as follows. Put Z := {y}, the Zariski 
closure of {y} in X. We write RD(X, x, y, r) for the diagram (2.2.2). Since the problem 
is étale local on X, we may assume that X is affine and that X is a closed subscheme of 
an affine space AN

O =: X ′. Let ξ be the generic point of X and put c′ := codimX′(X). 
The diagram RD(X ′, ξ, η, r + c′) is anti-commutative for any generic point η of Y by 
[SH] 6.1.1. Hence there exists a Gysin morphism for i : X ↪→ X ′

Gysi : Tn(r)[−2c′] −→ Ri!Tn(r + c′) in D+(Xét, Λn),

which induces an isomorphism Tn(r)[−2c′] ∼= τ�r+c′Ri!Tn(r+c′), by the same arguments 
as in [SH] §6.3. Moreover, one obtains the transitivity assertion in [SH] 6.3.3 for the closed 
immersions Z ↪→ X ↪→ X ′ by the same arguments as in the proof of [SH] 6.3.3, where 
we have again used the fact that the diagram RD(X ′, ξ, η, r + c′) is anti-commutative 
for any generic point η of Y . Thus the anti-commutativity of RD(X, x, y, r) follows from 
that of RD(X ′, x, y, r + c′) ([SH] 6.1.1) and the purity in Proposition 2.6 (1) for Z ↪→ X

and Z ↪→ X ′. �
The compatibility in Lemma 2.8 plays an important role in the following results:

Proposition 2.9.

(1) Let O′ be another Dedekind ring which is flat of finite type over O, and let X ′ be a 
scheme which is regular and separated flat of finite type over B′ and satisfies (�1) 
over B′. Let f : X ′ → X be an arbitrary morphism, and let ψ : X ′[p−1] → X[p−1] be 
the induced morphism. Put c := dim(X[p−1]) − dim(X ′[p−1]). Then for any n � 1
and r � 0, there exists a unique morphism

trf : Rf!Tn(r − c)X′ [−2c] −→ Tn(r)X in D+(Xét, Λn)

that extends the push-forward map trψ : Rψ!Λn(r − c)[−2c] → Λn(r) on (X[p−1])ét. 
We will often write trX′/X for trf in what follows.

(2) Assume further the condition (�2) of Lemma 2.1 (2 ). Then the adjunction morphism 
of trX/B = trπX/B

is an isomorphism for any r � d:

Tn(r)X [2(d− 1)] ∼= Rπ!
X/BTn(r + 1 − d)B in D+(Xét, Λn).

Proof. If f is a locally closed immersion, the assertion (1) follows from Lemma 2.8, 
see [SH] 6.3.4 (2). One can check (1) in the general case, using [SS] 1.1 and 4.5 and 
the arguments in [SH] §§7.1–7.2; in the step corresponding to [SH] 7.1.2, it is enough 
to consider locally free (OT )p-modules F for each irreducible component T of Y in 
place of ‘locally free (OY )p-modules F ’ (and the assumption on the perfectness of k is 
unnecessary).
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As for the assertion (2) with r = d, see [SH] 7.3.1, where we have used the absolute 
purity [FG] and the duality in [JSS] Theorem 4.6.2. The assertion (2) in the case r > d

directly follows from the absolute purity, Lemma 2.1 (2) and the base change isomor-
phism Rπ!

X/BRjU∗ = Rj∗Rπ!
XU/U

([SGA4] X V I I I.3.1.12.3), where jU denotes the open 
immersion U := B[p−1] ↪→ B. �
Corollary 2.10. Let β : B′ → B be a flat morphism such that B′ is regular of dimension 
� 1 and such that X ′ := X ×B B′ satisfies (�1) over B′. Let α : X ′ → X be the first 
projection. Then the following diagram commutes in D+(B′

ét, Λn) for any r � d − 1:

RπX′/B′!Tn(r)X′ [2(d− 1)]
trX′/B′

Tn(r + 1 − d)B′

β∗RπX/B!Tn(r)X [2(d− 1)]

α∗

β∗trX/B

β∗Tn(r + 1 − d)B .

β∗

Proof. The assertion follows from the uniqueness of the trace morphisms for Tn(r) and 
the base change property in [SGA4] X V I I I.2.9. �
Corollary 2.11.

(1) Assume that O is a strict henselian discrete valuation ring with algebraically closed 
residue field, and let v be the closed point of B. Then there is a trace map

trX,Y : H2d
c (X, ι∗Rι!Tn(d))

trX/B

H2
v(B,Tn(1)) Λn,

Gysιv
�

where ιv : v ↪→ B denotes the closed point of B and the subscript c means the étale 
cohomology with proper support over B. Moreover, for any constructible Λn-sheaf F
on X and any i � 0, the induced pairing

H i
c(X,F ) × Ext2d−i

X,Λn
(F, ι∗Rι!Tn(d)) −→ Λn

is a non-degenerate pairing of finite Λn-modules.
(2) Assume that O is an algebraic integer ring. Then there is a trace map

trX : H 2d+1
c (X,Tn(d))

trX/B

H3
c(B,Tn(1))

trB
� Λn,

where the subscript c means the étale cohomology with compact support (see e.g.
[KCT] §3 ). Moreover, for any constructible Λn-sheaf F on X and any i � 0, the 
induced pairing

H i
c(X,F ) × Ext2d+1−i

X,Λ (F,Tn(d)) −→ Λn
n
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is a non-degenerate pairing of finite Λn-modules.

Proof. (1) By Proposition 2.9 (2) for r = d and the purity in Proposition 2.6 (2), we have 
isomorphisms

Rι!Tn(d) ∼= Rι!Rπ!
X/BTn(1)[−2(d− 1)] = Rπ!

Y/vRι!vTn(1)[−2(d− 1)] ∼= Rπ!
Y/vΛn[−2d].

The assertion follows from this fact and the isomorphisms compatible with Yoneda pair-
ings

H∗
c(X,F ) ∼= H∗

c(Y, ι∗F ), Ext∗X,Λn
(F, ι∗Rι!Tn(d)) ∼= Ext∗Y,Λn

(ι∗F, Rι!Tn(d)),

where we have used the proper base change theorem to obtain the left isomorphism. See 
e.g. [KSc] Chapter I I, Proposition 2.6.4 for the right isomorphism.

(2) The assertion follows from Proposition 2.9 (2) and [JSS] Proposition 2.4.1 (3), 
Corollary 2.5.1. �
Remark 2.12. The push-forward morphism trf in Proposition 2.9 (1) satisfies the projec-
tion formula in [SH] 7.2.4, by the same arguments as in [SH] 7.2.4. See also the proof of 
Proposition 2.9 (1) as to how we modified [SH] 7.1.2 in our situation.

2.3. Cycle class morphism

To construct a cycle class morphism from Bloch’s cycle complex (see (2.3.2) below), 
we formulate a version of Tn(r) with log poles and a purity for this coefficient; see also 
[Z] for a construction assuming Gersten’s conjecture for Bloch’s cycle complex. Let D be 
a reduced normal crossing divisor on X which is flat over B and such that D ∪ Yred also 
has simple normal crossings on X and such that the pair (X, D) is quasi-log smooth over 
B in the sense of [SS] 5.2. We define Tn(r)(X,D) by the following distinguished triangle 
analogous to (2.1.1):

ι∗ν
r−1
(Y,E),n[−r − 1] g−→ Tn(r)(X,D)

t−→ τ�rRψ∗μ
⊗r
pn

(�)−→ ι∗ν
r−1
(Y,E),n[−r], (2.3.1)

where we put E := Yred ∩D and νr−1
(Y,E),n := φ∗ν

r−1
Y �E with φ : Y �E ↪→ Y ; ψ denotes the 

open immersion X � (Y ∪D) ↪→ X. See also [Sa2] 3.5 and 3.6. When D = ∅, we have 
Tn(r)(X,∅) = Tn(r)X . The following propositions concerning the complex Tn(r)(X,D)
play fundamental roles in our construction of cycle class maps.

Proposition 2.13 (cf. [Sa2] 6.5). Let Z be a closed subset of X of codimension � c. Then 
we have

H q
Z(X,Tn(r)(X,D)) ∼=

{
0 (q < r + c)
H r+c (X � D,T (r)) (q = r + c).
Z�D n
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In particular, if Z has pure codimension c on X, then we have

H q
Z(X,Tn(c)(X,D)) ∼=

{
0 (q < 2c)
Λn[Z0

� D] (q = 2c),

where Λn[Z0
� D] means the free Λn-module generated over the set Z0

� D.

Proof. One obtains the assertion by repeating the arguments in the proof of [Sa2] 6.5, 
using [SS] 1.1 and 4.5 (resp. Corollary 2.7 of the previous subsection) in place of [Sa2]
3.3 (resp. [SH] 4.4.9). We do not need to assume the existence of primitive p-th roots of 
unity in K by the argument in Remark 2.4. �
Proposition 2.14 (cf. [Sa2] 4.3). Let E → X be a vector bundle of rank a, and let 
f : P := P (E ⊕ 1) → X be its projective completion. Let P ′ := P (E) the projective 
bundle associated with E, regarded as the infinite hyperplane section of P . Then the 
composite morphism

Tn(r)X −→ Rf∗Tn(r)P −→ Rf∗Tn(r)(P ,P ′)

is an isomorphism in D+(Xét, Λn).

Proof. One can extend the Dold-Thom isomorphism ([Sa2] 4.1) and the distinguished 
triangle in [Sa2] 3.12 to the situation of this section, by repeating the same arguments 
as in the proofs of [Sa2] 4.1 and 3.12, using [SS] 1.1 and 4.5 (note also Remark 2.4 of 
this section). The assertion follows from those facts and Remark 2.12. �

Let Ét/X be the underlying category of X-schemes of the étale site Xét. For a scheme 
U and r � 0, let zr(U, ∗) be Bloch’s cycle complex [B2]. We define a complex Z(r) of 
presheaves on Ét/X by the assignment

Z(r) : U ∈ Ob(Ét/X) �−→ zr(U, ∗)[−2r],

which is in fact a complex of sheaves in the Zariski and the étale topologies. We call Z(r)
the motivic complex of X of weight r. For a closed subset C ⊂ X and U ∈ Ob(Ét/X), 
put CU := C ×X U and let zrCU

(U, q) be the subgroup of zr(U, q) consisting of the cycles 
on U ×Δq of codimension r whose support is contained in CU ×Δq (and which satisfies 
the face condition). The collection {zrCU

(U, q)}q�0 forms a subcomplex of zr(U, ∗), and 
we define a subcomplex Z(r)C⊂X ⊂ Z(r) by the assignment

Z(r)C⊂X : U ∈ Ob(Ét/X) �−→ zrCU
(U, ∗)[−2r].

By Propositions 2.13 and 2.14, Lemma 2.8 and the same arguments as in [Sa2] §7 (see 
also Remark 2.15 below), one obtains a cycle class morphism
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clC⊂X,Λn
: Z(r)C⊂X ⊗ Λn −→ RΓC(X,Tn(r)) in D(Xét, Λn) (2.3.2)

for any r � 0, which yields the cycle class map on hypercohomology groups

clC⊂X,Λn
: H∗

C(XZar,Z(r) ⊗ Λn) −→ H∗
C(X,Tn(r)).

When C = X, the group on the left hand side will be denoted by H∗
M (X, Λn(r)), and the 

map clX,Λn
:= clX⊂X,Λn

will be computed in Lemma 7.1 (3) below under the assumption 
that d = 2.

Remark 2.15. To follow the arguments in [Sa2] §7, we have used the projection formula 
in [SH] Corollary 7.2.4, which has been extended to our situation in Remark 2.12. We 
also need to extend the compatibility fact in [SH] Corollary 6.3.3 to our situation, where 
the push-forward morphism in Proposition 2.9 (1) plays the role of Gysi of [SH] 6.3.3. 
One can easily check the details by Lemma 2.8 and the proof of [SH] 6.3.3.

Let C2 ⊂ C1 be closed subsets of X, and let φ : X ′ := X � C2 ↪→ X be the natural 
open immersion. Put C ′ := C1 � C2. Then the squares in D(Xét, Λn)

Z(r)C2⊂X ⊗ Λn

clC2⊂X,Λn

Z(r)C1⊂X ⊗ Λn

φ�

clC1⊂X,Λn

Rφ∗Z(r)C′⊂X′ ⊗ Λn

clC′⊂X′,Λn

RΓC2
(X,Tn(r)) RΓC1

(X,Tn(r)) Rφ∗RΓC′(X ′,Tn(r))

(2.3.3)

are commutative by the construction of cycle class morphisms. From this commutative 
diagram, one obtains another commutative diagram in D(Xét, Λn)

Rφ∗Z(r)C′⊂X′ ⊗ Λn
δ

clC′⊂X′,Λn

RΓC2
(X,Z(r)C1⊂X ⊗ Λn)[1]

clC2⊂X,Λn

Z(r)C2⊂X ⊗ Λn[1]
γ

clC2⊂X,Λn

Rφ∗RΓC′(X ′,Tn(r)) δ
RΓC2

(X,Tn(r))[1],

(2.3.4)
where the arrows δ are the connecting morphisms of localization triangles (see [SH] 1.9).

Remark 2.16. The arrow γ of (2.3.4) is not an isomorphism, or equivalently, the upper 
row of (2.3.3) does not fit into any distinguished triangle in D(Xét, Λn). If one considers 
localization triangles in the Zariski topology, then the morphism corresponding to γ of 
(2.3.4) is an isomorphism by Levine [Le] Theorem 1.7.
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2.4. Cospecialization and a residue diagram

In this subsection, we consider a residue map and prove its contravariance, which 
will be useful in §5.3 below. We suppose that πX/B : X → B is proper, and that O
is a henselian discrete valuation ring with algebraically closed residue field. Put IK :=
Gal(K/K). By the duality in Corollary 2.11 (1) and the Poincaré duality for XK , the 
cospecialization map

cospX : H i(Y,Λn) ∼= H i(X,Λn) −→ H i(XK , Λn)IK

induces a canonical homomorphism

ResX : H i′(XK , μ⊗d−1
pn )IK −→ H i′+2

Y (X,Tn(d)),

where we put i′ := 2(d − 1) − i.

Proposition 2.17. For any i � 0, the following diagram is anti-commutative:

H1(IK ,H i(XK , μ⊗d
pn )) α

ε

H i(XK , μ⊗d−1
pn )IK

ResX

H i+1(XK , μ⊗d
pn )

δX H i+2
Y (X,Tn(d)),

where the left vertical arrow is an edge map of a Hochschild-Serre spectral sequence, and 
the upper horizontal arrow denotes the composite map

H 1(IK ,H i(XK , μ⊗d
pn )) −→ H 1(IK , μpn) ⊗ H i(XK , μ⊗d−1

pn )IK
∼= K× ⊗ H i(XK , μ⊗d−1

pn )IK
ordK−→ Z⊗ H i(XK , μ⊗d−1

pn )IK .

The bottom horizontal arrow is the connecting map of a localization long exact sequence.

Proof. The following diagram of trace maps and boundary maps are commutative:

H2d−1(XK , μ⊗d
pn )

trX/B

δX

H1(IK , μpn) ∼

δB

K× ⊗ Λn

−ordK

H 2d
Y (X,Tn(d))

trX/B

H 2
v(B,Tn(1))

trB,v

∼ Λn,

where v denotes the closed point of B, and trB,v means trX,Y for (X, Y ) = (B, v)
(see Corollary 2.11 (1)). See Lemma 2.8 for the commutativity of the right square. The 
assertion follows from this commutativity and the following obvious commutative square:
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H0(IK ,H i′(XK , Λn)) H i′(XK , Λn)IK

H i′(XK , Λn) H i′(X,Λn).

The details are straight-forward and left to the reader. �
The following consequence of Proposition 2.17 will be useful later. Let O′ be another 

strict henselian local ring which is flat over O and whose residue field k′ is algebraically 
closed. Let X ′ be a scheme which is regular, proper flat of finite type over B′ and satisfies 
(�1) over B′. Put L := Frac(O′), IL := Gal(L/L) and Y ′ := X ′ ⊗O′ k′. Assume that

dim(X ′) = dim(X) = d

(hence that dim(X ′
L) = dim(XK) = d − 1). Under this setting we obtain:

Corollary 2.18. For any morphism f : X ′ → X and any i � 0, the diagram

H i(X ′
L
, μ⊗d−1

pn )IL

ResX′

H i(XK , μ⊗d−1
pn )IK

f�

ResX

H i+2
Y ′ (X ′,Tn(d)) H i+2

Y (X,Tn(d))
f�

is commutative, that is, the map ResX is contravariant in X.

Proof. In the diagram of Proposition 2.17, the composite map δ ◦ ε is contravariant in 
X by Proposition 2.3, and the map α is surjective by the fact that cd(IK) = 1. The 
corollary follows from these facts and Proposition 2.17. �
3. A filtration on the direct image

Let πX/B : X → B = Spec(O) be as in the beginning of §2. In this section, we assume

(�2) any residue field of O of characteristic p is perfect.

Under this assumption, we introduce objects H∗(X, Tn(r)) of D+(Bét, Λn) for r � d =
dim(X), which play central roles throughout this paper. The étale cohomology of B
with coefficients in these new objects will be related to the étale cohomology of X with 
coefficients in Tn(r) by the spectral sequence (3.1.6) below.
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3.1. Étale complex Hm(X, Tn(r))

Lemma 3.1. For any r � d, we have

RπX/B∗Tn(r) ∼= RHomB,Λn
(RπX/B!Tn(d− r),Tn(1))[2 − 2d] (3.1.1)

in D+(Bét, Λn).

Proof. Since r � d by assumption, there exists a canonical isomorphism

Tn(r) ∼= RHomX,Λn
(Tn(d− r),Tn(d)) in D+(Xét, Λn), (3.1.2)

which is obvious if r = d, and otherwise a consequence of Lemma 2.1 (2) and the adjunc-
tion in [SGA4] X V I I I.3.1.10 for the open immersion X[p−1] ↪→ X. Hence we have

RπX/B∗Tn(r) ∼= RπX/B∗RHomX,Λn
(Tn(d− r), Rπ!

X/BTn(1)[2 − 2d])
∼= RHomB,Λn

(RπX/B!Tn(d− r),Tn(1))[2 − 2d]

in D+(Bét, Λn), by Proposition 2.9 (2) and [SGA4] X V I I I.3.1.10 for πX/B. �
Definition 3.2. For each m ∈ Z, we define

H�m(X,Tn(r)) := RHomB,Λn
(τ�2(d−1)−mRπX/B!Tn(d− r)X ,Tn(1)B)[2 − 2d],

Hm(X,Tn(r)) := RHomB,Λn
(R2(d−1)−mπX/B!Tn(d− r)X ,Tn(1)B),

which are objects of D+(Bét, Λn).

Caution 3.3. Hm(X, Tn(r)) is NOT the sheaf RmπX/B∗Tn(r), but a complex of sheaves.

By Lemma 3.1 and the proper base change theorem (for RπX/B!), we have

H�m(X,Tn(r)) ∼=
{

0 (m � −1)
RπX/B∗Tn(r)X (m � 2(d− 1))

(3.1.3)

Hm(X,Tn(r)) = 0 unless 0 � m � 2(d− 1). (3.1.4)

For any m ∈ Z, we have a natural distinguished triangle of the form

H�m−1(X,Tn(r)) −→ H�m(X,Tn(r)) −→ Hm(X,Tn(r))[−m]

−→ H�m−1(X,Tn(r))[1]. (3.1.5)

The data {H�m(X, Tn(r))}m�2(d−1) form a finite ascending filtration on H�2(d−1)(X,

Tn(r)) ∼= RπX/B∗Tn(r)X , and yield a convergent spectral sequence
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Ea,b
2 = Ha(B,Hb(X,Tn(r))) =⇒ Ha+b(X,Tn(r)). (3.1.6)

To illustrate our complex Hm(X, Tn(r)), we show here the following proposition as-
suming that πX/B is proper. See Proposition 3.6 below for more detailed computations 
without the properness assumption.

Proposition 3.4. Assume that πX/B : X → B is proper and that r � d.

(1) Let U ⊂ B[p−1] be an open subset for which πXU/U : XU = X ×B U → U is smooth
(and proper). Then Hm(X, Tn(r))|U is the locally constant constructible sheaf placed 
in degree 0, associated with Hm(XK , μ⊗r

pn ).
(2) Assume further that the generic fiber XK is geometrically connected over K. Then the 

trace map trX/B : RπX/B∗Tn(r)X [2(d −1)] → Tn(r+1 −d)B induces an isomorphism

H2(d−1)(X,Tn(r)) ∼= Tn(r + 1 − d)B . (3.1.7)

To prove this proposition, we need the following lemma:

Lemma 3.5. Let Z be a scheme and let F be a locally constant constructible Λn-sheaf on 
Zét. Then we have

Hom(F , Λn)x ∼= Hom(Fx, Λn) and ExtqZ,Λn
(F , Λn) = 0 (q � 1).

Proof of Lemma 3.5. Since F is a pseudo-coherent Λn-module on Zét in the sense of 
[Mi1] p. 80, we have

ExtqZ,Λn
(F , Λn)x ∼= ExtqΛn

(Fx, Λn)

for any q � 0 by [Mi1] I I.3.20. The assertions follow from this fact and the fact that Λn

is an injective Λn-module. �
Proof of Proposition 3.4. (1) By definition, we have

Hm(X,Tn(r))|U = RHomU,Λn
(R2(d−1)−mπXU/U∗Λn(d− r), Λn(1)).

Since R2(d−1)−mπXU/U∗Λn(d − r) is locally constant and constructible by the proper 
smooth base change theorem, the object on the right hand side is isomorphic to the 
sheaf

HomU,Λn
(R2(d−1)−mπXU/U∗Λn(d− r), Λn(1))

placed in degree 0, by Lemma 3.5. Then the assertion follows from the Poincaré duality.
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(2) We have

H2(d−1)(X,Tn(r)) = RHomB,Λn
(πX/B∗Tn(d− r)X ,Tn(1)B)

by definition, and πX/B∗Tn(d − r)X ∼= Tn(d − r)B for r � d by the connectedness of the 
geometric fibers. The assertion follows from this fact and Lemma 2.1 (2) for B. �
3.2. Local computations

We investigate here the local structure of Hm(X, Tn(r)) around the closed points on 
B without assuming that πX/B is proper. For a closed point v ∈ B, we often write Yv

(resp. Yv, Xv) for X ×B v (resp. X ×B v, X ×B Bsh
v ), where Bsh

v denotes the spectrum 
of the strict henselization of Ov = OB,v at its maximal ideal.

Proposition 3.6. Let v be a closed point on B, and let q and m be integers. We write ιv
for the closed immersion v ↪→ B and jv for the open immersion B � v ↪→ B. Assume 
r � d. Then

(1) We have Rqι!vH
m(X, Tn(r)) = 0 unless q = 2, and a canonical isomorphism

(R2ι!vH
m(X,Tn(r)))v ∼= Hm+2

Yv
(Xv,Tn(r)).

Moreover, we have Rι!vH
m(X, Tn(r)) = 0, if ch(v) = p and r > d.

(2) We have

(Rqjv∗j
∗
vH

m(X,Tn(r)))v ∼= H q(Iv,Hm(XK , μ⊗r
pn )),

where Iv denotes the inertia subgroup of GK at v. Consequently, we have

Rqjv∗j
∗
vH

m(X,Tn(r)) = 0

unless q = 0 or 1, by the fact that cdp(Iv) = 1 (see [Se2]Chapter I I, §3.3 ).
(3) We have

H q(Hm(X,Tn(r)))v ∼=
{

Hm(XK , μ⊗r
pn )Iv if q = 0

0 if q �= 0, 1 or 2

and an exact sequence

0 −→ H 1(Hm(X,Tn(r)))v −→ H1(Iv,Hm(XK , μ⊗r
pn ))

δ+

−→ Hm+2
Yv

(Xv,Tn(r)) −→ H 2(Hm(X,Tn(r)))v → 0.

Here H q(−) denotes the q-th cohomology sheaf, and δ+ denotes the composite map 
δX ◦ ε in the diagram of Proposition 2.17.
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Proof of Proposition 3.6. (1) By the definition of Hm(X, Tn(r)) in Definition 3.2 and 
the adjunction in [SGA4] X V I I I.3.1.12.2, we have

Rι!vH
m(X,Tn(r)) = Rι!vRHomB,Λn

(R2(d−1)−mπX/B!Tn(d− r)X ,Tn(1)B)
∼= RHomv,Λn

(ι∗vR2(d−1)−mπX/B!Tn(d− r)X , Rι!vTn(1)B) (3.2.1)
∼= RHomv,Λn

(R2(d−1)−mπYv/v!(ι∗Yv
Tn(d− r)X), Λn)[−2],

where ιYv
denotes the closed immersion Yv → X, and we have used the proper base 

change theorem for RπX/B! and the purity in Proposition 2.6 (2) for Tn(1)B in the last 
isomorphism. In particular if ch(v) = p and r > d, then ι∗Yv

Tn(d −r)X is zero by definition 
and we have Rι!vH

m(X, Tn(r)) = 0, which shows the third assertion of (1). If ch(v) �= p

or r = d, then Rι!vH
m(X, Tn(r)) is acyclic outside of degree 2 by (3.2.1) and Lemma 3.5

for Z = v. Moreover, if r = d, then we have

R2ι!vH
m(X,Tn(d))

(3.2.1)∼= Homv,Λn
(R2(d−1)−mπYv/v!Λn, Λn)

∼= H m−2(d−1)(RHomv,Λn
(RπYv/v!Λn, Λn))

∼= H m−2(d−1)(RπYv/v∗Rπ!
Yv/v

Λn)

again by Lemma 3.5 for Z = v and adjunction, and we have

Rπ!
Yv/v

Λn
∼= Rπ!

Yv/v
Rι!vTn(1)B [2] ∼= Rι!Yv

Tn(d)X [2d] (3.2.2)

by the purity in Proposition 2.6 (2) for v ↪→ B and Proposition 2.9 (2). Hence we have

(R2ι!vH
m(X,Tn(d)))v ∼= Hm+2

Yv
(Xv,Tn(d)).

The isomorphism in the case that r > d and ch(v) �= p is similar and left to the reader.
(2) We may assume that B is local with closed point v, without loss of generality. Put 

η := B � v, which is the generic point of B. The sheaf j∗vR2(d−1)−mπX/B!Tn(d − r) is 
locally constant on ηét, and the object

j∗vH
m(X,Tn(r)) = RHomη,Λn

(j∗vR2(d−1)−mπX/B!Tn(d− r), μpn)

is isomorphic to the sheaf (on ηét) associated with Hm(XK , μ⊗r
pn ) placed in degree 0 by 

Lemma 3.5 for Z = η and the Poincaré duality. The assertion follows from this fact.
(3) The assertion follows from Proposition 3.6 (1), (2) and the fact that the stalk at 

v of the connecting homomorphism

δB,B�v : R1jv∗j
∗
vH

m(X,Tn(r)) −→ ιv∗R
2ι!vH

m(X,Tn(r))

agrees with δ+ up to a sign. �
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The following corollary follows from Proposition 3.6 (1) and (3).

Corollary 3.7.

(1) If ch(v) = p and r > d, then Hm(X, Tn(r)) ∼= Rjv∗j
∗
vH

m(X, Tn(r)).
(2) Hm(X, Tn(r)) is concentrated in [0, 2], and RπX/B∗Tn(r) is concentrated in [0, 2d].

3.3. Rigidity

In this subsection, we assume further that O is henselian local with finite residue field. 
Let O′ be the completion of O at its maximal ideal, and put

B′ := Spec(O) and X ′ := X ×B B′.

Let v be the closed point of B′, which we identify with the closed point of B. Let Y ′ be 
the special fiber of πX′/B′ : X ′ → B′, and let Y be the special fiber of πX/B : X → B. 
We have cartesian squares

Y ′

�

X ′

α

πX′/B′

�

B′

β �

v
ιv

Y X
πX/B

B v.
iv

(3.3.1)

We prove here the following preliminary result, where we do not assume that πX/B is 
proper:

Proposition 3.8 (rigidity). For any r � d, there exist canonical isomorphisms

ψ1 : RπX/B∗Tn(r)X
�−→ Rβ∗RπX′/B′∗Tn(r)X′

ψm
2 : H�m(X,Tn(r)) �−→ Rβ∗H

�m(X ′,Tn(r)) (∀m ∈ Z)

ψm
3 : Hm(X,Tn(r)) �−→ Rβ∗H

m(X ′,Tn(r)) (∀m ∈ Z)

ψm
4 : iv∗Ri!vH

m(X,Tn(r)) �−→ iv∗Rι!vH
m(X ′,Tn(r)) (∀m ∈ Z)

in Db(Bét, Λn), where iv : v ↪→ B and ιv : v ↪→ B′ are canonical closed immersions.

Corollary 3.9. We have canonical isomorphisms for any q, m ∈ Z and any r � d

H q(X,Tn(r)X) ∼= H q(X ′,Tn(r)X′),

H q
Y (X,Tn(r)X) ∼= H q

Y ′(X ′,Tn(r)X′),

H q(B,Hm(X,Tn(r))) ∼= H q(B′,Hm(X ′,Tn(r))),

H q
v(B,Hm(X,Tn(r))) ∼= H q

v(B′,Hm(X ′,Tn(r))).
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Proof of Proposition 3.8. Let ResX and ResB be the pull-back morphisms

ResX : α∗Tn(r)X −→ Tn(r)X′ and ResB : β∗Tn(1)B → Tn(1)B′ .

We define ψ1 as the composite

ψ1 : RπX/B∗Tn(r)X −→ RπX/B∗Rα∗Tn(r)X′ = Rβ∗RπX′/B′∗Tn(r)X′ ,

where the first arrow is the adjunction map of ResX . We define ψm
2 as the composite

ψm
2 : H�m(X,Tn(r)) = RHomB,Λn

(τ�2(d−1)−mRπX/B!Tn(d− r)X ,Tn(1)B)[2 − 2d]

−→ Rβ∗RHomB′,Λn
(τ�2(d−1)−mβ∗RπX/B!Tn(d− r)X , β∗Tn(1)B)[2 − 2d]

−→ Rβ∗RHomB′,Λn
(τ�2(d−1)−mRπX′/B′!Tn(d− r)X′ ,Tn(1)B′)[2 − 2d]

= Rβ∗H
�m(X ′,Tn(r)),

where the second arrow is induced by ResB and the isomorphisms

β∗RπX/B!Tn(d− r)X ∼= RπX′/B′!α
∗Tn(d− r)X (proper base change)

∼= RπX′/B′!Tn(d− r)X′ (r � d).

We define ψm
3 in a similar way. Note that the following square commutes by Corol-

lary 2.10:

RπX/B∗Tn(r)X

ψ1

(3.1.3)

�
H�2(d−1)(X,Tn(r))

ψ
2(d−1)
2

Rβ∗RπX′/B′∗Tn(r)X′
(3.1.3)

�
Rβ∗H�2(d−1)(X ′,Tn(r)).

(3.3.2)

We define ψm
4 as the composite

ψm
4 : iv∗Ri!vH

m(X,Tn(r))
base change

iv∗Rι!vβ
∗Hm(X,Tn(r)) ψm

3−→ iv∗Rι!vH
m(X ′,Tn(r)).

See [SGA4] X V I I I.3.1.14.2 for the base change morphism. This ψm
4 is an isomorphism, 

because both Ri!vH
m(X, Tn(r)) and Rι!vH

m(X ′, Tn(r)) are isomorphic to{
RHomv,Λn

(R2(d−1)−mπYv/v!Λn(d− r), Λn)[−2] (if ch(v) �= p or r = d)
0 (if ch(v) = p and r > d)

by (3.2.1) and Proposition 3.6 (1). We prove that ψ1, ψm
2 and ψm

3 are isomorphisms. By 
the triangle (3.1.5) and the commutative diagram (3.3.2), we are reduced to showing 
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that ψm
3 is an isomorphism for any m ∈ Z. Put K ′ := Frac(O′), and let us note the 

following facts:

(i) Hm(XK , μ⊗r
pn ) ∼= Hm(X ′

K
′ , μ⊗r

pn ), see [Mi1] VI.4.3.
(ii) GK

∼= GK′ , see [Mi3] p. 160, Case 2 (i) and (ii).
(iii) ψm

4 is an isomorphism.

By these facts and Proposition 3.6 (2), we see that ψm
3 is an isomorphism, which com-

pletes the proof of Proposition 3.8. �
4. Projective and inductive limits

Let πX/B : X → B = Spec(O) be as in §2. We do not assume that πX/B is proper 
in this section, but assume that O and K = Frac(O) satisfy either of the following 
conditions:

(L) K is a non-archimedean local field of characterictic 0, i.e., a finite field extension of 
Q� for some prime number �, and O is the valuation ring of K.

(G) K is an algebraic number field, i.e., a finite field extension of Q, and B = Spec(O)
is an open subset of Spec(OK), where OK denotes the integer ring of K.

The main aims of this section are to prove some standard finiteness results and to 
construct spectral sequences (4.1.1)– (4.1.3) below, under these assumptions.

Proposition 4.1. There is a canonical isomorphism

H q(B,Hm(X,Tn(r))) ∼= ExtqB(R2(d−1)−mπX/B!Tn(d− r),Gm) (4.0.1)

for any q, m � 0, n � 1 and r � d. Moreover, H q(X, Tn(r)) and H q(B, Hm(X, Tn(r)))
are finite for the same (q, m, n, r).

Proof. The isomorphism (4.0.1) follows from the definition of Hm(X, Tn(r)) (see Defini-
tion 3.2) and the canonical isomorphism

RHomB(Λn,Gm) ∼= Tn(1)

(a variant of [SH] Proposition 4.5.1). See also [JSS] (2.3.4). The finiteness of the groups in 
(4.0.1) follows from the finiteness of Ext-groups in the Artin-Verdier duality ([Ma] (2.4)) 
and the constructibility of R2(d−1)−mπX/B!Tn(d − r). The finiteness of H q(X, Tn(r))
follows from the spectral sequence (3.1.6) and that of E2-terms. �
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4.1. Spectral sequences

For r � d, we introduce the following groups:

H q(X,Zp(r)) := lim←−−
n�1

H q(X,Tn(r)), H q(X,Qp(r)) := H q(X,Zp(r)) ⊗Zp
Qp,

H q(X,Qp/Zp(r)) := lim−−→
n�1

H q(X,Tn(r)),

H q(B,Hm(X,Zp(r))) := lim←−−
n�1

H q(B,Hm(X,Tn(r))),

H q(B,Hm(X,Qp(r))) := H q(B,Hm(X,Zp(r))) ⊗Zp
Qp,

H q(B,Hm(X,Qp/Zp(r))) := lim−−→
n�1

H q(B,Hm(X,Tn(r))).

Here the transition maps in the fourth group is defined by the commutative diagram

H q(B,Hm(X,Tn+1(r)))

∼=(4.0.1)

H q(B,Hm(X,Tn(r)))

∼=(4.0.1)

ExtqB(R2(d−1)−mπX/B!Tn+1(d− r),Gm) ExtqB(R2(d−1)−mπX/B!Tn(d− r),Gm)

with the bottom arrow induced by p : Tn(d − r) ↪→ Tn+1(d − r) of Proposition 2.5. The 
transition maps in the last group is defined by the commutative diagram

H q(B,Hm(X,Tn(r)))

∼=(4.0.1)

H q(B,Hm(X,Tn+1(r)))

∼=(4.0.1)

ExtqB(R2(d−1)−mπX/B!Tn(d− r),Gm) ExtqB(R2(d−1)−mπX/B!Tn+1(d− r),Gm)

with the bottom arrow induced by R1 : Tn+1(d − r) � Tn(d − r) of Proposition 2.5. 
Taking the projective limit of the spectral sequence (3.1.6) with respect to n � 1, we 
obtain a convergent spectral sequence of Zp-modules

Ea,b
2 = Ha(B,Hb(X,Zp(r))) =⇒ Ha+b(X,Zp(r)). (4.1.1)

This spectral sequence yields a spectral sequence of Qp-vector spaces:

Ea,b
2 = Ha(B,Hb(X,Qp(r))) =⇒ Ha+b(X,Qp(r)). (4.1.2)

On the other hand, taking the inductive limit of (3.1.6) with respect to n � 1, we obtain 
another convergent spectral sequence of Zp-modules

Ea,b
2 = Ha(B,Hb(X,Qp/Zp(r))) =⇒ Ha+b(X,Qp/Zp(r)). (4.1.3)
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4.2. Finite and cofinite generation

The following preliminary results will be useful later:

Theorem 4.2.

(1) H q(X, Zp(r)) and H q(B, Hm(X, Zp(r))) are finitely generated over Zp for any q, m ∈
Z and any r � d.

(2) H q(X, Qp/Zp(r)) and H q(B, Hm(X, Qp/Zp(r))) are cofinitely generated over Zp for 
any q, m ∈ Z and any r � d.

(3) We have rankZp
H q(B, Hm(X, Zp(r))) = corankZp

H q(B, Hm(X, Qp/Zp(r))) for 
any q, m ∈ Z and any r � d.

Proof. The assertions for H q(X, Zp(r)) and H q(X, Qp/Zp(r)) follow from a standard ar-
gument using Propositions 4.1 and 2.5. We prove the assertions for H q(B, Hm(X, Zp(r)))
and H q(B, Hm(X, Qp/Zp(r))) in the case (G); the case (L) is similar and left to the 
reader.

We first show that H q(B, Hm(X, Zp(r))) is finitely generated over Zp. By the Artin-
Verdier duality, it is enough to show that its Pontryagin dual

H 3−q
c (B,Rm′

πX/B!Qp/Zp(d− r)) := lim−−→
n�1

H3−q
c (B,Rm′

πX/B!Tn(d− r))

is cofinitely generated over Zp, where m′ := 2(d − 1) −m. Let Ms
Div to be the maximal 

p-divisible subsheaf of Ms := RsπX/B!Qp/Zp(d − r), i.e.,

Ms
Div := Im

(
HomB(Qp,M

s) → Ms
)
,

where Qp denotes the constant sheaf on Bét with values in Qp. For each n � 1, put 
pn(Ms

Div) := Ker(×pn : Ms
Div → Ms

Div), which is a subquotient of RsπX/B!Tn(d − r), 
hence constructible. Moreover, there is a short exact sequence

0 −→ pn(Ms
Div) −→ pn+n′ (Ms

Div) −→ pn′ (Ms
Div) −→ 0

for any n, n′ � 1, and H i
c(B, Ms

Div) is cofinitely generated over Zp for any i by a standard 
argument. On the other hand, the quotient sheaf Ms

cotor := Ms/Ms
Div is the torsion part 

of Rs+1πX/B!Zp, hence constructible ([SGA5] VI.2.2.2), and H i
c(B, Ms

cotor) is finite for 
any i. Therefore by the long exact sequence

· · · → H i
c(B,Ms

Div) → H i
c(B,Ms) → H i

c(B,Ms
cotor) → H i+1

c (B,Ms
Div) → · · · , (4.2.1)

H i
c(B, Ms) is cofinitely generated over Zp for any i and s, and H q(B, Hm(X, Zp(r))) is 

finitely generated over Zp for any q and m.
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We next show that H q(B, Hm(X, Qp/Zp(r))) is cofinitely generated over Zp. By sim-
ilar arguments as before, it is enough to show that the group

H 3−q
c (B,RsπX/B!Zp(d− r)) := lim←−−

n�1
H 3−q

c (B,RsπX/B!Tn(d− r))

is finitely generated over Zp for any q and s. Let Ms and Ms
Div be as before, and put

T s
n := pn(Ms

Div) (n � 1) and T s := (T s
n)n�1

Note that T s := (T s
n)n�1 is a constructible Zp-sheaf. Put

H i
c(B, T s) := lim←−−

n�1
Hi

c(B, T s
n),

which is finitely generated over Zp for any i by a standard argument. Noting that there 
is a short exact sequence of constructible Zp-sheaves

0 −→ Ms−1
cotor −→ RsπX/B!Zp(d− r) −→ T s −→ 0

we obtain a long exact sequence

· · · → H i
c(B,Ms−1

cotor) → H i
c(B,RsπX/B!Zp(d− r)) → H i

c(B, T s)

→ H i+1
c (B,Ms−1

cotor) → · · · ,

(4.2.2)

which shows that H i
c(B, RsπX/B!Zp(d −r)) is finitely generated over Zp for any i. Finally 

from the long exact sequence of Zp-modules

· · · → H i
c(B, T s) → H i

c(B,RsπX/B!Qp(d− r)) → H i
c(B,Ms

Div)

→ H i+1
c (B, T s) → · · · , (4.2.3)

we obtain

rankZp
H q(B,Hm(X,Zp(r)))

(duality)= corankZp
H3−q

c (B,Mm′
) (m′ := 2(d− 1) −m)

(4.2.1)= corankZp
H3−q

c (B,Mm′

Div)
(4.2.3)= rankZp

H 3−q
c (B, Tm′

)

(4.2.2)= rankZp
H 3−q

c (B,Rm′
πX/B!Zp(d− r)) (duality)= corankZp

H q(B,Hm(X,Qp/Zp(r))),

which shows the assertion (3). �
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5. Comparison with Selmer groups, local case

Let πX/B : X → B = Spec(O) be as in §2. In this section, we always assume the 
following:

• πX/B is proper, and the generic fiber XK is geometrically connected over K.
• K is a non-archimedean local field of characteristic 0, and O is the valuation ring of 

K, i.e., the case (L) of §4.

Let k be the residue field of O and put � := ch(k). We will often write Y (resp. Y ) for 
X ⊗O k (resp. X ⊗O k). We put V m := Hm(XK , Qp). A main aim of this section is 
to compare Hm(X, Qp(r)) with H 1

f (K, V m−1(r)), the local Selmer group of Bloch-Kato 
[BK2] §3. We will often write H 1

/f (K, −) for the quotient of H1(K, −) by H1
f (K, −). The 

following fundamental fact ([BK2], Proposition 3.8) will be useful:

Lemma 5.1 (Bloch-Kato). Let V be a finite-dimensional Qp-vector space on which the 
Galois group GK acts continuously. If � = p, then assume further that V is a de Rham 
representation. Put V ∗ := HomQp

(V, Qp). Then under the perfect pairing of local Tate 
duality

H 1(K,V ) × H 1(K,V ∗(1)) → H 2(K,Qp(1)) ∼= Qp,

the subspaces H1
f (K, V ) and H1

f (K, V ∗(1)) are the exact annihilators of each other.

The following standard fact will be useful later in §§6–8 below.

Lemma 5.2. Assume that � �= p, and that πX/B : X → B is smooth and proper. Then we 
have Ha(B, Hm(X, Tn(r))) = 0 for any a � 2, m � 0, n � 1 and r � d.

Proof. Under the assumptions, Hm(X, Tn(r)) is a locally constant sheaf on Bét placed 
in degree 0, whose stalk at v is Hm(Y , μ⊗r

pn ) by Lemma 2.1 (1), Proposition 3.4 (1) and 
the proper smooth base change theorem. Hence we have

Ha(B,Hm(X,Tn(r))) ∼= Ha(v,Hm(Y , μ⊗r
pn )) = 0

for any a � 2, as claimed. �
5.1. Comparison results

The main result of this section is the following:
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Theorem 5.3. For any m � 0 and r � d, we have canonical isomorphisms

H q(B,Hm(X,Qp(r))) ∼=
{

H1
f (K,V m(r)) (q = 1)

0 (otherwise)

Moreover, if � �= p, then we have H1(B, Hm(X, Qp(r))) = 0 for any m � 0 and r � d.

Remark 5.4. If � �= p, then we have Hm(X, Qp(r)) = 0 for any m ∈ Z and r � d by the 
proper base change theorem

Hm(X,Qp(r)) ∼= Hm(Y,Qp(r))

and a theorem of Deligne [De] 3.3.4 on weights of H∗(Y , Qp) (note that dim(Y ) = d −1). 
Theorem 5.3 for � �= p refines this fact.

We first state a few consequences of Theorem 5.3. By the theorem and the spectral 
sequence (4.1.2), we obtain the following corollary:

Corollary 5.5. The spectral sequence (4.1.2) degenerates at E2, and we have

Hm(X,Qp(r)) ∼= H1
f (K,V m−1(r))

for any m � 0 and any r � d.

The following corollary will be useful later:

Corollary 5.6.

(1) There exists a natural map

H1
f (K,V m(r)) −→ H 1(B,Hm(X,Qp/Zp(r)))

which fits into a commutative diagram

H1
f (K,V m(r))

(natural map)

H1(B,Hm(X,Qp/Zp(r))) H 1(K,Hm(XK ,Qp/Zp(r))).

See Proposition 3.6 (1 ) for the injectivity of the bottom arrow.
(2) Ha(B, Hm(X, Zp(r))) and Ha(B, Hm(X, Qp/Zp(r))) are finite for any a �= 1, m � 0

and r � d.
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Proof. The claim (1) immediately follows from Theorem 5.3, and the claim (2) follows 
from Theorems 5.3 and 4.2. �

We start the proof of Theorem 5.3. A key step is to show Theorem 5.7 below. Fix 
integers m � 0 and r � d, and put

H q(B,RmπX/B∗Qp(d− r)) := Qp ⊗Zp
lim←−−
n

H q(B,RmπX/B∗Tn(d− r)).

Under this notation, we will prove

Theorem 5.7. We have

H q(B,RmπX/B∗Qp(d− r)) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
V m(d− r)GK (q = 0)

H1
f (K,V m(d− r)) (q = 1)

0 (q �= 0, 1)

(5.1.1)

and

V m(r)GK = 0. (5.1.2)

We have H q(B, RmπX/B∗Qp(d − r)) = 0 if r > d. Indeed, if � = p, then this vanishing 
follows from the definition of Tn(d − r) and the proper base change theorem; the case 
� �= p follows from similar arguments as in Remark 5.4. Consequently, the isomorphism 
(5.1.1) asserts the vanishing of the right hand side for r > d. We will prove Theorem 5.7
in §5.2 and §5.3 below.

Proof of “Theorem 5.7 =⇒ Theorem 5.3”. Let v be the closed point of B. Put s :=
d − r(� 0) for simplicity. By the isomorphisms in (5.1.1) and the localization long exact 
sequence

· · · −→ H q−1
v (B,RmπX/B∗Qp(s)) −→ H q−1(B,RmπX/B∗Qp(s)) −→ H q−1(K,V m(s))

−→ H q
v(B,RmπX/B∗Qp(s)) −→ · · ·

we have

H q
v(B,RmπX/B∗Qp(s)) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 (q �= 2, 3)

H1
/f (K,V m(s)) (q = 2)

H2(K,V m(s)) (q = 3).

(5.1.3)

Theorem 5.3 for q �= 0 follows from (5.1.3) with 2(d − 1) −m in place of m, Lemma 5.1
and the Tate duality for cohomology of B (see [Ma] (2.4)):
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H q(B,Hm(X,Qp(r))) × H 3−q
v (B,R2(d−1)−mπX/B∗Qp(s)) −→ H 3

v(B,Qp(1)) ∼= Qp.

The assertion for q = 0 of Theorem 5.3 is a consequence of the isomorphism

H0(B,Hm(X,Qp(r))) ∼= V m(r)GK

(see Proposition 3.6 (1)) and the vanishing (5.1.2). Finally if � �= p, then H1
f (K, V m(r)) =

H 1(k, V m(r)IK ) = 0 again by (5.1.2) and the equality of dimensions

dimQp
V m(r)GK = dimQp

H 1(k, V m(r)IK ), (5.1.4)

which is a consequence of the duality of Galois cohomology of Gk. �
5.2. Proof of Theorem 5.7 (the case � �= p)

Let Kur be the maximal unramified extension of K, and let IK = Gal(K/Kur) be 
the inertia group of K. Let Our be the valuation ring of Kur, and let cospm

X be the 
cospecialization map

cospm
X : Hm(Y ,Qp) ∼= Hm(Xur,Qp) −→ Hm(XK ,Qp)IK = (V m)IK (5.2.1)

for m � 0, where Xur (resp. Y ) denotes X ⊗O Our (resp. Y ⊗k k). We first reduce 
Theorem 5.7 for � �= p to the following proposition:

Proposition 5.8. Assume that � �= p, and let m � 0 be an integer. Then:

(1) We have V m(r)GK = 0 for any r � d.
(2) For any s � 0 and q = 0, 1, the map cospm

X induces an isomorphism

H q(k,Hm(Y ,Qp(s))) ∼= H q(k, V m(s)IK ).

Proposition 5.8 (1) is the same as (5.1.2) of Theorem 5.7.

Proof of “Proposition 5.8 =⇒ Theorem 5.7”. We have

H q(B,RmπX/B∗Qp(s)) ∼= H q(k,Hm(Y ,Qp(s)))

and the last group is zero unless q = 0 or 1, because cd(Gk) = 1. The isomorphisms for 
q = 0, 1 of (5.1.1) follow from Proposition 5.8 (1) and the fact that

H 1
f (K,V m(s)) = H1(k, V m(s)IK )

by definition. Thus we obtain Theorem 5.7, admitting Proposition 5.8. �
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Proof of Proposition 5.8. If X is smooth over B, then the assertions are clear by the 
proper smooth base change theorem and Deligne’s proof of the Weil conjecture [De] 3.3.9. 
We are concerned with the case that πX/B : X → B is not smooth, in what follows.

(I) Strict semi-stable reduction case. We first prove Proposition 5.8 assuming that 
X has strict semi-stable reduction. We introduce some notation. Let j be the canonical 
map XK → Xur = X ⊗O Our, and let ι be the closed immersion Y → Xur. By the 
properness of X/B, we have the following Leray spectral sequence for any n � 1:

Ea,b
2 = Ha(Y , ι∗Rbj∗Λn) =⇒ Ha+b(XK , Λn). (5.2.2)

By a theorem of Rapoport and Zink [RZ] 2.23, there is an exact sequence on (Y )ét

0 −→ ι∗Rbj∗Λn −→ ub+1
∗ Λn(−b)Z(b+1) −→ ub+2

∗ Λn(−b)Z(b+2) −→

· · · −→ ud
∗Λn(−b)Z(d) −→ 0, (5.2.3)

where for each m > 0, Z(m) denotes the disjoint union of m-fold intersections distinct 
irreducible components of Y and um denotes the canonical (finite) map Z(m) → Y ; see 
(1.5.1) for Λn(−b). Hence the E2-terms of the spectral sequence of (5.2.2) are finite and 
we obtain a spectral sequence

Ea,b
2 = Ha(Y , ι∗Rbj∗Qp) =⇒ Ha+b(XK ,Qp) = V a+b (5.2.4)

by taking the projective limit with respect to n � 1 and the tensor product with Qp

over Zp. Note that the canonical map Em,0
2 = Hm(Y , Qp) → Em = V m agrees with the 

cospecialization map cospm
X of (5.2.1), and that the inertia group IK acts trivially on the 

E2-terms of (5.2.4). We will prove the following:

Lemma 5.9. In the spectral sequence (5.2.4), we have Ea,b
2 = 0 unless 0 � a � 2(d −b −1)

and 0 � b � d − 1. Furthermore, for a pair (a, b) with 0 � a � 2(d − b − 1) and 
0 � b � d − 1, the weights of Ea,b

2 are at least max{2b, 2(a + 2b + 1 − d)} and at most 
a + 2b.

By this lemma, the kernel and the cokernel of the map cospm
X in (5.2.1) have only 

positive weights and hence we obtain the assertion of Proposition 5.8 (2). Similarly, one 
can easily derive Proposition 5.8 (1) from this lemma.

Proof of Lemma 5.9. By (5.2.3), the sheaf ι∗Rbj∗Λn (hence Ea,b
2 of (5.2.4)) is zero unless 

0 � b � d − 1. Fix a b � 0 in what follows. By the exact sequence (5.2.3), we have a 
spectral sequence of finite-dimensional Gk-Qp-vector spaces:

′Es,t
1 = H t(Z(s+b+1),Qp(−b)) =⇒ H s+t(Y , ι∗Rbj∗Qp). (5.2.5)
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Here ′Es,t
1 is zero unless

0 � t � 2(d− s− b− 1) and 0 � s � d− b− 1, (5.2.6)

because dim(Z(s+b+1)) = d − s − b − 1 and Z(s+b+1) = ∅ if s + b � d. Using this spectral 
sequence, one can easily check that Ea,b

2 of (5.2.4)) is zero unless 0 � a � 2(d − b − 1). 
Moreover, ′Es,t

1 has weight t + 2b by [De] 3.3.9. Therefore one obtains the lemma by 
computing the span of t + 2b under the conditions (5.2.6) and a = s + t. �

This completes the proof Proposition 5.8 in the strict semi-stable reduction case.

(I I) General case. We prove Proposition 5.8 in the general case. By the alteration 
theorem of de Jong [dJ] 6.5, there exists a proper generically étale morphism f : X ′ → X

such that X ′ is regular and flat over B and has strict semi-stable reduction over the 
normalization B′ of B in X ′. Let L (resp. k′) be the function field of B′ (resp. the 
residue field of L′), Y ′ for the special fiber of πX′/B′ : X ′ → B′. Then Proposition 5.8 (2) 
immediately follows from those for X ′, proved in Step (I), and the fact that V m =
Hm(XK , Qp) is a direct summand of Hm(X ′

L
, Qp) as GL-Qp-vector spaces. To prove 

Proposition 5.8 (1), we consider the following commutative diagram:

H q(k,Hm(Y ,Qp(s)))
f�

cospm
X

H q(k′,Hm(Y ′,Qp(s)))
trf

cospm
X′

H q(k,Hm(Y ,Qp(s)))

cospm
X

H q(k, V m(s)IK )
f�

H q(k′,Hm(X ′
L
,Qp(s))IL)

trf
H q(k, V m(s)IK ),

where the right horizontal arrows are induced by the following homomorphism of étale 
sheaves on B:

trf : πB′/B∗R
mπX′/B′∗Λn(s)X′ ∼= RmπX′/B∗Λn(s)X′

(∗)∼= RmπX′/B∗(Rf !Λn(s)X)

= RmπX/B∗(Rf∗Rf !Λn(s)X)
adjunction

RmπX/B∗Λn(s)X

and we have used the absolute purity [FG] to obtain the isomorphism (∗). Since the 
middle vertical arrow in the above diagram is bijective by Step (I), the assertion of 
Proposition 5.8 (1) for X follows from the fact that the composite map

RmπX/B∗Λn(s)X
f�

−→ πB′/B∗R
mπX′/B′∗Λn(s)X′

trf−→ RmπX/B∗Λn(s)X

on Bét agrees with the multiplication by the extension degree of function fields of f :
X ′ → X. This completes the proof. �
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5.3. Proof of Theorem 5.7 (the case � = p)

By the same arguments as in the proof of “Proposition 5.8 ⇒ Theorem 5.7” in §5.2, 
the assertions of Theorem 5.7 with � = p is reduced to the following:

Proposition 5.10. Assume that � = p. Let m � 0 be an integer, and put V := V m. Then:

(1) We have V (r)IK = 0 for any r � d.
(2) For any s < 0, we have V (s)IK = 0. For s = 0, the cospecialization map

cospm
X : Hm(Y ,Qp) −→ Hm(XK ,Qp)IK = V IK

is bijective.
(3) For any s � 0, we have H1(k, V (s)IK ) = H 1

f (K, V (s)) in H 1(K, V (s)). In particular, 
we have H1

f (K, V (s)) = 0 if s < 0.

We will first prove Proposition 5.10 assuming that X has semi-stable reduction, and 
then prove the log smooth reduction case.

Proof. (I) Semi-stable reduction case. See [Fo] 1.5.5 for Bcrys, Bst, B
+
dR and BdR. Put 

D := Hm
log-crys(Y/W(k)). By the Fontaine-Jannsen conjecture ([HKa], [Ts] 0.2), we have 

a p-adic period isomorphism

V ⊗Qp
Bst ∼= D ⊗W(k) Bst, (5.3.1)

which preserves the Frobenius operator φ, the monodromy operator N , the action of GK, 
and the Hodge filtration F•

H after taking ⊗BstBdR. By the isomorphism (5.3.1), we have

V (r) ∼=
(
D ⊗W(k) Bst

)N=0, φ=pr

∩ Fr
H

(
D ⊗W(k) BdR

)
and

V (r)IK ⊂ (Hm
log-crys(Y /W(k))Qp

)ϕ=pr

, (5.3.2)

for any r ∈ Z. Here ϕ denotes the Frobenius operator acting on Hm
log-crys(Y /W(k)), and 

we have used the fact that (Bst)IK = Frac(W(k)) ([Fo] 5.1.2, 5.1.3). Proposition 5.10 (1) 
and the case s < 0 of Proposition 5.10 (2) follow from (5.3.2) and the fact that

(Hm
log-crys(Y /W(k))Qp

)ϕ=pr

= 0 if r � d or r < 0.

As for the case s = 0 of Proposition 5.10 (2), the map cospm is bijective by [W] Theorem 
1. To prove Proposition 5.10 (3), it is enough to show the following two claims:
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(i) The restriction map

H1(K,V ⊗Qp
Bcrys) −→ H 1(Kur, V ⊗Qp

Bcrys)

is injective. Consequently, the image of the inflation map

H 1(k, V (s)IK ) H1(K,V (s))

is contained in H 1
f (K, V (s)) for any s ∈ Z.

(ii) We have dimQp
H 1(k, V (s)IK ) = dimQp

H 1
f (K, V (s)) for any s � 0.

Proof of the claim (i). By the inflation-restriction exact sequence

(0 →)H1(k, (V ⊗Qp
Bcrys)IK ) −→ H1(K,V ⊗Qp

Bcrys) −→ H1(Kur, V ⊗Qp
Bcrys)Gk ,

it is enough to show that the first term is zero. We have

(V ⊗Qp
Bcrys)IK ∼= Hm

log-crys(Y /W(k))N=0
Qp

by the exact sequence ([Fo] 3.2.3)

0 −→ Bcrys −→ Bst
N−→ Bst −→ 0

and the period isomorphism (5.3.1). Hence we have

H1(k, (V ⊗Qp
Bcrys)IK ) ∼= Qp ⊗Zp

lim←−−
n�1

H1(k,Hm
log-crys(Y /Wn(k))N=0).

Finally, the group on the right hand side is zero, because Hm
log-crys(Y /Wn(k))N=0 is a 

finite successive extension of Gk-modules which are isomorphic to the additive group of 
k. �
Proof of the claim (ii). Since V is a de Rham representation [Fa], there is an exact se-
quence of finite-dimensional Qp-vector spaces ([BK2] Corollary 3.8.4):

0 −→ V (s)GK −→ Cris(V ) ⊕ DR(V (s))0

−→ Cris(V ) ⊕ DR(V ) −→ H 1
f (K,V (s)) −→ 0, (5.3.3)

where Cris(V ), DR(V (s))0 and DR(V ) denote (V ⊗Qp
Bcrys)GK , (V (s) ⊗Qp

B+
dR)GK and 

(V ⊗Qp
BdR)GK , respectively. Moreover we have

DR(V ) ∼= Hm
dR(XK/K) = Fs

HHm
dR(XK/K) ∼= DR(V (s))0 (5.3.4)

for any s � 0. Hence we obtain the claim (ii) from the equalities
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dimQp
H 1

f (K,V (s)) (5.3.3)= dimQp
V (s)GK = dimQp

H1(k, V (s)IK ),

where the right equality is similar to the equality of (5.1.4). This completes the proof of 
Proposition 5.10 in the semi-stable reduction case. �

(I I) Log smooth reduction case. Let f : X ′ → X, B and L be as in Step (I I) in the proof 
of Proposition 5.8. The assertions in Proposition 5.10 other than the bijectivity of cospm

are reduced to the semi-stable reduction case directly by a standard norm argument for 
fK : X ′

L → XK . We derive the bijectivity of cospm for X from that for X ′. Indeed, there 
exists a homomorphism trf : πB′/B∗R

mπX′/B′∗Λn → RmπX/B∗Λn of sheaves on Bét for 
each n � 1 given by the following upper commutative square, which is by definition the 
Pontryagin dual of the lower commutative square (m′ := 2d′ −m):

Hm(Y ′, Λn)

cospm
X′

Hm(Y ,Λn)

cospm
X

Hm(X ′
L
, Λn)IL Hm(XK , Λn)IK ,

Hm′+2
Y ′ ((X ′)ur,Tn(d)) Hm′+2

Y
(Xur,Tn(d))

f�

Hm′(X ′
L
, μ⊗d−1

pn )IL

ResX′

Hm′(XK , μ⊗d−1
pn )IK ,

f�

ResX

where we put (X ′)ur := X ′×B′ (B′)ur and Xur := X×B Bur, and the lower square is the 
commutative diagram in Corollary 2.18. Thus we see that cospm

X is bijective by a similar 
norm argument as in Step (I I) in the proof of Proposition 5.8. This completes the proof 
of Proposition 5.10 and Theorem 5.7. �

By Proposition 5.10 (1) and [BK2] Corollary 3.8.4 for V m(r) = Hm(XK , Qp(r)), we 
obtain the following corollary:

Corollary 5.11. The exponential map of Bloch-Kato induces an isomorphism

exp : Hm
dR(XK/K) �−→ H1

f (K,V m(r))

for any m � 0 and r � d.

6. Comparison with Selmer groups, global case

Let πX/B : X → B = Spec(O) be as in §2. In the rest of this paper, we always assume:

• πX/B is proper, and the generic fiber XK is geometrically connected over K.
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• K is an algebraic number field, and O is the integer ring of K, i.e., the case (G) of 
§4.

Put V m := Hm(XK , Qp). In this section, we compare Hm(X, Qp(r)) with the Selmer 
group H1

f (K, V m−1(r)), using the results of the previous section. See [BK2] §5 for the 
definition of H1

f (K, −) = H 1
f,B(K, −). For a place v of K, we often write Kv for the 

completion of K at v. For a finite place v of K, we put Bv := Spec(Ov) and Xv :=
X ×B Bv, where Ov denotes the valuation ring of Kv.

6.1. Fast computations

Proposition 6.1. Assume r � d. Then:

(1) H q(B, Hm(X, Zp(r))) is finite in each of the following cases:
(i) m < 0 (ii) m > 2(d − 1) (iii) q � 0 (iv) q > 3
(v) q = 3 and (m, r) �= (2(d − 1), d)
Consequently, the spectral sequence (4.1.1) degenerates at E2-terms up to finite p-
primary torsion.

(2) For any m � 0, we have

H 1(B,Hm(X,Qp(r))) ∼= H 1
f (K,V m(r)).

Proof of Proposition 6.1. (1) We put

H q,m,r := H q(B,Hm(X,Zp(r)))

for simplicity. The cases (i) and (ii) are clear by the definition of Hm(X, Tn(r)) (see 
Definition 3.2). The case (iii) with q < 0 follows from the fact that Hm(X, Tn(r)) is 
concentrated in degrees � 0 (see Proposition 3.6 (3)). When q = 0, the restriction map

H0,m,r −→ Hm(XK ,Zp(r))GK

is injective by Proposition 3.6 (1) and the last group is finite by [De] 3.3.9. Hence H0,m,r

is finite. The case (iv) follows from the Artin-Verdier duality [Ma] (2.4). Indeed, we have

H q(B,Hm(X,Tn(r))) ∼= ExtqB(R2(d−1)−mπX/B∗Tn(d− r),Gm)

by (4.0.1), and its dual

H3−q
c (B,R2(d−1)−mπX/B∗Tn(d− r))

is finite 2-torsion for any n � 1 and q > 3. Finally we prove the case (v). Fix a dense 
open subset U ⊂ B[p−1] such that XU → U is smooth (and proper). Let j be the open 
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immersion U ↪→ B, and for each v ∈ B let ιv : v ↪→ B be the canonical map. There is 
an exact sequence

H 3(B, j!j
∗Hm(X,Zp(r))) −→ H 3,m,r −→

⊕
v∈B�U

H 3(Bv,H
m(Xv,Zp(r))),

where we identified H3(v, ι∗vHm(X, Zp(r))) with H3(Bv, Hm(Xv, Zp(r))) for each v ∈
B�U by Corollary 3.9. The first term in this sequence is finite unless (m, r) = (2(d −1), d)
by the Artin-Verdier duality and a weight argument which is similar as for the case q = 0. 
The last term is finite as well by Corollary 5.6 (2). Thus H3,m,r is finite in the case (v), 
which completes the proof of Proposition 6.1 (1).

(2) Let S be a finite set of places of K containing all places dividing p or ∞, and all 
finite places where X has bad reduction. Let KS be the maximal S-ramified extension of 
K (i.e., the maximal Galois extension of K which is unramified at every finite place of K
outside of S), and let GS be the Galois group Gal(KS/K). To prove Proposition 6.1 (2), 
it is enough to check the following:

Lemma 6.2. There is an exact sequence of Qp-vector spaces

0 −→ H 1,m,r ⊗Zp
Qp −→ H 1(GS , V

m(r)) Res−→
⊕

v∈S∩B0

H1
/f (Kv, V

m(r)),

where B0 denotes the set of closed points of B. See §5 for the definition of H1
/f (Kv, −).

Proof. Consider the localization long exact sequence of cohomology groups for each n � 1

· · · → H q(B,Hm(X,Tn(r))) → H q(GS ,Hm(XK , μ⊗r
pn ))

→
⊕

v∈S∩B0

H q+1
v (Bv,H

m(Xv,Tn(r))) → H q+1(B,Hm(X,Tn(r))) → · · · ,

where we have used the fact that Hm(X, Tn(r))|B�S is a locally constant sheaf on B�S

associated with the GS-module Hm(XK , μ⊗r
pn ) (see Proposition 3.4 (1)). We have also 

used the isomorphisms

H∗
v(B,Hm(X,Tn(r))) ∼= H∗

v(Bv,H
m(Xv,Tn(r))) (v ∈ S � P∞)

obtained from étale excision and the rigidity of Corollary 3.9. The groups in this long 
exact sequence are finite by Proposition 4.1. Therefore we obtain the following long exact 
sequence by taking the projective limit with respect to n � 1 and then ⊗Zp

Qp:

· · · −→
⊕

H q
v(Bv,H

m(Xv,Qp(r))) −→ H q,m,r ⊗Zp
Qp −→ H q(GS , V

m(r))

v∈S
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−→
⊕
v∈S

H q+1
v (Bv,H

m(Xv,Qp(r))) −→ · · · .

Moreover we have

H q
v(Bv,H

m(Xv,Qp(r))) ∼=

⎧⎪⎪⎨⎪⎪⎩
0 (q = 1)
H 1
/f (Kv, V

m(r)) (q = 2)
H 2(Kv, V

m(r)) (q = 3)

by Theorem 5.3; the case q = 3 will be useful later in the proof of Corollary 6.10 (2) 
below. The assertion follows from these facts. �

This completes the proof of Proposition 6.1. �
Corollary 6.3. For any r � d, the spectral sequence (4.1.2) degenerates at E2, and we 
have

Hm(X,Qp(r)) ∼=

⎧⎪⎪⎪⎨⎪⎪⎪⎩
H1

f (K,V m−1(r)) ⊕ H2(B,Hm−2(X,Qp(r))) (1 � m � 2d− 1)

Qp ((m, r) = (2d + 1, d))

0 (otherwise).

See Corollary 2.11 (2) for the isomorphism H2d+1(X, Qp(d)) ∼= Qp. We will prove that 
H 2(B, Hm(X, Qp(r))) = 0 for any (m, r) with r � d, in Theorem 6.6 below. The following 
consequence of Proposition 6.1 (2) is a global analogue of Corollary 5.6 (1), which will 
be useful later.

Corollary 6.4. For any r � d, there exists a natural map

H1
f (K,V m(r)) −→ H 1(B,Hm(X,Qp/Zp(r)))

which fits into a commutative diagram

H1
f (K,V m(r))

(natural map)

H1(B,Hm(X,Qp/Zp(r))) H 1(K,Hm(XK ,Qp/Zp(r))).

See Proposition 3.6 (1 ) for the injectivity of the bottom arrow.

Remark 6.5. For any s � 0, one can easily check the following canonical isomorphism by 
(5.1.1), (5.1.3) and similar arguments as for the proof of Proposition 6.1:

H 1(B,RmπX/B∗Qp(s)) ∼= H 1
f (K,V m(s)).
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6.2. A global finiteness of étale cohomology

In this subsection, we prove the following vanishing and finiteness result:

Theorem 6.6. For any m � 0 and r � d, we have

H2(B,Hm(X,Qp(r))) = 0,

and the groups H2(B, Hm(X, Zp(r))) and H2(B, Hm(X, Qp/Zp(r))) are finite.

As a direct consequence of this theorem and Corollary 6.3, we obtain:

Corollary 6.7. For any m � 0 and r � d with (m, r) �= (2d + 1, d), we have

Hm(X,Qp(r)) ∼= H 1
f (K,V m−1(r)).

On the other hand, Theorem 6.6 and Remark 6.5 imply the following vanishing result 
by the Artin-Verdier duality:

Corollary 6.8. For any m � 0 and s � 0, we have H1
f (K, Hm(XK , Qp(s))) = 0.

Proof of Theorem 6.6. By Theorem 4.2, it is enough to show that H2(B, Hm(X,

Qp/Zp(r))) is finite. When (m, r) = (2(d − 1), d), we have

H 2(B,H2(d−1)(X,Qp/Zp(d)))
(3.1.7)∼= H2(B,Qp/Zp(1)) ∼= Br(OK){p},

by the finiteness of Pic(OK), and Br(OK) is finite 2-torsion by the classical Hasse principle 
for Brauer groups, which implies the finiteness in question.

In what follows, we assume (m, r) �= (2(d −1), d) and consider the following commuta-
tive diagram with exact rows, where both rows are obtained from localization sequences 
of étale cohomology, and the coefficients Hm(X, Qp/Zp(r)) (resp. Hm(Xv, Qp/Zp(r))) in 
the upper row (resp. the lower row) are omitted:

H1(K)

α

⊕
v∈B0

H2
v(B)

δ

H 2(B)

β

H2(K)

γ

⊕
v∈B0

H 3
v(B)

δ⊕
v∈B0

H 1
/f (Kv)

(∗) ⊕
v∈B0

H2
v(Bv)

⊕
v∈B0

H2(Bv)
⊕
v∈B0

H2(Kv)
⊕
v∈B0

H 3
v(Bv).

Here we put

H1
/f (Kv) := Coker

(
H1

f (Kv, V
m(r)) → H1(Kv,Hm(XK ,Qp/Zp(r)))

)

v
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for each v ∈ B0 (note also Proposition 3.4 (1)), and used Corollary 5.6 (1) to verify the 
existence of the bottom left arrow (∗). The arrows δ are bijective by étale excision and the 
rigidity (Corollary 3.9). The arrow γ has finite kernel and cokernel by the Hasse principle 
of Jannsen [J] p. 337, Theorem 3 (c). The arrow α has finite cokernel by [BK2] Proposition 
5.14 (ii). Hence β is bijective up to finite groups. Finally, H2(Bv, Hm(Xv, Qp/Zp(r))) is 
finite for all v ∈ B0 by Corollary 5.6 (2), and zero for any v ∈ (B[p−1])0 at which X has 
good reduction by Lemma 5.2. Thus H 2(B, Hm(X, Qp/Zp(r))) is finite. �
Remark 6.9.

(1) By Theorem 6.6 for r = d = 2 and m = 1 and Lemma 7.1 (3) below, Bloch’s 
conjecture ([B1] Remark 1.24) for a projective smooth curve C over K is reduced to 
a variant of Bass’ conjecture (cf. [Ba]) that the motivic cohomology H3

M (X, Z(2)) is 
finitely generated for a proper regular model X/ B of C.

(2) Corollary 6.8 answers affirmatively to a conjecture of Flach ([Fl1] Conjecture 1.6) in 
a special case, and removes an assumption of [Mo] Theorem 1.5 (3).

The following corollary of Theorem 6.6 follows from a similar argument as for the 
proof of Lemma 6.2 (see also [J] p. 349, Question 2):

Corollary 6.10. Assume r � d, and let S and GS be as in the proof of Theorem 6.1 (2 ). 
Then:

(1) For any m, the following map is surjective:

H1(GS , V
m(r)) −→

⊕
v∈S

H 1
/f (Kv, V

m(r)).

(2) The restriction map

H2(GS , V
m(r)) −→

⊕
v∈S

H2(Kv, V
m(r))

is bijective for any (m, r) �= (2(d − 1), d) and injective for (m, r) = (2(d − 1), d). In 
particular, if r > d or XK has potentially good reduction at all finite places of K, 
then

H2(GS , V
m(r)) = 0 for any (m, r) �= (2(d− 1), d).

See Remark 2.2 for a remark on our log-smoothness assumption.

7. p-adic Abel-Jacobi mappings (d = 2)

The setting remains as in §6. From this section on, we assume further that d = 2.
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7.1. Cycle class maps

See §2.3 for the definition of the motivic complex Z(r) on (Ét/X)Zar. We regard Z(r)
as a complex on XZar by restriction of topology. We define the motivic cohomology of 
X as

Hm
M (X,Z(r)) := Hm

Zar(X,Z(r)),

and define the motivic cohomology with Λn(= Z/pnZ)-coefficients as

Hm
M (X,Λn(r)) := Hm

Zar(X,Z(r) ⊗ Λn) (n � 1).

In this paper we do not consider the motivic complex Z(r) on Xét, mainly because it is 
not necessarily compared with Tn(r) directly for the lack of the Gersten resolution for 
Z(r) ⊗ Λn unless X is smooth over B, cf. [SH] Conjecture 1.4.1, [Sa2] Remark 7.2, [Z]
Conjecture 2.2, Theorem 4.8, [Ge1] Theorem 1.2 (5).

Lemma 7.1.

(1) We have

Hm
M (X,Z(r)) ∼=

⎧⎨⎩Hm
M (K(X),Z(2)) (m � 1, r = 2)

0 (m > r + 2)

where K(X) denotes the function field of X.
(2) Hm

M (X, Z(2)) is isomorphic to the cohomology at deree m −2 of the Gersten complex 
of Milnor K-groups

KM
2 (K(X)) −→

⊕
x∈X1

κ(x)× −→
⊕
x∈X2

Z

(deg 0) (deg 1) (deg 2)

for any m � 2. In particular, we have H4
M (X, Z(2)) ∼= CH0(X), the Chow group of 

0-cycles modulo rational equivalence.
(3) Assume that r � 2, and that p � 3 or B(R) = ∅. Then the cycle class map (see §2.3)

clm,r
Λn

: Hm
M (X,Λn(r)) −→ Hm(X,Tn(r))

is bijective for any m ∈ Z with (m, r) �= (5, 2) and any n � 1. Consequently, there 
exists a short exact sequence

0 −→ Hm
M (X,Z(r))/pn −→ Hm(X,Tn(r)) −→ pnHm+1

M (X,Z(r)) −→ 0
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for the same (m, n), where for an abelian group M , pnM (resp. M/pn) denotes the 

kernel (resp. cokernel) of the map M
×pn

−→ M .

Proof. There exists a coniveau spectral sequence

Ea,m
1 =

⊕
x∈Xa

Hm−a
M (x,Z(r − a)) =⇒ Ha+m

M (X,Z(r)) (7.1.1)

by [Ge2] Proposition 2.1, whose Ea,m
1 -terms are zero in each of the following cases for 

the reason of the dimension of cycles and the codimension of points:

◦ m > r ◦ a < 0 ◦ a > 2 ◦ m < a = r ◦ m � a = r − 1

See [B2] Theorem 6.1 for the vanishing in the last case. The assertions (1) and (2) follow 
from these facts and the Nesterenko-Suslin-Totaro theorem

H q
M (Spec(F ),Z(q)) ∼= KM

q (F )

for any field F and any q � 0, see [NS], [To].
To prove the assertion (3), we consider a coniveau spectral sequence analogous to 

(7.1.1)

Ea,m
1 =

⊕
x∈Xa

Hm−a
M (x,Λn(r − a)) =⇒ Ha+m

M (X,Λn(r)), (7.1.2)

whose Ea,m
1 -terms are zero in each of the following cases:

◦ m > r ◦ a < 0 ◦ a > 2

On the other hand, since r � 2, there is a coniveau spectral sequence of étale cohomology 
(see [JSS] (5.10.1))

Ea,m
1 =

⊕
x∈Xa

Hm−a(x,Λn(r − a)) =⇒ Ha+m(X,Tn(r)), (7.1.3)

where the coefficients Λn(s) (s ∈ Z) on the points are those in (2.2.2). The Ea,m
1 -terms 

of (7.1.3) are zero in each of the following cases:

◦ m > 3 ◦ m < a ◦ a < 0 ◦ a > 2.

Here we have used the well-known fact that cdp(κ(x)) = 3 − a for any a � 0 and 
x ∈ Xa (see e.g., [T] Theorem 3.1, [Se2] Chapter I I, §4.2 Proposition 11). There is a 
map of spectral sequences from (7.1.2) to (7.1.3) induced by cycle class maps of motivic 
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cohomology groups by the commutative diagrams (2.3.3) and (2.3.4) in §2.3. The cycle 
class map

Hm−a
M (x,Λn(r − a)) −→ Hm−a(x,Λn(r − a))

is bijective for any a � 0, any point x ∈ Xa and any m � r by Rost-Voevodsky [V1], 
[V2] Theorem 6.16 and Geisser-Levine [GL2] Theorem 7.5 (resp. Bloch-Gabber-Kato 
[BK1] Theorem 2.1 and Geisser-Levine [GL1] Theorem 1.1), when ch(x) �= p (resp. when 
ch(x) = p). If r � 3, then the map clm,r

Λn
in question is bijective by these facts. As for 

the case r = 2, it remains to check that the Ea,3
∞ -terms of (7.1.3) are zero for a = 0 and 

1, which is a consequence of Kato’s Hasse principle [KCT] p. 145, Corollary. �
Remark 7.2. If we assume the Beilinson-Soulé vanishing conjecture ([So3] p. 501, Con-
jecture) for points of X, then we would have

Hm
M (X,Z(r)) ∼=

{
H 1

M (K(X),Z(r)) (m = 1)
0 (m � 0)

up to small torsion for any r � 2, by the same arguments as in the proof of Lemma 7.1 (1).

7.2. p-adic Abel-Jacobi mappings and finiteness results

Let r be an integer with r � 2. We define a p-adic cycle class map

clm,r
p : Hm

M (X,Z(r)) ⊗̂Zp −→ Hm(X,Zp(r))

as the projective limit with respect to n � 1 of the cycle class map

clm,r
/pn : Hm

M (X,Z(r))/pn −→ Hm
M (X,Λn(r))

clmΛn−→
�

Hm(X,Tn(r)).

See Lemma 7.1 (3) for the isomorphism clm,r
Λn

. Since XK is a curve, Hm(XK , Zp(r)) is 
torsion-free, and

H0(B,Hm(X,Zp(r))) ⊂ Hm(XK ,Zp(r))GK = 0 (7.2.1)

by Proposition 3.6 (1) and for the reason of weights. We define a p-adic Abel-Jacobi 
mapping

ajm,r
p : Hm

M (X,Z(r)) ⊗̂Zp −→ H 1(B,Hm−1(X,Zp(r)))

as the map induced by clm,r
p and an edge map of the spectral sequence (4.1.1):

Ea,b
2 = Ha(B,Hb(X,Zp(r))) =⇒ Ha+b(X,Zp(r)). (7.2.2)
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We first observe the following straight-forward remarks:

Proposition 7.3. Let m and r be integers with r � 2 and (m, r) �= (5, 2). Assume that 
p � 3 or B(R) = ∅. Then the following five conditions are equivalent to one another :

(i) ajm,r
p has finite cokernel.

(ii) clm,r
p has finite cokernel.

(iii) clm,r
p is surjective.

(iv) Hm+1
M (X, Z(r)){p} is finite.

(v) Hm+1
M (X, Z(r))p-Div is uniquely p-divisible.

Moreover if m � 1, these conditions are equivalent to

(i′) ajm,r
p is surjective.

Proof. The term Ea,m
2 of (7.2.2) is finite for any a � 2 by Theorems 6.1 (1) and 6.6, 

which shows (iii)⇒ (i). The assertion (i)⇒ (ii) is a consequence of the following fact (a), 
and the assertion (ii)⇒ (iii) is a consequence of the fact (b) below, where Tp denotes the 
p-Tate module:

(a) The canonical map

Hm(X,Zp(r)) −→ H1(B,Hm−1(X,Zp(r)))

has finite kernel by Theorem 6.6.
(b) By taking the projective limit with respect to n � 1 of the short exact sequence of 

Lemma 7.1 (3), we have Coker(clm,r
p ) ∼= Tp(Hm+1

M (X, Z(r))), which are torsion-free.

We next prove (iii) ⇔ (iv). Indeed, by taking the inductive limit with respect to n � 1
of the short exact sequence of Lemma 7.1 (3), we get an exact sequence

0 → Hm
M (X,Z(r)) ⊗Qp/Zp → Hm(X,Qp/Zp(r)) → Hm+1

M (X,Z(r)){p} → 0, (7.2.3)

which imply that Hm+1
M (X, Z(r)){p} is cofinitely generated over Zp, see Theorem 4.2 (2). 

Hence

(iii) (b)⇐⇒ Tp(Hm+1
M (X,Z(r))) = 0 ⇐⇒ (iv).

The assertion (iv)⇒ (v) is obvious, and the assertion (v)⇒ (iv) also follows from the fact 
that Hm+1

M (X, Z(r)){p} is cofinitely generated over Zp. Finally, if m � 1, the canonical 
map in (a) is bijective by (7.2.1), which shows that (iii) is equivalent to (i′). �

The following lemma will be useful in what follows.
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Lemma 7.4. Assume that p � 3 or B(R) = ∅. Then:

(1) clm,r
p is injective for any m ∈ Z and r � 2.

(2) We have H5(X, Tn(2)) ∼= Λn for any n � 1, and Hm(X, Tn(r)) = 0 for any m � 5, 
r � 2 and n � 1 with (m, r) �= (5, 2).

Proof. The assertion (1) follows from Lemma 7.1 (1) and (3). The assertions in (2) follow 
from the duality (see Corollary 2.11 (2), (3.1.2))

Hm(X,Tn(r)) ∼= H5−m(X,Tn(2 − r))∗.

The details are straight-forward and left to the reader. �
The following result gives an extension of the vanishing assertion in Lemma 7.1 (1):

Proposition 7.5. Assume that p � 3 or B(R) = ∅. Then

Hm
M (X,Z(r)){p}, Hm

M (X,Z(r)) ⊗̂Zp and Hm(X,Zp(r))

are zero for any m � 5 and r � 3. In particular, Hm
M (X, Z(r)) is uniquely p-divisible for 

the same (m, r).

Proof. We have Hm(X, Zp(r)) = 0 by Lemma 7.4 (2), so Hm
M (X, Z(r)) ⊗̂Zp = 0 by 

Lemma 7.4 (1). To show that Hm
M (X, Z(r)){p} = 0, we use the surjectivity of the bound-

ary map

Hm−1(X,Qp/Zp(r)) � Hm
M (X,Z(r)){p}

of (7.2.3). By Lemma 7.4 (2), we have Hm−1(X, Qp/Zp(r)) = 0 for any m � 6, which 
implies that Hm

M (X, Z(r)){p} is zero for any m � 6. As for the case m = 5, we have 
H 4(X, Qp/Zp(r)) = 0. Indeed, it is finite by Corollary 6.7, and p-divisible by the exact 
sequence (see Proposition 2.5)

· · · −→ H4(X,Qp/Zp(r))
×p−→ H 4(X,Qp/Zp(r)) −→ H 5(X,T1(r)) −→ · · ·

and Lemma 7.4 (2). Thus H5
M (X, Z(r)){p} is zero. �

Proposition 7.6. Assume that p � 3 or B(R) = ∅. Then for any r � 3, we have

H 4
M (X,Z(r)){p} ∼= H4

M (X,Z(r)) ⊗̂Zp
�−→

cl4,rp

H4(X,Zp(r)),

which are all finite.
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Proof. The cycle class map cl4,rp is injective by Lemma 7.4 (1), and surjective by Propo-
sition 7.3 (iv)⇒ (iii) and the vanishing of H5

M (X, Z(r)){p} in Proposition 7.5. The finite-
ness of H4(X, Zp(r)) follows from Corollary 6.7.

We next prove that H4
M (X, Z(r)){p} is finite. By Proposition 7.3 (i)⇒ (iv), it is enough 

to check that the map

aj3,rp : H3
M (X,Z(r)) ⊗̂Zp −→ H1(B,H2(X,Zp(r))) ∼= H1(B[p−1],Zp(r − 1))

has finite cokernel, where the last isomorphism follows from Proposition 3.4 (2) and 
Lemma 2.1 (2) for B. Take a finite morphism f : B′ → X such that B′ is regular 1-
dimensional, and such that the composite g : B′ → X → B is finite flat. To check the 
finiteness of Coker(aj3,rp ), we construct a Chern character (7.2.6) below, using the fact 
due to Quillen ([Q1] Theorem 8) that the algebraic K -group K i(k) of a finite field k is 
finite for any i � 1. By this fact and the localization sequence of algebraic K -groups 
([Q2] p. 113, Corollary of Theorem 5), we have

K i(B′) ⊗Q ∼= K i(L) ⊗Q for any i � 2, (7.2.4)

where L denotes the function field of B′. On the other hand, the Chern character

chM
F,i : K i(F ) ⊗Q −→

⊕
j�0

H2j−i
M (F,Z(j)) ⊗Q

is bijective for any field F by Bloch [B2] Theorem 9.1. Applying this fact to the closed 
points of B′ and Levine’s localization [Le] Theorem 1.7 to B′, we obtain

H2j−i
M (B′,Z(j)) ⊗Q ∼= H2j−i

M (L,Z(j)) ⊗Q for any i � 2. (7.2.5)

By (7.2.4) and (7.2.5), the Chern character chM
L,2r−3 defines a Chern character

chM,r−1
B′,2r−3 : K2r−3(B′) ⊗Q −→ H 1

M (B′,Z(r − 1)) ⊗Q (r � 3), (7.2.6)

which fits into the following commutative diagram:

K2r−3(B′) ⊗Qp

chM,r−1
B′,2r−3⊗idQp

chét,r−1
B′,2r−3

H1
M (B′,Z(r − 1)) ⊗Qp

f∗

H1(B′[p−1],Qp(r − 1))

g∗

H 3
M (X,Z(r)) ⊗Qp H1(B[p−1],Qp(r − 1)).

Here chr−1,ét
B′,2r−3 denotes the étale Chern character, and the middle and the bottom hori-

zontal arrows are the Qp-linear extension of the following composite maps, respectively:



214 K. Sato / Journal of Number Theory 227 (2021) 166–234
H 1
M (B′,Z(r − 1)) −→ H1

M (B′,Z(r − 1)) ⊗̂Zp

cl1,r−1
p−→ H1(B′[p−1],Zp(r − 1))

H 3
M (X,Z(r)) −→ H3

M (X,Z(r)) ⊗̂Zp

aj3,rp−→ H 1(B[p−1],Zp(r − 1)).

The arrow g∗ is surjective by a standard norm argument. Now the finiteness of 
Coker(aj3,rp ) in question follows from the surjectivity of chét,r−1

B′,2r−3 ([So1] Theorem 1, 
[Ka] Theorem 5.3). Thus H4

M (X, Z(r)){p} is finite.
Finally, the natural map H 4

M (X, Z(r)){p} → H4
M (X, Z(r)) ⊗̂Zp is injective by the 

finiteness of H4
M (X, Z(r)){p}. To show the surjectivity of this map, consider the following 

commutative triangle:

H 3(X,Qp/Zp(r))
δ

δ′

H 4
M (X,Z(r)){p}

cl4,rp |tors

H 4(X,Zp(r)),

where the arrow δ denotes the boundary map of (7.2.3), and the arrow δ′ denotes the 
boundary map of the long exact sequence obtained from Proposition 2.5

· · · → H3(X,Qp(r)) → H 3(X,Qp/Zp(r))
δ′−→ H4(X,Zp(r)) → H4(X,Qp(r)) → · · · .

The arrow cl4,rp |tors means the restriction of cl4,rp to H4
M (X, Z(r)){p}. Since δ′ is surjective 

by the finiteness of H 4(X, Zp(r)), cl4,rp |tors is surjective as well, which completes the 
proof. �

The following corollary is a summary of known facts and our results on clm,r
p and 

ajm,r
p :

Corollary 7.7. Let r be an integer with r � 2, and assume that p � 3 or B(R) = ∅. Then:

(0) Hm
M (X, Z(r)) is uniquely p-divisible for any m � 0 and any m � 5, and zero for any 

m > r + 2.
(1) cl1,rp and aj1,rp are injective.
(2) cl2,rp is injective, and aj2,rp has finite kernel.
(3) cl3,rp is bijective, and aj3,rp has finite kernel and cokernel.
(4) cl4,rp is bijective, and H4

M (X, Z(r)){p} is finite. Moreover, we have H4
M (X, Z(r)){p} ∼=

H4
M (X, Z(r)) ⊗̂Zp, and aj4,rp is zero.

Proof. The assertion (0) for m � 0 follows from Lemmas 7.1 (3) (for m < 0) and 7.4 (1) 
(for m = 0) and the vanishing of Hm(X, Tn(r)) for m < 0 and H0(X, Zp(r)). See 
Lemma 7.1 (1) and Proposition 7.5 for the other claims in (0). The injectivity of clm,r

p in 
(1)–(4) is nothing other than Lemma 7.4 (1), and the finiteness of Ker(ajm,r

p ) in (2)–(4) 
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follows from (a) in the proof of Proposition 7.3. The injectivity of aj1,rp in (1) is that 
of cl1,rp . By Proposition 7.3, the surjectivity of clm,r

p and the finiteness of Coker(ajm,r
p )

are both equivalent to the finiteness of Hm+1
M (X, Z(r)){p}. This last finiteness for the 

case m = 4 has been mentioned in (0); the case (m, r) = (3, 2) is due to Bloch [B1], 
Kato-Saito [KSa], see also Lemma 7.1 (2); the case m = 3 and r � 3 is a consequence of 
Proposition 7.6. Finally, aj4,rp is zero for any r � 2, because H1(B, H3(X, Zp(r))) = 0 by 
(3.1.4). �
7.3. p-Tate-Shafarevich groups

Let r be an integer with r � 2. We put Tm := Hm(XK , Zp), V m := Tm ⊗Zp
Qp and

H1
/f (K,Tm ⊗Qp/Zp(r)) := H1(K,Tm ⊗Qp/Zp(r))

Image of H1
f (K,V m(r)) .

Note that Tm⊗Qp/Zp
∼= Hm(XK , Qp/Zp), because XK is a curve by assumption. Let P

(resp. P∞) be the set of all places of K (resp. all infinite places of K). We often identify 
a finite place of K with a closed point of B. For each v ∈ P , we put

H 1
/f (Kv, T

m ⊗Qp/Zp(r)) := H1(Kv, T
m ⊗Qp/Zp(r))

Image of H1
f (Kv, V m(r))

where H1
f (Kv, V m(r)) means zero for any v ∈ P∞. This group for v ∈ B0 has been used 

in the proof of Theorem 6.6. For m � 0 and r � 2 with (m, r) �= (2, 2), the natural map

αm,r : H 1
/f (K,Tm ⊗Qp/Zp(r)) −→

⊕
v∈P

H 1
/f (Kv, T

m ⊗Qp/Zp(r)) (7.3.1)

has finite kernel and cokernel, and we have

Coker(αm,r) ∼= (T 2−m ⊗Qp/Zp(2 − r))GK )∗ (7.3.2)

by [BK2] Proposition 5.14 (i), (ii). The p-Tate-Shafarevich group of the motive
Hm(XK)(r) is defined as Ker(αm,r) and often denoted by III(p)(Hm(XK)(r)). We fix a 
finite subset S′ ⊂ B0 containing all points of characteristic p and all points where X has 
bad reduction.

Theorem 7.8. Assume that p � 3 or B(R) = ∅, and assume further that H 3
M (X, Z(r)){p}

is finite. For each v ∈ S′ and a = 2, 3, we put

ea,m,r
v := #Ha(Bv,H

m(Xv,Zp(r))),

which is finite by Corollary 5.6 (2 ). Then we have
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χ(α1,2)
χ(α0,2) =

χ(aj3,2p )
χ(aj2,2p )

· #CH0(X){p}
#Pic(OK){p} ·

∏
v∈S′

e2,1,2
v · e3,0,2

v

e2,0,2
v · e3,1,2

v

(r = 2)

χ(α1,r)
χ(α0,r) ·χ(α2,r) =

χ(aj3,rp )
χ(aj2,rp )

·#H4
M (X,Z(r)){p} ·

∏
v∈S′

e2,1,r
v · e3,0,r

v · e3,2,r
v

e2,0,r
v · e2,2,r

v · e3,1,r
v

(r � 3),

where we put χ(f) := # Coker(f)/# Ker(f) for a homomorphism f : M → N of abelian 
groups with finite kernel and cokernel.

See Proposition 7.6 for the finiteness of H4
M (X, Z(r)){p}. The alternating products of 

local terms ea,m,r
v will be computed in §8 below. To prove Theorem 7.8, we first prove 

Lemma 7.9 below as a preparation, which relies on the assumption that d = 2. We put

H1
/f (B,Hm(X,Qp/Zp(r))) := H 1(B,Hm(X,Qp/Zp(r)))

Image of H 1
f (K,V m(r))

using Corollary 6.4. For each v ∈ B0, we put

H1
/f (Bv,H

m(X,Qp/Zp(r))) := H 1(Bv,H
m(X,Qp/Zp(r)))

Image of H1
f (Kv, V m(r))

using Corollary 5.6 (1).

Lemma 7.9. There are canonical isomorphisms of finite p-groups

H 1
/f (B,Hm(X,Qp/Zp(r))) ∼= H 2(B,Hm(X,Zp(r))), (7.3.3)

H 2(B,Hm(X,Qp/Zp(r))) ∼= H 3(B,Hm(X,Zp(r))), (7.3.4)

for any m � 0 and r � 2. Similarly, there are canonical isomorphisms of finite p-groups

H 1
/f (Bv,H

m(Xv,Qp/Zp(r))) ∼= H 2(Bv,H
m(Xv,Zp(r))), (7.3.5)

H 2(Bv,H
m(Xv,Qp/Zp(r))) ∼= H 3(Bv,H

m(Xv,Zp(r))), (7.3.6)

for any m � 0, r � 2 and v ∈ B0. Moreover, the groups in (7.3.5) and (7.3.6) are zero 
for any v ∈ B0 � S′.

Proof. We prove only (7.3.3) and (7.3.4), and omit the proof of (7.3.5) and (7.3.6). 
We start with the following short exact sequence on Xét, which is a simple case of 
Proposition 2.5:

0 −→ Tn′(2 − r)X
pn

−→ Tn′+n(2 − r)X
Rn

−→ Tn(2 − r)X −→ 0.

Concerning this exact sequence of étale sheaves, we first prove the following claim:
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(♣) The associated long exact sequence of higher direct image sheaves breaks up into 
short exact sequences on Bét

0 → R2−mπX/B∗Tn′(2 − r)X → R2−mπX/B∗Tn′+n(2 − r)X
→ R2−mπX/B∗Tn(2 − r)X → 0 for m = 0, 1, 2.

Proof of the claim (♣). We write Sm = Sm,r,n′,n for the sequence on Bét in the display, 
and prove that Sm is exact for m = 0, 1, 2. We first note that S2 is isomorphic to the 
short exact sequence (of sheaves) on Bét

0 −→ Tn′(2 − r)B
pn

−→ Tn′+n(2 − r)B
Rn

−→ Tn(2 − r)B −→ 0

by the connectedness of geometric fibers of π : X → B and the assumption that r � 2. 
The stalks of the sheaves in S0 at v ∈ B0 are zero if ch(v) = p by [SGA4] X.5.2 
(and those in S1 at v ∈ B0 are zero if ch(v) = p and r > 2 by the proper base-
change theorem). Thus it remains to check that the stalk of S0 at x is exact for any 
point x ∈ B with ch(x) �= p. Indeed, if ch(x) �= p, then one can check that the stalk 
(R2πX/B∗Tn(2 − r)X)x is isomorphic to the direct sum of copies of Λn(1 − r) over the 
set of the irreducible components of X ×B x, by taking a smooth dense open subset U
of X ×B x and comparing the stalk in question with the cohomology of U with compact 
support. This completes the proof of (♣). �

We return to the proof of Lemma 7.9. From the short exact sequences in the claim 
(♣) for n, n′ � 1, one obtains distinguished triangles in D(Bét)

Hm(X,Tn(r)) −→ Hm(X,Tn+n′(r)) −→ Hm(X,Tn′(r)) −→ Hm(X,Tn(r))[1],

which yield the following long exact sequence by Proposition 4.1 and a standard argu-
ment:

· · · → Ha(B,Hm(X,Qp(r))) → Ha(B,Hm(X,Qp/Zp(r))) → Ha+1(B,Hm(X,Zp(r)))

→ Ha+1(B,Hm(X,Qp(r))) → · · · .

Now (7.3.4) follows from the finiteness of H2(B, Hm(X, Qp/Zp(r))) (Theorem 6.6) and 
the vanishing of H3(B, Hm(X, Qp(r))) (Theorem 6.1 (1)). Similarly, (7.3.3) follows from 
Theorems 4.2 (2) and 6.1 (2) and the vanishing of H2(B, Hm(X, Qp(r))). Finally, the 
groups on the right hand side of (7.3.5) and (7.3.6) are zero for any v ∈ B0 � S′ by 
Lemma 5.2. �
Proof of Theorem 7.8. The map clm,r

p is bijective for m = 2 by the finiteness assump-
tion on H3

M (X, Z(r)){p} (see Proposition 7.3 (iv)⇒ (iii)), and bijective for m = 3, 4 by 
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Corollary 7.7 (3), (4). In particular for m = 2, 3, the map ajm,r
p is identified with the 

canonical map

Hm(X,Zp(r)) −→ H1(B,Hm−1(X,Zp(r))).

We put ea,m,r := # Ha(B, Hm(X, Zp(r))) for each a � 2, m � 0 and r � 2 with 
(a, m, r) �= (3, 2, 2), which is finite by Theorems 6.1 (1) and 6.6. One can easily derive an 
equality

χ(aj3,rp )
χ(aj2,rp )

= e2,0,r · e2,2,r · e3,1,r

e2,1,r · e3,0,r ·#H4(X,Zp(r))

for any r � 2, from the spectral sequence (7.2.2) and the vanishing (7.2.1). Therefore by 
Corollary 7.7 (4) and the isomorphisms

H2(B,H2(X,Zp(2)))
(3.1.7)∼= H2(B,Zp(1)) ∼= Pic(OK) ⊗ Zp

∼= Pic(OK){p},
H3(B,H2(X,Zp(r))) ∼= H 3(B,Zp(r − 1)) ∼= H3(B[p−1],Zp(r − 1)) = 0 (r � 3)

we are reduced to showing that

χ(αm,r) = e3,m,r

e2,m,r
×

∏
v∈S′

e2,m,r
v

e3,m,r
v

for ∀(m, r) �= (2, 2), r � 2. (7.3.7)

To prove (7.3.7), we use the same notation as in the proof of Theorem 6.6, and consider 
the following commutative diagram with exact rows for (m, r) �= (2, 2) with r � 2, where 
the coefficients Hm(X, Qp/Zp(r)) in the upper row and Hm(Xv, Qp/Zp(r)) in the lower 
row are omitted:

H1
/f (B) H 1

/f (K)

αm,r

⊕
v∈B0

H 2
v(B)

(∗)

δ �

⊕
v∈B0

H 1
/f (Bv)

⊕
v∈B0

H 1
/f (Kv)

⊕
v∈B0

H 2
v(Bv)

(∗∗)

(∗)
H 2(B)

β

H2(K)

γ �

⊕
v∈B0

H3
v(B)

δ �

(∗∗) ⊕
v∈B0

H 2(Bv)
⊕
v∈B0

H2(Kv)
⊕
v∈B0

H3
v(Bv)



K. Sato / Journal of Number Theory 227 (2021) 166–234 219
In this diagram, the arrows δ are bijective as explained in the proof of Theorem 6.6. The 
arrow γ is bijective by the Hasse principle of Jannsen ([J] p. 337, Theorem 3 (d)) and 
the fact that Hm(XK , Qp/Zp(r)) is divisible. From the above commutative diagram, we 
obtain a six-term exact sequence

0 → Ker(αm,r) → H1
/f (B,Hm(X,Qp/Zp(r))) →

⊕
v∈B0

H1
/f (Bv,H

m(Xv,Qp/Zp(r)))

→ Coker(αm,r) → H2(B,Hm(X,Qp/Zp(r))) →
⊕
v∈B0

H2(Bv,H
m(Xv,Qp/Zp(r))) → 0.

By Lemma 7.9, this sequence yields an exact sequence of the following from:

0 −→ Ker(αm,r) −→ H2(B,Hm(X,Zp(r))) −→
⊕
v∈S′

H 2(Bv,H
m(Xv,Zp(r)))

−→ Coker(αm,r) −→ H3(B,Hm(X,Zp(r))) −→
⊕
v∈S′

H3(Bv,H
m(Xv,Zp(r))) −→ 0,

which implies the formula (7.3.7). �
8. Local terms and zeta values (d = 2)

In this section, we compute the local terms e2,m,r
v and e3,m,r

v that appear in The-
orem 7.8. The results in §§8.1–8.2 below were obtained in discussions with Takao 
Yamazaki.

The setting and the notation remain as in §7. In particular, we assume d = 2. Put 
Tm := Hm(XK , Zp) and V m := Tm⊗Zp

Qp. We further fix the following notation. For a 
finite place v of K, we write kv (resp. Yv, Yv) for the residue field at v (resp. X ⊗OK

kv, 
X ⊗OK

kv), and Xv (resp. Xv) for X ⊗OK
Ov (resp. X ⊗OK

Osh
v ), where Ov (resp. Osh

v ) 
denotes the completion of OK at v (resp. the strict henselization of Ov at its maximal 
ideal). We put qv := #kv.

8.1. Comparison with local points

We first show the following lemma, which refines the case of q = 1 of Theorem 5.3
under the assumption that d = 2.

Lemma 8.1. We have

H 1(Bv,H
m(Xv,Zp(r))) = H1

f (Kv, T
m(r))

as subgroups of H1(Kv, Tm(r)), for any finite place v of K, m � 0 and r � 2.
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Proof. Consider a commutative diagram (see §5 for the definition of H1
/f (Kv, V m(r)))

H 1(Kv,H
m(Xv,Zp(r)))

d H 2
v(Bv,H

m(Xv,Zp(r)))

b

H1(Kv, T
m(r)) a H 1

/f (Kv, V
m(r)) d′

H2
v(Bv,H

m(Xv,Qp(r))),

where the arrows d and d′ are connecting maps of localization sequences of cohomology of 
Bv, and the existence and the injectivity of d′ is a consequence of Theorem 5.3 for q = 1. 
The arrow a is the natural map, and we have Ker(a) = H 1

f (Kv, Tm(r)) by definition. 
On the other hand, since H1

v(Bv, Hm(Xv, Zp(r))) = 0 by Proposition 3.6 (1), we have

Ker(d) = H 1(Bv,H
m(Xv,Zp(r))).

Thus it remains to check that the arrow b is injective, which follows from the facts that

H2
v(Bv,H

m(Xv,Zp(r))) = 0 if v|p and r � 3 (Corollary 3.7 (1))

and that otherwise

H2
v(Bv,H

m(Xv,Zp(r))) ∼= H1(kv,H 2−m(Yv,Qp/Zp(2 − r)))∗ ([Ma] (2.4))

is torsion-free because dim(Yv) = 1 and cd(kv) = 1. �
The following corollary follows from Proposition 3.6 (1), Lemma 8.1 and a similar 

argument as in the proof of Lemma 6.2:

Corollary 8.2. We have

H1(B,Hm(X,Zp(r))) = H1
f (K,Tm(r))

as subgroups of H1(K, Tm(r)), for any m � 0 and r � 2.

8.2. Comparison with zeta values of the fibers (the case v� | p)

In this subsection, we always assume that v� | p and r � 2. Note that Ha(Bv, Hm(Xv,

Zp(r))) is finite for any (a, m, r) by Theorems 4.2 (1) and 5.3, and zero unless a = 0, 1, 2, 3
and m = 0, 1, 2. We put

ea,m,r
v := #Ha(Bv,H

m(Xv,Zp(r)))

for each (a, m, r). Note that ζ(Yv, r) is a non-zero rational number, since dim(Yv) = 1. 
Let | |p be the p-adic absolute value on Qp such that |p|p = p−1.
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Lemma 8.3. We have

|ζ(Yv, r)|−1
p =

∏
(a,m)

(ea,m,r
v )(−1)a+m

,

where (a, m) on the right hand side runs through all pairs with 0 � a � 3 and 0 � m � 2.

Proof. Let Gv be the absolute Galois group of kv, and let Tp be a free Zp-module of 
finite rank on which Gv acts continuously and Zp-linearly. Let ϕv ∈ Gv be the arithmetic 
Frobenius element, and assume that ϕv does not have eigenvalue 1 on Tp ⊗Zp

Qp. Then 
it is well-known that

#H1(kv, Tp) =
∣∣detQp

(1 − ϕ−1
v |Tp ⊗Zp

Qp)
∣∣−1
p

. (8.2.1)

Now let Frv be the geometric Frobenius operator acting on H i(Yv, Qp). We have ϕv =
qrv ·Fr−1

v on H i(Yv, Qp(r)), and

|ζ(Yv, r)|−1
p =

∏
i�0

∣∣detQp
(1 − q−r

v ·Frv |H i(Yv,Qp))
∣∣(−1)i

p
(trace formula [G], §2)

=
∏
i�0

(#H 1(kv,H i(Yv,Zp(r))))(−1)i+1
(by (8.2.1))

(�)=
∏
i�0

(#H i(Yv,Zp(r)))(−1)i (see below)

=
∏
i�0

(#H i(Xv,Zp(r)))(−1)i (proper base change)

=
∏

(a,m)

(ea,m,r
v )(−1)a+m

(spectral sequence (4.1.1))

as claimed, where the first equality is the trace formula in [G], §2 and the equality (�) 
follows from the fact that H i(Yv, Zp(r))Gv = 0 for any i � 0 (because dim(Yv) = 1 and 
r � 2). �

If Xv is smooth over Ov (and v� | p), then one obtains easily from (8.2.1) that

#H1
f (Kv, T

1(r)) =
∣∣detQp

(1 − q−r
v ·Frv |H1(Yv,Qp))

∣∣−1
p

.

See also [BK2] Theorem 4.1 (i). The following theorem extends this fact to the general 
v� | p case (see also Lemma 5.2):



222 K. Sato / Journal of Number Theory 227 (2021) 166–234
Theorem 8.4. We have ea,2,rv = 1 for a = 2, 3, and

#H1
f (Kv, T

1(r))∣∣ζ(Yv, r)(1 − q1−r
v )(1 − q−r

v )
∣∣−1
p

= e2,1,r
v · e3,0,r

v

e2,0,r
v · e3,1,r

v

.

Proof. We first show that ea,2,rv = 1 for a = 2, 3. Indeed, we have

Ha(Bv,H
2(Xv,Zp(r)))

(3.1.7)∼= Ha(Bv,Zp(r − 1)) ∼= Ha(v,Zp(r − 1)) = 0

for any a � 2. To prove the second assertion, we note the following facts:

(a) e0,m,r
v = 1 for any m � 0, by Proposition 3.6 (1), Theorem 5.3 and the fact that Tm

is torsion-free.
(b) e1,m,r

v = # H1
f (Kv, Tm(r)) by Lemma 8.1.

(c) e1,0,r
v = |1 − q−r

v |−1
p and e1,2,r

v = |1 − q1−r
v |−1

p , by (b) and [BK2] Theorem 4.1 (i).

Combining these facts with Lemma 8.3, we have∣∣ζ(Yv, r)(1 − q1−r
v )(1 − q−r

v )
∣∣−1
p

=
∣∣(1 − q1−r

v )(1 − q−r
v )

∣∣−1
p

· e1,1,r
v · e2,2,r

v

e1,0,r
v · e1,2,r

v · e3,2,r
v

· e
2,0,r
v · e3,1,r

v

e2,1,r
v · e3,0,r

v

(Lemma 8.3 and (a))

= #H1
f (Kv, T

1(r)) · e
2,0,r
v · e3,1,r

v

e2,1,r
v · e3,0,r

v

, ((b), (c), e2,2,r
v = e3,2,r

v = 1)

which shows the assertion. �
8.3. Comparison with zeta values of the fibers (the case v|p)

Let v be a finite place of K dividing p. We assume here that Xv is smooth over Ov. 
For each m = 0, 1, 2, we fix a Haar measure μm

v on Hm
dR(XKv

/Kv) such that

μm
v (Hm

dR(Xv/Ov)) = 1,

where Hm
dR(Xv/Ov) denotes the (usual) algebraic de Rham cohomology of Xv/Ov. Via 

the exponential isomorphism of Corollary 5.11:

exp : Hm
dR(XKv

/Kv)
�−→ H1

f (Kv, V
m(r)) (r � 2),

we regard μm
v as a Haar measure on H1

f (Kv, V m(r)). Let K0 = Kv,0 be the fraction 
field of the Witt ring W := W(kv), and let σ be the Frobenius automorphism of K0. 
Let | |p be the p-adic absolute value on Q such that |p|p = p−1. We prove here a p-adic 
counterpart of Theorem 8.4 under some assumptions.
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Theorem 8.5. Assume that p − 2 � r � 2 and that Kv/Qp is unramified (i.e., Xv is 
smooth over Zp). Then we have ea,2,rv = 1 for a = 2, 3, and

μ1
v(H 1

f (Kv, T
1(r)))∣∣ζ(Yv, r)(1 − q1−r

v )(1 − q−r
v )

∣∣−1
p

= e2,1,r
v · e3,0,r

v

e2,0,r
v · e3,1,r

v

,

where we put ea,m,r
v := # Ha(Bv, Hm(Xv, Zp(r))) for a �= 1.

To prove this theorem, we first show Lemma 8.6 below, which is a p-adic analogue 
of Lemma 8.3 (compare with [FM] Proposition 5.10). For a continuous homomorphism 
φ : M → N of locally compact groups with finite kernel and with open image, and for a 
Haar measure ν on N , we define a Haar measure ν′ on M by

ν′(Z) :=
r∑

i=1
ν(φ(Zi))

for any Borel subset Z ⊂ M , where Z = Z1 � Z2 � · · · � Zr is a partition of Z by Borel 
subsets Z1, Z2, . . . , Zr with each φ|Zi

injective. We call ν′ the measure induced by ν and 
often denote it by ν.

Lemma 8.6. Under the same assumptions as in Theorem 8.5, we have

|ζ(Yv, r)|−1
p =

∏
(a,m)

(ea,m,r
v )(−1)a+m

where (a, m) on the right hand side runs through all pairs with 0 � a � 3 and 0 � m � 2; 
we put

e1,m,r
v := μm

v (H 1(Bv,H
m(X,Zp(r))))

with μm
v the measure on H1(Bv, Hm(X, Zp(r))) induced by that on H1

f (Kv, V m(r)).

Proof. We first note that e0,m,r
v = 1 for any m � 0, by Proposition 3.6 (1), Theorem 5.3

and the fact that Hm(XK , Zp) is torsion-free. Hence there exists an edge map induced 
by the spectral sequence (4.1.1)

Hm+1(Xv,Zp(r)) −→ H1(Bv,H
m(X,Zp(r))),

which has finite kernel and cokernel by Theorem 5.3. Concerning the Haar measure μm
v

on Hm+1(Xv, Zp(r)) induced by that on H1(Bv, Hm(X, Zp(r))), we have∏
μi−1
v (H i(Xv,Zp(r)))(−1)i =

∏
(a,m)

(ea,m,r
v )(−1)a+m
i�0
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by the spectral sequence (4.1.1). It remains to show that

|ζ(Yv, r)|−1
p =

∏
i�0

μi−1
v (H i(Xv,Zp(r)))(−1)i . (8.3.1)

By the assumption on Ov, it is isomorphic to W := W (kv), the ring of Witt vectors 
in kv. For each n � 1, we put Xn := Xv ⊗W Wn, and let Sn(r)Xv

be the syntomic 
complex associated with the smooth scheme Xv over W = Ov. Let p(r) Ω•

Xn/Wn
(resp. 

p(r) Ω•
Xv/W

) be the subcomplex

pr ·OXn

d−→ pr−1 ·Ω1
Xn/Wn

(
resp. pr ·OXv

d−→ pr−1 ·Ω1
Xv/W

)
of the de Rham complex Ω•

Xn/Wn
(resp. Ω•

Xv/W
). We note the following facts:

(a) There exists an isomorphism(
p(r)Ω•

Xn/Wn

)
n
[−1] ∼= (Sn(r)Xv

)n

for any r with 2 � r < p in the derived category of complexes of pro-sheaves on
(Yv)ét by [BEK] Theorem 5.4.

(b) The Euler characteristic

χ(Xv,Ω•
Xv/W

/p(r)Ω•
Xv/W

) :=
∏
i�0

(#H i(Xv,Ω•
Xv/W

/p(r)Ω•
Xv/W

))(−1)i

=
∏
(a,b)

(#Ha(Yv,Ωb
Yv/kv

))(−1)a+b(r−b)

agrees with |ζ(Yv, r)|−1
p for any r � 2 ([Mi2] Theorem 0.1 ).

(c) We have Sn(r)Xv
∼= i∗Tn(r) in D(Yv, Λn) for any r with r < p − 1 and any n � 1

([Ku] p. 275, Theorem), where i denotes the closed immersion Yv ↪→ Xv.

By these facts, we have

|ζ(Yv, r)|−1
p = χ(Xv,Ω•

Xv/W
/p(r)Ω•

Xv/W
) (by (b))

=
∏
i�0

μi
v(H i

dR(Xv/W ))(−1)i

μi
v(H i(Xv, p(r)Ω•

Xv/W
))(−1)i

=
∏
i�0

μi
v(H i(Xv, p(r)Ω•

Xv/W
))(−1)i+1

(μi
v(H i

dR(Xv/W )) = 1)

=
∏
i�0

μi
v(H i+1(Xv,Zp(r)))(−1)i+1

(by (a), (c)).

Thus we obtain (8.3.1) and Lemma 8.6. �
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Proof of Theorem 8.5. We first show that ea,2,rv = 1 for any a � 2. Indeed, we have

Ha(Bv,H
2(Xv,Zp(r)))

(3.1.7)∼= Ha(Bv,Zp(r − 1)).

If r = 2, then the last group is zero for any a � 2 because Ha(Bv, Gm) = 0 for any a � 1. 
On the other hand, if r � 3, then by the Tate duality, we have

Ha(Bv,Zp(r − 1)) ∼= Ha(Kv,Zp(r − 1)) ∼= H2−a(Kv,Qp/Zp(2 − r))∗,

which is zero for any a � 2 by the assumptions on Kv and p. Noting that

(a+) e1,0,r
v = |1 − q−r

v |−1
p and e1,2,r

v = |1 − q1−r
v |−1

p by [BK2] Theorem 4.2 for V = Qp(r)
and Qp(r − 1), and again by the assumptions on Kv and p,

one obtains the second assertion from the same computations as in Theorem 8.4. �
9. Global points and zeta values (d = 2)

The setting and the notation remain as in §7 (in particular, d = 2). Put Tm :=
Hm(XK , Zp) and V m := Tm⊗Zp

Qp. In this section, we relate the formula in Theorem 7.8
with zeta values assuming Conjecture 9.1 below for the motives Hm(XK)(r) with m =
0, 1, 2, a weak version of p-Tamagawa number conjecture [BK2] §5. Let S′ be a finite set 
of closed points of B containing all points of characteristic p, and all points where X has 
bad reduction. For m = 0, 1, 2 and r � 2 with (m, r) �= (2, 2), we put

LS′(Hm(XK), r) :=
∏

v∈B0�S′

det(1 − q−r
v ·Frv |V m)−1.

This infinite product on the right hand side converges, because m − 2r � −3. Let Z(p)
be the localization of Z at the prime ideal (p).

9.1. p-Tamagawa number conjecture

Conjecture 9.1 (Bloch-Kato). For any m = 0, 1, 2 and r � 2 with (m, r) �= (2, 2), there 
exists a finite-dimensional Q-subspace Φm,r = Φm,r

p of the Q-vector space

Hm+1
M (XK ,Q(r))Z := Im

(
Hm+1

M (X,Q(r)) → Hm+1
M (XK ,Q(r))

)
satisfying the following conditions (i) and (ii):

(i) The p-adic Abel-Jacobi map

Hm+1
M (XK ,Q(r)) −→ H1(K,V m(r))
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induces an isomorphism Φm,r⊗Qp
∼= H1

f (K, V m(r)), and Beilinson’s regulator map 
to the real Deligne cohomology

Hm+1
M (XK ,Q(r)) −→ Hm+1

D (X/R,R(r))

induces an isomorphism Φm,r ⊗R ∼= Hm+1
D (X/R, R(r)).

(ii) We define Am,r
p (K), the group of p-global points as the pull-back of Φm,r under the 

natural map

H1
f (K,Tm(r)) −→ H 1

f (K,V m(r)) ∼= Φm,r ⊗Qp,

which is a finitely generated Z(p)-module. We further fix an OK-lattice Lm of the 
de Rham cohomology Hm

dR(XK/K), and define a number Rm,r
Φ ∈ R×/Z×

(p) to be the 
volume of the space

Hm+1
D (X/R,Z(p)(r))/Image of Am,r

p (K)

with respect to Lm. See Remark 9.2 (1) below for an explicit description of the 
Deligne cohomology Hm+1

D (X/R, Z(p)(r)). On the other hand, for each v ∈ B0 we 
put

Am,r
p (Kv) := H 1

f (Kv, T
m(r)),

which we call the group of p-local points at v. Then we have

LS′(Hm(XK), r) ≡ χ(αm,r)−1 ·Rm,r
Φ ·

∏
v∈S′

μm
v (Am,r

p (Kv)) mod Z×
(p), (9.1.1)

where μm
v for v� | p means the cardinality, and μm

v for v|p denotes the Haar measure on 
Am,r

p (Kv) constructed from that on Hm
dR(XKv

/Kv) such that μm
v (Lm ⊗OK

Ov) = 1; 
see (7.3.1) for the map αm,r.

Remark 9.2.

(1) The map Am,r
p (K) → Hm+1

D (X/R, Z(p)(r)) induced by the regulator map is injective, 
by the condition (i) for Φm,r and [BK2] Lemma 5.10. Here

Hm+1
D (X/R,Z(p)(r)) =

(
Hm

dR(X/Z) ⊗C

Hm
sing(X ⊗Z C, (2πi)r ·Z(p))

)+

for any m = 0, 1, 2 and r � 2, by definition.
(2) The product on the right hand side of (9.1.1) is independent of the choice of Lm.
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(3) Conjecture 9.1 for m = 0 (resp. m = 2) implies that

ζK(r) ≡ χ(α0,r)−1 ·R0,r
Φ (resp. ζK(r − 1) ≡ χ(α0,r−1)−1 ·R0,r−1

Φ )

modulo Z×
(p) if r � 2 (resp. r � 3) and p is unramified in K. Here we have used the 

fact (c) in the proof of Theorem 8.4 for all v� | p belonging to S′, and the fact (a+) in 
the proof of Theorem 8.5. See also [FM] §5.8.3.

(4) We have Rm,r
Φ = 1 for any m � 3, because Hm+1

D (X/R, Z(p)(r)) is zero for such m’s.
(5) If (m, r) = (2, 2), there exists a Q-subspace Φ2,2 of H3

M (XK , Q(2))Z which is isomor-
phic to H1

M (B, Q(1)) under the push-forward map

H3
M (XK ,Q(2)) −→ H1

M (Spec(K),Q(1)) ∼= K× ⊗Q.

Indeed, by a standard norm argument, the push-forward map

H3
M (X,Q(2)) −→ H 1

M (B,Q(1)) ∼= O×
K ⊗Q

is surjective, and there is a Q-subspace Φ̃2,2 ⊂ H 3
M (X, Q(2)) which maps bijectively 

onto H1
M (B, Q(1)). One can define a desired space Φ2,2 by

Φ2,2 := Im
(
Φ̃2,2 → H 3

M (XK ,Q(2))
)
.

By this construction of Φ2,2, we have

Φ2,2 ⊗Qp
∼= H1

f (K,V 2(2)) (= H 1
f (K,Qp(1))).

See also Corollary 7.7 (3). For (m, r) = (2, 2), we will use the classical class number 
formula instead of (9.1.1), later in Theorem 9.6 below.

Proposition 9.3. Let r be an integer, and let p be a prime number. Assume all the fol-
lowing conditions:

(i) p − 2 � r � 2.
(ii) For any v ∈ B0 dividing p, v is absolutely unramified and X has good reduction at 

v.
(iii) Conjecture 9.1 holds for m = 0, 1 (resp. m = 0, 1, 2), if r = 2 (resp. r � 3).

Then the equivalent conditions (i)–(v) of Proposition 7.3 are satisfied for m = 1, 2 (resp. 
m = 1, 2, 3), if r = 2 (resp. if r � 3). Moreover, we have

Res
s=2

ζ(X, s) ≡ Res
s=1

ζK(s) ·
χ(aj3,2p ) ·#CH0(X) ·R0,2

Φ

χ(aj2,2) ·#Pic(O ) ·R1,2 mod Z×
(p) (r = 2)
p K Φ
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ζ(X, r) ≡
χ(aj3,rp ) ·#H4

M (X,Z(r)){p} ·R0,r
Φ ·R2,r

Φ

χ(aj2,rp ) ·R1,r
Φ

mod Z×
(p) (r � 3)

Proof. The first assertion is obvious. For any r � 2, we have

lim
s→r

ζ(X, s)
ζK(s)ζK(s− 1) = 1

LS′(H 1(XK), r) ·
∏
v∈S′

ζ(Yv, r)
(1 − q−r

v )−1(1 − q1−r
v )−1

≡ χ(α1,r)
R1,r

Φ
·
∏
v∈S′

1
μ1
v(A

1,r
p (Kv))

·
∏
v∈S′

e2,0,r
v · e3,1,r

v ·μ1
v(A1,r

p (Kv))
e2,1,r
v · e3,0,r

v

mod Z×
(p)

= χ(α1,r)
R1,r

Φ
·
∏
v∈S′

e2,0,r
v · e3,1,r

v

e2,1,r
v · e3,0,r

v

by the assumptions (i) – (iii) for m = 1 and Theorems 8.4 and 8.5 (see Remark 9.2 (2)). 
Hence for r = 2, we have

Res
s=2

ζ(X, s) ≡ Res
s=1

ζK(s) · R
0,2
Φ ·χ(α1,2)

χ(α0,2) ·R1,2
Φ

·
∏
v∈S′

e2,0,2
v · e3,1,2

v

e2,1,2
v · e3,0,2

v

mod Z×
(p)

= Res
s=1

ζK(s) ·
χ(aj3,2p ) ·#CH0(X) ·R0,2

Φ

χ(aj2,2p ) ·#Pic(OK) ·R1,2
Φ

by the assumption (iii) for m = 0 and Theorem 7.8. See also Remark 9.2 (3). Similarly 
for any r � 3, we have

ζ(X, r) ≡ R0,r
Φ ·χ(α1,r) ·R2,r

Φ

χ(α0,r) ·R1,r
Φ ·χ(α2,r)

·
∏
v∈S′

e2,0,r
v · e3,1,r

v

e2,1,r
v · e3,0,r

v

mod Z×
(p)

=
χ(aj3,rp ) ·#H4

M (X,Z(r)){p} ·R0,r
Φ ·R2,r

Φ

χ(aj2,rp ) ·R1,r
Φ

as claimed. �
9.2. Zeta value formula without étale cohomology

Let p be an arbitrary prime number. Assuming Conjecture 9.1 for p, we define a 
number Rm,r

M = Rm,r
M,p ∈ R×/Z×

(p) (m � 0, r � 2) as follows. We first take the inverse 

image Ãm,r
p of Am,r

p (K) under the composite map

Hm+1
M (X,Z(r)) ⊗ Z(p) → Hm+1

M (XK ,Z(r)) ⊗ Z(p) → H1(K,Tm(r)),

where for (m, r) = (2, 2), A2,2
p (K) is considered with respect to Φ2,2 constructed in 

Remark 9.2 (5). Since Am,r
p (K) is finitely generated over Z(p), the canonical map Ãm,r

p →
Am,r

p (K) induces a homomorphism
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cm,r : Am,r
p := Ãm,r

p

/(
Ãm,r

p

)
Div −→ Am,r

p (K).

Here ‘Div’ means the maximal divisible subgroup. This map fits into a commutative 
diagram

Am,r
p ⊗ Zp

γm,r

cm,r⊗id

Hm+1
M (X,Z(r)) ⊗̂Zp

ajm+1,r
p

H1(B,Hm(X,Zp(r)))

Am,r
p (K) ⊗ Zp

∼ H1
f (K,Tm(r)),

(9.2.1)

where γm,r denotes the natural map. See Corollary 8.2 for the right vertical equality.

Lemma 9.4. Assume that p � 3 or B(R) = ∅, and that Conjecture 9.1 holds. Then γm,r

and cm,r have finite cokernel for any m � 0 and r � 2.

Proof. Coker(cm,r) is finite, because it is finitely generated over Z(p) and torsion by 
the definition of Ãm,r

p (essentially by Conjecture 9.1). The map γm,r has finite cokernel 
as well, because cm,r ⊗ idZp

has finite cokernel and ajm+1,r
p has finite kernel by Corol-

lary 7.7. �
By the finiteness of Coker(cm,r), we define Rm,r

M ∈ R×/Z×
(p) to be the volume of the 

space ⎧⎨⎩Hm+1
D (X/R,Z(p)(r))/Image of Am,r

p (for (m, r) �= (2, 2))

H̃3
D(X/R,Z(p)(2))/Image of A2,2

p (for (m, r) = (2, 2))

with respect to Lm that we fixed in Conjecture 9.1, where H̃3
D(X/R, Z(p)(2)) denotes the 

kernel of the canonical trace map

tr : H3
D(X/R,Z(p)(2)) −→ R.

We have Rm,r
M = 1 for any m � 3 by definition.

Proposition 9.5. If p � 3 or B(R) = ∅, then γ3,r is bijective for any r � 2.

Proof. Since T 3 = 0, we have A3,r
p (K) = 0 and

A3,r
p = H4

M (X,Z(r)) ⊗ Z(p)
/
(H4

M (X,Z(r)) ⊗ Z(p))Div

by definition. Since H4
M (X, Z(r)){p} is finite by Corollary 7.7 (4), the natural maps

H4
M (X,Z(r)){p} −→ A3,r

p −→ H 4
M (X,Z(r)) ⊗̂Zp
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are injective, and moreover bijective by Corollary 7.7 (4), which shows the assertion. �
Theorem 9.6. Under the same assumptions as in Proposition 9.3, assume further that

(iv) γm,r of (9.2.1) is bijective for any m = 0, 1, 2.

Then cm,r has finite kernel for any m = 0, 1, 2, 3, and we have

ζ∗(X, r) ≡
3∏

m=0

(
Rm,r

M

#Ker(cm,r)

)(−1)m

mod Z×
(p),

where ζ∗(X, r) denotes Res
s=2

ζ(X, s) (resp. ζ(X, r)) if r = 2 (resp. r � 3).

Remark 9.7. A stronger version of Conjecture 9.1 asserts that

(h1) The Q-space Φm,r agrees with Hm+1
M (XK , Q(r))Z for any m = 0, 1, 2 and r � 2.

The above condition (iv) holds true, under this stronger hypothesis and the following 
variant of Bass’ conjecture (cf. [Ba]):

(h2) Hm+1
M (X, Z(r)) is finitely generated for any m = 0, 1, 2 and r � 2.

Under the hypotheses (h 1) and (h2), Ker(cm,r) agrees with the p-primary torsion part 
of the kernel of the regulator map

regm+1,r
D : Hm+1

M (X,Z(r)) −→ Hm+1
D (X/R,Z(r))

by Remark 9.2 (1), and Rm,r
M is exactly the volume of its cokernel (modulo Z×

(p)).

Proof of Theorem 9.6. The hypothesis (iv) and Proposition 9.5 imply that γm,r is injec-
tive for m = 0, 1, 2, 3. Hence the finiteness of ker(ajm+1,r

p ) (see Corollary 7.7) implies that 
cm,r ⊗ id in (9.2.1) has finite kernel. Thus cm,r has finite kernel, because Zp is faithfully 
flat over Z(p).

We rewrite the number on the right hand side in the formulas in Proposition 9.3. By 
the classical class number formula, we have

Res
s=1

ζK(s) = vol(Coker(�)) ·#Pic(OK),

where � = �K denotes the regulator map to (the reduced part of) the integral Deligne 
cohomology

� : O×
K −→ H̃1

D(B/R,Z(1)) := Ker
(
tr : H1

D(B/R,Z(1)) → R
)
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and the volume of Coker(�) has been taken with respect to OK ⊂ K = H 0
dR(Spec(K)/K)

(note that � is injective). To prove the formula in Theorem 9.6, it remains to check

Rm,r
M

#Ker(cm,r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

R0,r
Φ (m = 0)

χ(aj2,rp ) ·R1,r
Φ (m = 1)

χ(aj3,2p ) ·vol(Coker(�)) ((m, r) = (2, 2))

χ(aj3,rp ) ·R2,r
Φ (m = 2, r � 3)

(#CH0(X){p})−1 ((m, r) = (3, 2))

(#H 4
M (X,Z(r)){p})−1 (m = 3, r � 3)

(9.2.2)

We have

Ker(ajm,r
p ) = Ker(cm,r) and Coker(ajm,r

p ) ∼= Coker(cm,r) (9.2.3)

for any (m, r) by the diagram (9.2.1), the hypothesis (iv) and Proposition 9.5. This 
fact implies (9.2.2) for m = 0, 1, 2 with (m, r) �= (2, 2). See also Proposition 7.3 and 
Corollary 7.7 (1) for the fact that χ(aj1,rp ) = # Ker(c1,r) = 1. The formula (9.2.2) for 
m = 3 follows from (9.2.3) and the fact that Rm,r

M = 1 for m � 3. Finally, noting that 
γ2,2 is bijective by assumption, consider the diagram (9.2.1) for (m, r) = (2, 2):

A2,2
p ⊗ Zp

c2,2⊗id

aj3,2p

A2,2
p (K) ⊗ Zp

∼

�

O×
K ⊗ Zp

�

H1(B,H2(X,Zp(2))) H 1
f (K,T 2(2)) ∼ H1

f (K,Zp(1)),

which shows (9.2.2) for (m, r) = (2, 2). This completes the proof. �
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