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1. Introduction

Let p be a big prime number and E be an elliptic curve over Fp. The hardness
assumption on the discrete logarithm problem in F×

p or in E(Fp) is the basis of many
public-key encryption schemes. Estimating the greatest lower bound in the complexity
of solving the discrete logarithm problem is an important and difficult problem.
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In the case of F×
p , the best algorithm known so far is the number field sieve. For

example, see [3] and [7]. It solves the discrete logarithm problem in F×
p in a conjectural

running time Lp(1
3 , c) = exp((c+o(1))(log p)1/3(log log p)2/3), with c = (64/9)1/3. In the

case of E(Fp), the problem can be reduced to the discrete logarithm problem in F×
q using

the MOV attack [5], where q = pk and k is a positive integer so that pk−1 is divisible by
the cardinality of E(Fp). The discrete logarithm problem in F×

q can be solved using the
function field sieve [1,2] or a modified number field sieve [8]. Let e be the real number
such that k = (log q/ log log q)e. Then, the running time of the function field sieve is
conjecturally equal to Lq(max{1

3 , 1 − e}, O(1)), and that of the modified number field
sieve is conjecturally equal to Lq(max{1

3 ,
1+e
4 }, O(1)).

Alternatively, we can estimate the greatest lower bound by studying an equivalent
problem of a discrete logarithm problem. In [4], the authors lifted the discrete logarithm
problem in F×

p to a real quadratic field. They defined the “ramification signature” for
the real quadratic field and proved that the discrete logarithm problem in F×

p is random
polynomial time equivalent to computing the ramification signature of the real quadratic
field under two heuristic assumptions, namely, an assumption on the class number and
an assumption on a global unit of the real quadratic field.

In this paper, we lift the discrete logarithm problem in F×
p2 to a real quadratic field. We

then define the “ramification signature” for the real quadratic field and prove that the
discrete logarithm problem in F×

p2 is random polynomial time equivalent to computing
the ramification signature of the real quadratic field, with one heuristic assumption on
the class number. We also show that in the proof of the equivalence in [4] one can remove
the assumption on the global unit. More precisely, we give an improvement (Step 4 in
Section 3.2.b in the text) on the construction of real quadratic field and global unit that
makes the condition in Proposition 2 in Section 4.1 in [4] be satisfied automatically.

In Section 2, we define the ramification signature for a real quadratic field. In Section 3,
we prove the equivalence of the discrete logarithm problem in F×

q2 and the computation
of a ramification signature of a real quadratic field. Consequently, we also prove the
equivalence in [4] without the assumption on the global unit.

2. Signature

To define the ramification signature for a real quadratic field, we need a proposition.

Proposition 2.1. Let l and p be two distinct odd prime numbers, and K = Q(
√
D) be a real

quadratic field that splits over l and inerts over p. We denote the ring of integers in K

by AK , the points over l in SpecAK by u and ũ, and the point over p in SpecAK by v.
Let Iu, Iũ, and Iv be the prime ideals of AK corresponding to u, ũ, and v, respectively.
Let Z := {u, v}, and U := SpecAK \ Z. Let Au and Av be the completions of AK at u

and v respectively. Denote AU := Γ (U,OU ).
Suppose that p2 − 1 is divisible by l, the class number of K is not divisible by l, and

there is a unit α ∈ A×
K , such that
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αl−1 �= 1 mod I2
u, α

p2−1
l �= 1 mod Iv.

Then, we have the following:

a. There is an exact sequence

1 → A×
K/A×l

K
i−→ A×

u /A
×l
u ⊕A×

v /A
×l
v

j−→ π1(U)ab/π1(U)ab
l → 1. (2.2.1)

b. dimZ/lZ π1(U)ab/π1(U)abl = 1, where the π1(U) is the étale fundamental group of U
(see, for example, [6]).

c. For any non-trivial character χ : π1(U) → Z/lZ, χ is ramified at both u and v.

Proof. a. Denote the idele group of K by IK . Through the class field theory, we have the
isomorphism π0(IK/K×) ∼= Gal(Kab/K), where π0 means the “group consisting of the
connected components”. Therefore we have a surjection π0(IK/K×) → π1(U)ab, whose
kernel is

∏
x�=u,v A

×
x . Therefore we have an isomorphism

{±1}⊕2 ⊕K×
u ⊕K×

v ⊕
⊕

x�=u,v Z

K×
∼= π1(U)ab.

Let us consider the following commutative diagram:

1 1 K× ∼
K× 1

1 {±1}⊕2 ⊕ A×
u /A×l

u ⊕ A×
v /A×l

v {±1}⊕2 ⊕ K×
u /A×l

u ⊕ K×
v /A×l

v ⊕
⊕

x �=u,v
Z Div(K) 0.

Through the snake lemma, we have the following exact sequence:

A×
K → {±1}⊕2 ⊕A×

u /A
×l
u ⊕A×

v /A
×l
v → π1(U)ab/Im

(
A×l

u ⊕A×l
v

)
→ Cl(K) → 1

where the term Im(A×l
u ⊕A×l

v ) is the image of A×l
u ⊕A×l

v under the map

K×
u ⊕K×

v → {±1}⊕2 ⊕K×
u ⊕K×

v ⊕
⊕
x�=u,v

Z → π1(U)ab.

As the class number of K is assumed to be non-divisible by l, a diagram chasing shows
an exact sequence

A×
K/A×l

K → A×
u /A

×l
u ⊕A×

v /A
×l
v → π1(U)ab/π1(U)abl → 1.

The hypothesis on the existence of the global unit shows that the left morphism is
nonzero. Thus it is injective, since A×

K/A×l
K is a Z/lZ-linear space of dimension 1. There-

fore, we obtain the exact sequence (2.2.1).
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b. The complete discrete valuation rings Au and Av are isomorphic to Zl and W (Fp2)
(the Witt ring over Fp2) respectively. Therefore, the middle term in the sequence (2.2.1)
is isomorphic to (Z/l2Z)×/(Z/l2Z)×l ⊕ F×

p2/F
×l
p2 , and is of Z/lZ-dimension 2. Since we

know that A×
K/A×l

K is a Z/lZ-linear space of dimension 1, the right term in (2.2.1) has
Z/lZ-dimension 1.

c. We consider the dual sequence

0 → Hom
(
π1(U)ab,Z/lZ

) j�−−→ Hom
(
A×

u /A
×l
u ⊕A×

v /A
×l
v ,Z/lZ

)
→ Hom

(
A×

K/A×l
K ,Z/lZ

)
→ 0 (2.2.2)

of (2.2.1). Denote the image of α under the morphism i by (αu, αv). For any χ �= 0 ∈
Hom(π1(U)ab,Z/lZ), denote the image of χ under the morphism j� by (χu, χv), then we
have

〈αu, χu〉 + 〈αv, χv〉 = 0 (2.2.3)

by (2.2.2). Therefore, the following four conditions are equivalent:

(i) χ is ramified at u,
(ii) 〈αu, χu〉 �= 0,
(iii) 〈αv, χv〉 �= 0,
(iv) χ is ramified at v.

The map j� is injective, indicating that there is not non-trivial character χ : π1(U) →
Z/lZ such that it is unramified at both points u and v. Therefore, for any non-trivial
χ ∈ Hom(π1(U),Z/lZ), χ must be ramified at both u and v. �

The following corollary is proved in the proof of Proposition 2.1.c.

Corollary 2.2. Under the conditions in Proposition 2.1, for any non-trivial character
χ : π1(U) → Z/lZ, we have the following:

(i) 〈αu, χu〉 �= 0,
(ii) 〈αv, χv〉 �= 0,
(iii) 〈αu, χu〉 + 〈αv, χv〉 = 0.

Through the natural isomorphism A×
u /A

×l
u

∼= (Z/l2Z)×/(Z/l2Z)×l, A×
u /A

×l
u is gener-

ated by 1 + l. For any generator g of F×
p2/F

×l
p2 , we regard it as a generator of A×

v /A
×l
v

through the natural isomorphism A×
v /A

×l
v

∼= F×
p2/F

×l
p2 . Clearly, 〈1 + l, χu〉−1〈g, χv〉 is in-

dependent of the choice of χ �= 0 ∈ Hom(π1(U),Z/lZ). We call this term the ramification
signature of U with respect to g.
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3. Signature computation problem and discrete logarithm problem in FFF×
p2

In this section, we show that the discrete logarithm problem in F×
p2 is random poly-

nomial time equivalent to computing the ramification signature of some real quadratic
field.

3.1. Reduction from signature computation problem to discrete logarithm problem

Suppose given p, l, K = Q(
√
D), U , u, ũ, v, α, g, as in Proposition 2.1. Then the

computation of the ramification signature of U with respect to g can be reduced to a
discrete logarithm problem in Fp2 as follows by using Corollary 2.2.

Let us consider the following commutative diagram:

A×
K A×

u

∼
Z×
l Z×

l /Z
×l
l

(Z/l2Z)× (Z/l2Z)×/(Z/l2Z)×l.

If the image in (Z/l2Z)× of α equals ξ(1+ l)y, where ξ is an (l− 1)-st root of unity, then
its image in (Z/l2Z)×/(Z/l2Z)×l will be equal to (1 + l)y. We can easily compute ξ, y
and consequently the first term in (2.2.3) 〈αu, χu〉 = y〈1 + l, χv〉.

For the second term in (2.2.3), if the image of α under the morphism A×
K → A×

v /A
×l
v

∼=
F×
p2/F

×l
p2 is a = gm, then 〈αv, χv〉 = m〈g, χv〉.

By Corollary 2.2, if we can compute m from a = gm, then we can compute

〈1 + l, χu〉−1〈g, χv〉 = −m−1y ∈ Z/lZ.

3.2. Reduction from discrete logarithm problem to signature computation problem

For a field k and an element a in k, let
√
a denote a square root of a in the algebraic

closure of k.
Let g be a generator of F×

p2 , a ∈ F×
p2 and l be a prime dividing p2−1. The computation

of discrete logarithm logg a mod l can then be reduced to computing the ramification
signature of a real quadratic field as follows, by using Corollary 2.2.

Let m ≡ logg a mod l. If a ∈ F×l
p2 , then we have m ≡ 0 mod l. Thus we can suppose

a /∈ F×l
p2 .

a. If l � p− 1, we must have l | p + 1. Let ã := ap−1, g̃ := gp−1. Then we have

ã = g̃m, Nm(ã) = Nm(g̃) = 1, ã /∈ F×l
p2 .

We take t ∈ Fp such that ( t
p ) = −1. We have Fp2 = F(

√
t). We put ã = a0 + b0

√
t, where

a0, b0 ∈ Fp. We can assume b0 �= 0; otherwise, ã2 = 1 and m = p+1 or p + 1.
2
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We have a2
0 − b20t = Nm(ã) ≡ 1 mod p. Hence, for any k ∈ Z, the following holds:

(
(a0 + kp)2 − 1

p

)
=

(
a2
0 − 1
p

)
=

(
b20t

p

)
=

(
t

p

)
= −1.

We choose k ∈ {0, 1, . . . , l − 1} randomly, until ( (a0+kp)2−1
l ) = 1. Lemma 3.1 below for

c = 1 shows that we can obtain such k with probability about 50% each time.
If we find such k, let a1 := a0 + kp ∈ Z×. We have

√
a2
1 − 1 ∈ Zl because (a

2
1−1
l ) = 1.

If (a1 +
√
a2
1 − 1)l−1 �≡ 1 mod l2, we know also (a1−

√
a2
1 − 1)l−1 �≡ 1 mod l2, let x = a1.

Else, let x = a1 +pl. Lemma 3.2 below for c = 1 shows that (x+
√
x2 − 1)l−1 �≡ 1 mod l2

and (x−
√
x2 − 1)l−1 �≡ 1 mod l2.

Let K := Q(
√
x2 − 1). Then, K inerts over p and splits over l because (x

2−1
p ) = −1,

and (x
2−1
l ) = 1. Let v ∈ SpecAK be the point over p and u ∈ SpecAK be a point over l.

Fix isomorphisms Av/Iv ∼= Fp2 and Au/Iu ∼= Fl. We have
√
x2 − 1 ≡ ±b0

√
t mod v,

because x2 − 1 ≡ a2
1 − 1 ≡ b20t mod v. Let α := x +

√
x2 − 1 ∈ AK , if

√
x2 − 1 ≡

b0
√
t mod v; or α := x−

√
x2 − 1 ∈ AK , otherwise. Then we have αl−1 �≡ 1 mod I2

u and

α ≡ a0 + b0
√
t ≡ ã ≡ g̃m mod v

implying that α
p2−1

l �≡ 1 mod Iv as ã /∈ F×l
p2 . As α := x +

√
x2 − 1 ∈ AK and Nm(α) =

x2 − (x2 − 1) = 1, we have α ∈ A×
K .

Let U := SpecAK \ {u, v}. We assume that l � hK , which is likely to be satisfied.
Proposition 2.1 then shows 〈αu, χ〉 + 〈αv, χ〉 = 0, for any χ �= 0 ∈ Hom(π1(U),Z/lZ).
Let (1 + l)y be the image of α under the morphism

A×
K → A×

u
∼= Z×

l →
(
Z/l2Z

)×
/
(
Z/l2Z

)×l
.

For the first term in (2.2.3), we have 〈αu, χ〉 = y〈1+ l, χ〉. For the second term in (2.2.3),
we have 〈αv, χ〉 = m〈g̃, χ〉. By Corollary 2.2(iii), we obtain

y〈1 + l, χ〉 + m〈g̃, χ〉 = 0.

Therefore, if we can compute the ramification signature 〈χ, 1 + l〉−1〈χ, g〉 of U with
respect to g, then we can compute m = −y〈χ, 1 + l〉−1〈χ, g〉.

b. If l | p − 1, we have Nm(a) = Nm(g)m as elements in Fp. The construction
in [4] gives us a real quadratic field and a global unit in the field that enable us to
reduce the computation of m satisfying Nm(a) = Nm(g)m to the signature computation
problem of the real quadratic field using the algorithm in [4]. However, the construction
requires some conditions on the class number of the field and the unit to be satisfied [4,
Section 4.2]. We give an improvement in Step 4 below on the construction recalled below.
With the improvement, one of the condition (condition 2 in Proposition 2 of Section 4.1
in [4]) is satisfied automatically.
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Let ã = g̃m in F×
p where m is to be computed. If ã

p−1
l = 1, then m ≡ 0 (mod l). Thus

suppose ã
p−1

l �= 1. We will lift ã to some unit α of a real quadratic field K such that
α ≡ ã mod v for some place v of K over p, αl−1 �= 1 mod I2

u, and αl−1 �= 1 mod I2
u′ for

the two places u and u′ of K over l. We do it as follows:
1. Compute b̃ ∈ F×

p such that ãb̃ = 1 in F×
p .

2. Put c := ã+b̃
2 , d := ã−b̃

2 . Note that c2 −d2 = 1 and ã = c+d. We can assume d �= 0;
otherwise, ã2 = 1 and m = p−1

2 or p− 1.
3. Lift d to an integer. We have (1+d2

p ) = ( c
2

p ) = 1. We choose k ∈ {0, 1, . . . , l − 1}
randomly until ( (d+kp)2+1

l ) = 1. Lemma 3.1 below for c = −1 shows that we can obtain
such k with probability of about 50% each time.

4. If we find such k, let d1 := d + kp ∈ Z×
l . We may take

√
d2
1 + 1 ∈ Z×

l since
(d

2
1+1
l ) = 1. If (d1 +

√
d2
1 + 1)l−1 ≡ 1 mod l2, let x = d1; otherwise let x = d1 + pl.

Lemma 3.2 below for c = −1 shows that (x+
√
x2 + 1)l−1 �≡ 1 mod l2, (x−

√
x2 + 1)l−1 �≡

1 mod l2.
5. Let K := Q(

√
x2 + 1), α := x +

√
x2 + 1 ∈ OK . Note that Nm(α) = 1, so α is a

unit of K.
6. Let v be the point in SpecOK responding to the prime ideal (p,

√
x2 − 1 − c),

v′ be the point in SpecOK responding to the prime ideal (p,
√
x2 − 1 + c), u and u′ be

the points in SpecOK over l. Thus, α ≡ d + c ≡ ã mod v, α ≡ d − c ≡ −b̃ mod v′,
αl−1 �= 1 mod I2

u and αl−1 �= 1 mod I2
u′ . �

In [4], they proved the reduction from a signature computation to a discrete loga-
rithm problem in Fp without any heuristic assumption. Therefore, we conclude that the
discrete logarithm problems in Fp2 and Fp are random polynomial time equivalent to
some signature computation problem with only one assumption, namely, that on the
class number.

The following are the statements and proofs of Lemma 3.1 and Lemma 3.2.

Lemma 3.1. Let l be an odd prime, c ∈ F×
l . Define a map f : Z/lZ → {0, 1,−1} by

a �→ (a
2−c
l ). Then, we have

∣∣f−1(0)
∣∣ = 2,

∣∣f−1(1)
∣∣ = (l − 3)/2,

∣∣f−1(−1)
∣∣ = (l − 1)/2 if

(
c

l

)
= 1,

∣∣f−1(0)
∣∣ = 0,

∣∣f−1(1)
∣∣ = (l − 1)/2,

∣∣f−1(−1)
∣∣ = (l + 1)/2 if

(
c

l

)
= −1.

Proof. Let X be the curve defined by y2 = x2−c over Fl. For any a ∈ Fl, the cardinality
of the set {Fl-rational point of X that has first coordinate a} is f(a)+1. Therefore, the
following holds:

∑(
f(a) + 1

)
=

∣∣X(Fl)
∣∣.
a∈Fl
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The curve X is isomorphic to the affine scheme defined by zω = 1 over Fl, which implies
|X(Fl)| = l − 1, and

∑
a∈Fl

f(a) = |X(Fl)| − l = −1. Clearly,

f−1(0) = {
√
c,−

√
c} if

(
c

l
= 1

)
,

f−1(0) = φ if
(
c

l
= −1

)
,

and the lemma follows easily from |f−11| + |f−1(−1)| + |f−1(0)| = l and |f−1(1)| −
|f−1(−1)| =

∑
a∈Fl

f(a) = −1. �
Lemma 3.2. Let p and l be two distinct odd prime numbers. Let c be an integer such that
cl−1 ≡ 1 mod l2 and a be an integer such that (a

2−c
l ) = 1. We denote a square root

of a2 − c in Z×
l by

√
a2 − c. If (a +

√
a2 − c)l−1 ∈ 1 + l2Zl, then we have ((a + pl) +√

(a + pl)2 − c)l−1 /∈ 1 + l2Zl and ((a + pl) −
√

(a + pl)2 − c)l−1 /∈ 1 + l2Zl.

Proof. By Hensel’s lemma, there is a unique square root
√

(a + x)2 − c of (a + x)2 − c

in Zl[[x]] such that its image under the morphism x �→ 0 : Zl[[x]] → Zl is
√
a2 − c. Let

h(x) := (a + x) +
√

(a + x)2 − c, then we have

h(pl) ≡ h(0) + h′(0)pl mod l2,

where h′(0) = 1 + a√
a2−c

= h(0)√
a2−c

. Therefore, we have

h(pl) ≡ h(0)
(

1 + p√
a2 − c

l

)
mod l2.

The term p√
a2−c

is not divided by l, which implies h(pl)l−1 �≡ h(0)l−1 mod l2. Hence, we
have

(
(a + pl) +

√
(a + pl)2 − c

)l−1 �≡ (a +
√
a2 − c)l−1 mod l2

≡ 1 mod l2.

The fact that ((a + pl) +
√

(a + pl)2 − c)l−1((a + pl) −
√

(a + pl)2 − c)l−1 = cl−1 ≡
1 mod l2 shows

(
(a + pl) −

√
(a + pl)2 − c

)l−1 �≡ 1 mod l2. �
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