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Dedekind sums are well-studied arithmetic sums, with values 
uniformly distributed mod 1. Based on their relation to certain 
modular forms, Dedekind sums may be defined as functions 
on the cusp set of SL(2, Z). We present a compatible notion 
of Dedekind sums, which we name Dedekind symbols, for 
any non-cocompact lattice Γ < SL(2, R), and prove the 
corresponding equidistribution mod 1 result. The latter part 
builds up on a paper of Vardi, who first connected exponential 
sums of Dedekind sums to Kloosterman sums.

© 2016 Elsevier Inc. All rights reserved.

1. Introduction

In this article, we introduce a function for non-cocompact lattices of SL(2, R) that 
relates to, and actually generalizes, the classical Dedekind sums

s(a; c) =
c−1∑
n=1

((n
c

))((na
c

))
, (c ∈ N, a ∈ Z, (a, c) = 1),
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where

x �→ ((x)) :=
{
{x} − 1

2 x /∈ Z

0 x ∈ Z
({x} = fractional part of x ∈ R)

is the odd and periodic “sawtooth” function of expectancy zero.
There is a ubiquitous character to the Dedekind sums, as they appear in a wide range 

of contexts. The name alone hinges on their relation to the logarithm of the Dedekind 
η-function

η(z) = e
( z

24

) ∏
n≥1

(1 − e(nz))
(
e(z) = e2πiz)

defined on the upper half-plane H, a classical player in the theories of modular forms, 
elliptic curves, and theta functions. More precisely, for every γ =

(
a b
c d

)
∈ SL(2, Z),

log η(γz) − log η(z) = 1
2(sign(c))2 log

(
cz + d

i sign(c)

)
+ πi

12Φ(γ), (1.1)

where the defect Φ(γ) arising from the ambiguity of the principal branch of the logarithm 
is given by

Φ(γ) =
{
b/d c = 0,
a+d
c − 12sign(c)s(a; |c|) c �= 0.

(1.2)

While this is not obvious at first glance, the values of Φ are always integers. The latter 
fact, as many other fundamental properties pertaining to Dedekind sums, may be found 
in the monograph [RadG72]. Dedekind’s original proof of the transformation formula 
(1.1) is of analytic nature, but it can also be deduced by purely topological arguments. 
Atiyah [Ati87] discusses this approach and offers an overview of the appearance of log η
and the Dedekind sums in various contexts of number theory, topology and geometry, 
exhibiting no less than seven equivalent characterizations of log η across these different 
fields!

An alternative presentation of the Dedekind sums consists in defining s(a; c) as a 
function on the cusp set of SL(2, Z), which can be identified with the extended rational 
line Q ∪ {∞}. This identification can then be exploited to study some of their prop-
erties via continued fraction expansions, as is done in [KM94]. We propose a modified 
construction. Let Γ∞ denote the stabilizer subgroup of Γ := SL(2, Z) at ∞, that is,

Γ∞ =
{(

∗ ∗
∗

)
∈ SL(2,Z)

}
= ±

(
1 Z

1

)
.

There is a one-to-one correspondence between the cusp set of Γ, i.e. {γ(∞) : γ ∈ Γ} and 
the quotient Γ/Γ∞. We can thus express (signed) Dedekind sums via the assignment
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(
a b
c d

)
Γ∞ �→ 1

12
a + d

c
− 1

12
Φ
(
a b
c d

) (
(1.2)= sign(c)s(a; |c|)

)
.

This map descends to the double coset Γ∞\ Γ/ Γ∞. In fact, this is simply a manifestation 
of the periodicity of the Dedekind sums, since, for each integer m,(

1 m
1

)(
a b
c d

)
=
(
a + mc b + md

c d

)

and

sign(c)s(a + mc; |c|) = sign(c)s(a; |c|).

We call the resulting double coset function on Γ∞\Γ/Γ∞ the Dedekind symbol for 
SL(2, Z). Our main result is that this construction may be generalized to any non-
cocompact lattice Γ < SL(2, R).

Theorem 1. Let Γ < SL(2, R) be a non-cocompact lattice. For each cusp a and each 
constant k0 ∈ R, there exists a continuous family {ηa = ηa(k0, k)}k∈R>0 of nowhere-
vanishing functions on H such that, for each γ ∈ Γ,

log ηa(γz) − log ηa(z) = k

2 log
(
−(cz + d)2

)
+ 2πikΦa(γ) (1.3)

where Φa(γ) is defined by the above formula and real-valued, and log denotes the principal 
branch of the logarithm. Moreover, each such function satisfies a generalized Kronecker 
first limit formula

lim
s→1

(
Ea(z, s) −

vol(Γ\H)−1

s− 1

)
= −k0 − ln

(
y |ηa(z)|2/k

)
, (1.4)

where Ea(z, s) are the non-holomorphic Eisenstein series.

Corollary 1. Let Γ < SL(2, R) be a non-cocompact lattice. There exists a nowhere-
vanishing real-weight cusp form that generalizes Dedekind’s η-function.

Theorem 2. Let σa ∈ SL(2, R) be a scaling matrix, i.e. σa(∞) = a and 
(
σ−1
a Γaσa

)
∞ =

± 
( 1 Z

1

)
. The function Sa : Γ → R, given by

Sa(γ) =

⎧⎪⎨
⎪⎩
a c = 0,
vol(Γ\H)

4π
a + d

c
− Φ∞

(
a ∗
c d

)
c �= 0,

where (
a ∗
c d

)
= σ−1

a γσa
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and Φ∞ : σ−1
a Γσa → R is defined by (1.3), factors through the double coset Γa\Γ/Γa and 

does not depend on the particular choice of the scaling σa. We call Sa : Γa\Γ/Γa → R

the Dedekind symbol for Γ at its cusp at a.

Remark 1. If Γ = SL(2, Z), k0 = 2γ2−2 ln(2) where γe is the Euler–Mascheroni constant, 
k = 1/2, then η∞ = η the Dedekind η-function, S∞

( a ∗
c d

)
= sign(c)s(a; |c|), and (1.4) is 

Kronecker’s first limit formula.

Goldstein [Gol73,Gol74] derived formally the functions log ηa from the Fourier ex-
pansion of Eisenstein series, and used them to give explicit formulas of Dedekind sums 
for certain principal congruence subgroups. We present a softer construction that differs 
from Goldstein’s in that it does not rely on explicit Fourier coefficients and that we mo-
tivate the analytic existence of the functions log ηa. Finally, the definition of Dedekind 
symbols as double coset functions is new, as is the generalization to all cofinite Fuchsian 
groups.

The second part of this paper concerns the distribution of values of the Dedekind 
symbols Sa mod 1. The statistics of Dedekind sums have been extensively studied; we 
know that their values become equidistributed mod 1 [Var87], and that this result extends 
to the graph 

(
a
c , s(a; c)

)
[Mye88]. Bruggeman studied the distribution of s(a; c)/c [Bru89]

and Vardi showed that s(a; c)/ log c has a limiting Cauchy distribution as c → ∞ [Var93]. 
The focus later shifted to the distribution of mean values of Dedekind sums [CFKS96,
Zha96].

We will generalize Vardi’s equidistribution mod 1 result to the Dedekind symbols; for 
any k ∈ R>0, the sequence of values

{ks(a; c)} 0≤a<c
(a,c)=1

becomes equidistributed mod 1 as c → ∞ [Var87, Thm. 1.6]. Our motivation, and the 
building block of Vardi’s proof, is the striking identity

c−1∑
a=1

(a,c)=1

e (12s(a; c)) (1.2)=
c−1∑
a=1

(a,c)=1

e

(
a + d

c

)
e−2πiΦ(γ)︸ ︷︷ ︸

≡1

= S(1, 1; c)

relating Dedekind sums to Kloosterman sums.

Theorem 3. Let V = vol(Γ\H). Then

∑
0≤a<c( a ∗

c ∗
)
=σ−1

a γσa

e (Sa(γ)) = e

(
−1

4

)
Sa

(⌈
V

4π

⌉
,

⌈
V

4π

⌉
, c, χ

)
,

where Sa(m, n, c, χ) are the Kloosterman–Selberg sums
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Sa(m,n, c, χ) =
∑

0≤a<c( a ∗
c d

)
∈σ−1

a Γσa

e

(
(m− α)a + (n− α)d

c

)
χ

(
a ∗
c d

)

for the multiplier system χ(Γ) = e 
(
Φ∞(Γ) − 1

4
)

arising from the transformation for the 
η∞-function for σ−1

a Γσa, and where α =
⌈

V
4π
⌉
− V

4π ∈ [0, 1) is uniquely determined by 
χ 
( 1 1

1

)
= e(−α).

Theorem 4. For each k ∈ R>0, the sequence of values

{
kSa(γ) :

( a ∗
c ∗

)
= σ−1

a γσa

0 ≤ a < c

}

becomes equidistributed mod 1 as c → ∞.

Our proof is intrinsically similar to that of [Var87], relying on the spectral theory 
of Kloosterman sums and, more particularly, the work of Selberg [Sel65] and Goldfeld 
& Sarnak [GS83] to prove non-trivial bounds for sums of Kloosterman sums. Whereas 
the results in [GS83] generalize immediately to the setting of cofinite Fuchsian groups, 
one needs to work for the trivial bound on sums of Kloosterman sums, which is exactly 
the counting function for double coset representatives indexed according to the ordering 
given above. In doing so, we recovered a result of Good [Goo83, Thm. 4]. We record a 
direct proof of this result and discuss its optimality.

Theorem 5. Let Γ < SL(2, R) be a non-cocompact lattice with a cusp at a. Let σa ∈
SL(2, R) be a scaling matrix such that σa(∞) = a and 

(
σ−1
a Γσa

)
∞ = ± 

( 1 Z

1

)
=: B. Let 

X > 0. Then the double coset counting function

Na(X) = #
{
B

(
a ∗
c ∗

)
B : 0<c≤X

0≤a<c,

( a ∗
c ∗

)
∈ σ−1

a Γσa

}

is finite, and, as X → ∞,

Na(X) = X2

πV
+

∑
1/2<σj<1

τjX
2σj + O

(
X4/3+ε

)

for any ε > 0, where the sum runs over all exceptional eigenvalues λj = σj(1 − σj) < 1
4

for Γ and each τj = τj(σj) is a constant.
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2. Preliminaries

2.1. Non-cocompact lattices of SL(2, R)

Let Γ < SL(2, R) be a lattice, with the assumption that −I ∈ Γ. The projection Γ <

PSL(2, R) acts properly discontinuously on the upper half-plane H by linear fractional 
transformations

(
a b
c d

)
: z �→ az + b

cz + d
.

If moreover Γ is non-cocompact, then Γ\H admits a finite number of inequivalent cusps. 
In practice, it is most useful to work with the cusp at ∞. There is a standard change 
of coordinates to achieve this. In fact, for each cusp a, there exists a scaling matrix 
σa ∈ SL(2, R) that verifies

(1) σa(∞) = a

(2) σ−1
a Γaσa =

(
σ−1
a Γσa

)
∞ = ± 

(
1 Z

1

)

These two conditions do not determine a scaling matrix uniquely, but up to right mul-
tiplication by any matrix of the form ± 

( 1 x
1

)
, x ∈ R.

2.2. Double coset decomposition

Let B := ± 
( 1 Z

1

)
. The trivial computation

(
1 m

1

)(
a b
c d

)(
1 n

1

)
=

(
a + mc ∗

c d + nc

)
,

shows that the lower left matrix entry c depends only on the double coset B
( a ∗
c d

)
B, and 

that a and d are determined up to integer multiples of c. Each double coset for which 
c �= 0 has then a unique representative of the form

B

(
a ∗
c d

)
B, c > 0, 0 ≤ a, d < c.

Moreover, for γ =
(
a b
c d

)
and γ′ =

(
a b′

c d′

)
two matrices of determinant 1, one has γ−1γ′ =( 1 ∗

0 1

)
. Therefore, any double coset BγB, γ ∈ Γ, for which c �= 0 is really only determined 

by the left column of the representative γ. For any scaling matrix σa, and any x > 0, 
there are at most finitely many double cosets B

( a ∗
c d

)
B such that 

( a ∗
c d

)
∈ σ−1

a Γσa and 
0 < c ≤ x [Shi71, Lm. 1.24]. We thus have the double coset decomposition
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σ−1
a Γσa = B ∪

⋃
c>0

⋃
0≤a<c( a ∗

c ∗
)
∈σ−1

a Γσa

B

(
a ∗
c ∗

)
B.

2.3. Eisenstein series

The Eisenstein series for Γ at its cusp at a is defined by

Ea(z, s) := Ea(z, s; Γ) =
∑

γ∈Γa\Γ
Im(σ−1

a γz)s

where z ∈ H, s = σ + it ∈ C. The series converges absolutely and uniformly on compact 
subsets for σ > 1. As a function of z, it is Γ-invariant, non-holomorphic and satisfies

ΔEa(z, s) = s(1 − s)Ea(z, s),

where Δ is the hyperbolic Laplacian Δ = −y2 (∂xx + ∂yy). Eisenstein series admit a 
Fourier expansion in each cusp, which takes the form

Ea(σbz, s) = δaby
s + ϕab(s)y1−s + O

(
e−2πy)

as y → ∞ where

ϕab(s) =
√
π

Γ(s− 1/2)
Γ(s)

∑
c>0

#{
( a ∗
c ∗

)
∈ σ−1

a Γσb : a ∈ [0, c)}
c2s

[Iwa02, Thm. 3.4]. In the definition above, Γ(s) denotes the classical Gamma function, 
which is holomorphic on the complex plane except for simple poles at every non-positive 
integer.

Eisenstein series famously admit a meromorphic continuation to the whole complex 
s-plane, which follows from the meromorphic continuation of ϕab [Sel56]. In particular, 
ϕab(s) is holomorphic in the half-plane σ ≥ 1/2 except for possibly finitely many simple 
poles σj ∈ (1/2, 1) coming from the residual spectrum of Γ, and a simple pole at s = 1
of residue

1
vol(Γ\H) .

Moreover, away from the real line, ϕab(s) is bounded in the half-plane σ ≥ 1/2 [Sel89, 
Eq. (8.6)].
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2.4. Selberg–Kloosterman sums

An automorphic form of real weight k ∈ R>0 has prescribed transformation

f(γz) = χk(γ)(cz + d)kf(z),

under Γ, where the multiplier χk(Γ) needs to satisfy

(1) For all γ ∈ Γ, |χk(γ)| = 1
(2) χk(−I) = e−πik

(3) χk(γ1γ2)j(γ1γ2, z)k = χk(γ1)χk(γ2)j(γ1, γ2z)kj(γ2, z)k

where j(γ, z) := cz + d and arg(z) ∈ (−π, π], to be consistent with the determination of 
arg(cz + d) such that

(cz + d)k = |cz + d|k eik arg(cz+d)

is uniquely determined.
Fix a scaling σa. Under the action of σ−1

a Γσa, we have the periodicity relation f(z +
1) = χk

(( 1 1
1

))
f(z), which yields the Fourier series expansion

f(z) =
∑
n∈Z

cn(y)e ((n− αk)x)

for f , where αk ∈ [0, 1) is uniquely determined by χk

(( 1 1
1

))
= e(−αk). The famous 

problem of estimating the order of magnitude of Fourier coefficients of such a cusp form 
can be reduced to estimate sums of the generalized Kloosterman sums

S (m,n ; c, χk) :=
∑

0≤a<c( a ∗
c d

)
∈σ−1

a Γσa

χk

((
a ∗
c d

))
e

(
(m− αk)a + (n− αk)d

c

)

[Sel65]. In the generality of our setting, one knows that as x → ∞,

∑
0<c≤x

S(m,n ; c, χk)
c

=
∑

1/2<σj<1

τj(m,n)x2σj−1 + O
(
x1/3+ε

)
(ε > 0) (2.1)

where the sum runs over the exceptional eigenvalues λj = σj(1 − σj) < 1
4 for Γ [GS83,

Pro79].
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3. Proof of Theorem 1

Set V := vol(Γ\H). Consider the Laurent expansion of the Eisenstein series Ea(z, s)
at its first pole, i.e.

Ea(z, s) = V −1

s− 1 + Ka(z) + O (s− 1)

as s → 1. Using the Fourier expansion of the Eisenstein series, we have [JO05, Eq. (4.7)]

Ka(σbz) =
∑
n<0

kab(n)e(nz) + δaby + kab(0) − V −1 ln y +
∑
n>0

kab(n)e(nz) (3.1)

with kab(−n) = kab(n), and kab(n) � |n|1+ε, for any ε > 0, with an implied constant 
depending only on Γ and ε. Moreover, setting

Ka(z) = lim
s→1

s∈R>1

(
Ea(z, s) −

V −1

s− 1

)
,

we can see that Ka(z) is Γ-invariant, real-valued and real-analytic. A simple computation 
yields

ΔKa(z) = −1
V

and from that observation we construct the harmonic function

Ha(z; k0) := V Ka(z) + ln Im(z) + k0

for any real constant k0 ∈ R. Let Fa : H → C denote the holomorphic function with real 
part ReFa(z; k0) = Ha(z; k0). Observe that Fa won’t be automorphic, as the perturbation 
from Ka to Ha induces the logarithmic defect

Ha(z; k0) −Ha(γz; k0) = ln |cz + d|2 .

By analogy with Dedekind’s transformation formula for log η, we want to consider the 
RHS as the real part of the principal branch of the logarithm, that is, the branch with 
−π < arg(z) ≤ π. Hence

Re (Fa(z; k0) − Fa(γz; k0)) = Re log(−(cz + d)2).

Lemma 3.1. The function

Φa(γ, z; k0) := 1 (
Fa(z; k0) − Fa(γz; k0) − log

(
−(cz + d)2

))

4πi
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is real-valued, constant in z and k0, i.e. Φa(γ, z; k0) = Φa(γ) for all z ∈ H and k0 ∈ R, 
and it factors through Γ < PSL(2, R), where Γ is the image of Γ under the canonical 
projection SL(2, R) → PSL(2, R).

Proof. In fact,

Im (Φa(γ, z; k0)) = − 1
4π

(
Ha(z; k0) −Ha(γz; k0) − ln |cz + d|2

)
= 0.

By the Open Mapping Theorem, the function Φa(γ, z; k0) is therefore constant in z. It 
is immediate that Φa(−γ) = Φa(γ) for all γ ∈ Γ. The Fourier series for Ka(z) given by 
(3.1) yields

Re (Fa(σbz; k0)) = V Ka(σbz) + ln y + k0

= VRe

(
δab

z

i
+ kab(0) + 2

∑
n>0

kab(n)e(nz)
)

+ k0,

hence, by another application of the Open Mapping Theorem,

Fa(σbz; k0) = V

(
δab

z

i
+ kab(0) + 2

∑
n>0

kab(n)e(nz)
)

+ k0 + iτ (3.2)

for a real constant τ . It follows that Fa(σbz; k0) − Fa(γσbz; k0) is independent of k0

and τ . �
Define, for each positive scalar k ∈ R>0, the function

ηa(z; k0, k) = e−kFa(z;k0)/2.

It is nowhere-vanishing, with log ηa(z; k0, k) = −kFa(z; k0)/2 and

log ηa(γz; k) − log ηa(z; k) ≡ log ηa(γz; k0, k) − log ηa(z; k0, k)

= k

2 log
(
−(cz + d)2

)
+ 2πikΦa(γ).

The Kronecker first limit formula

V Ka(z) = Re (Fa(z; k0)) − ln y − k0 = −k0 − ln
(
y |ηa(z; k0, k)|2/k

)
follows directly from our definitions.
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4. Proof of Theorem 2

Observe that

log(−(cz + d)2) = 2
(

log(cz + d) − πi

2 sign(c(−d))
)
,

where the symbol c(−d) = c if c �= 0 and −d otherwise. Consider the associated function

ρa(γ) = Φa(γ) − 1
4sign(c(−d))

for each γ ∈ Γ. Note that contrarily to Φa, ρa does not descend to Γ < PSL(2, R). By 
definition,

ρa(γ) = 1
4πi (Fa(z) − Fa(γz) − 2 log(cz + d))

for each γ ∈ Γ.

Lemma 4.1. The map ρa is a quasimorphism, i.e. the arising 2-cocycle

dρa(γ1, γ2) = ρa(γ1γ2) − ρa(γ1) − ρa(γ2)

is uniformly bounded. Moreover, dρa does not depend on the cusp a.

Proof. We can compute that

dρa(γ1, γ2) = 1
2πi (log j(γ1, γ2z) + log j(γ2, z) − log j(γ1γ2, z)) . (4.1)

The RHS of (4.1) does not depend on the cusp a and takes values in the set {0, ±1}. �
Lemma 4.2. Let Γ < SL(2, R) be a non-cocompact lattice with a cusp at ∞ and Γ∞ ∼= B. 
Then ρ∞

(( 1 1
1

))
= V

4π .

Proof. We record a more general transformation rule. Let γa generate Γa, i.e. Γa
∼= 〈±γa〉. 

By definition of the scaling σa, γaσa = σa

( 1 1
1

)
. Then, by (3.2), Fa(σaz) − Fa(γaσaz) =

iV . Under the given hypotheses, we thus have ρ∞
(( 1 1

1

))
= 1

4πi (iV − 0) = V
4π . �

We are now ready to prove (2). Let γa generate Γa, i.e. σ−1
a γm

a σa =
( 1 m

1

)
=: Tm

for all m ∈ Z. Take any γ ∈ Γ such that γ′ = σ−1
a γσa has lower-left entry c �= 0. Let 

m, n ∈ Z. Then

Sa (γm
a γγn

a ) = V (a + mc) + (d + nc) − Φ∞

((
a + mc ∗

c d + nc

))
,
4π c
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where, using Lemma 4.1 and Lemma 4.2,

Φ∞

((
a + mc ∗

c d + nc

))
= ρ∞ (Tmγ′Tn) + 1

4sign(c) =

= ρ∞(Tm) + ρ∞(Tn) + ρ∞(γ′) + 1
4sign(c) + dρ∞(Tmγ′, Tn) + dρ∞(Tm, γ′)

= V

4π (m + n) + Φ∞

((
a ∗
c d

))
+ dρ∞(Tmγ′, Tn) + dρ∞(Tm, γ′).

It should be clear from (4.1) that the last two terms vanish. We can conclude that 
Sa (γm

a γγn
a ) = Sa(γ) for all m, n ∈ Z.

Finally, we show that Sa does not depend on the choice of scaling σa. Fix x ∈ R. 
Set σ′

a = σanx with nx =
( 1 x

1

)
. Let γ ∈ Γ, γ = σ−1

a γσa. The definition of Sa(γ)
does not depend on σa if, for Φ∞ : σ−1

a Γσa → R and Φ′
∞ : (σ′

a)−1Γσ′
a → R, we have 

Φ∞(γ) = Φ′
∞(n−1

x γnx) or, ρ∞(γ) = ρ′∞(n−1
x γnx), which is equivalent to

F∞(z) − F∞(γz) − 2 log j(γ, z) = F∞(n−1
x z) − F∞(n−1

x γz) − 2 log j(γ, z).

Using (3.2), it is easy to see that this equality holds (note that both nx and I are trivially 
scalings for σ−1

a Γσa).

5. Proof of Corollary 1

We obtain a family of functions ηa, ηb, . . . , ηm, one for each Γ-inequivalent cusp of 
Γ\H. For the ηa-function in cusp b, we have

|ηa(σbz; k0, k)| = e−
k
2 (V Ka(σbz)+ln Im(σbz)+k0)

= |j(σb, z)|k e−k0k/2e−
k
2 (V Ka(σbz)+ln y).

Using once more the Fourier expansion [JO05, Eq. (4.7)], we have

∣∣j(σb, z)−kηa(σbz; k0, k)
∣∣ = O

(
e−

kV
2 δaby

)
as y → ∞. Then the product function η = ηaηb · · · ηm is nowhere-vanishing and has 
exponential decay in each cusp.

6. Proof of Theorem 3

Observe that for each γ ∈ Γ,

ηa(γz; k) = ηa(z; k) (cz + d)k e2πikρa(γ).

Lemma 6.1. For each k > 0, χa,k(Γ) = e(kρa(Γ)) defines a multiplier for Γ of weight k.
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Proof. We have indeed that

e (kdρa(γ1, γ2)) = j(γ1, γ2z)kj(γ2, z)k

j(γ1γ2, z)k

for all γ1, γ2 ∈ Γ by (4.1). We can also check directly from the definitions that

ρa(−I) = Φa(−I) − 1
4 = −1

2πi log i− 1
4 = −1

2 ,

hence χa,k(−I) = e−πik. �
Corollary 6.2. Let k ∈ R>0. Every cofinite non-cocompact Fuchsian group admits a 
multiplier system of weight k.

Let k ∈ R>0. Consider the function η∞(·; k) for σ−1
a Γσa. We have, by Lemma 4.2,

η∞(z + 1; k) = χ∞,k

((
1 1

1

))
η∞(z; k) = e

(
k
V

4π

)
η∞(z; k).

Therefore η∞(z; k) has a Fourier series at infinity of the form

η∞(x + iy; k) =
∑
n∈Z

an(y)e ((n− αk)x)

with αk =
⌈
k V

4π
⌉
− k V

4π , where �x� denotes the smallest integer ≥ x. The associated 
generalized Kloosterman sums are

Sa(m,n; c, χ∞,k) =
∑

( a ∗
c d

)
∈B\σ−1

a Γσa/B

χ∞,k

((
a ∗
c d

))
e

(
(m− αk)a + (n− αk)d

c

)
,

which we recover by unfolding the definition of the Dedekind symbol Sa in the exponential 
sum

e

(
k

4

)∑
e (kSa(γ)) = Sa

(⌈
kV

4π

⌉
,

⌈
kV

4π

⌉
, c, χ∞,k

)
,

where the sum is indexed over all double coset representatives γ of Γa\Γ/Γa such that ( a ∗ ) = σ−1
a Γσa with 0 ≤ a < c.
c d
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7. Proof of Theorem 5

Recall that (cf. Section 2.3)

ϕa(s) =
√
π

Γ(s− 1/2)
Γ(s)

∑
c>0

#{
( a ∗
c ∗

)
∈ σ−1

a Γσa : a ∈ [0, c)}
c2s

=:
√
π

Γ(s− 1/2)
Γ(s) Za(s)

(7.1)

where, from the theory of Eisenstein series, we have that the Dirichlet series Za(s)
converges absolutely in the half-plane Re(s) > 1, and admits a meromorphic continuation 
to the whole plane. On Re(s) = 1, Za(s) has a single, simple pole, at s = 1, with residue

Res
s=1

Za(s) = 1
π

Res
s=1

ϕa(s) = 1
πV

.

By the Wiener–Ikehara Theorem [Ike31],

Na(X) := #
{(

a ∗
c ∗

)
∈ σ−1

a Γσa : 0 ≤ a < c

c ≤ X

}
∼ X2

πV

as X → ∞. To deduce a more precise asymptotic, we need the meromorphic continua-
tion of the scattering matrix (ϕab(s))a,b to Re(s) ≥ 1/2. (However, the ‘quality’ of the 
attained error term will also limited by the fact that we can not push past the critical 
line Re(s) = 1

2 .) Integrating by parts, for any s with Re(s) > 1,

Za(s) = lim
x→∞

⎛
⎝Na(X)

X2s + 2s
X∫

0

Na(u)u−2s−1du

⎞
⎠ = 2sN∼

a (2s),

where N∼
a (s) denotes the Mellin transform of Na(y). By the Mellin Inversion Theorem, 

we recover the Perron formula

Na(X) = 1
2πi

∫
(σε)

Za(s)
X2s

s
ds := lim

T→∞

1
2πi

σε+iT∫
σε−iT

Za(s)
X2s

s
ds,

where we fix σε = 1 + ε > 1. To shift the line of integration, we need some control on 
the growth of Za(s) along vertical lines in Re(s) ≤ σε. Away from the real line, ϕa(s) is 
bounded in the half-plane Re(s) ≥ 1/2. On the line Re(s) = σε, |Za(s)| = O (1), while on 

Re(s) = 1/2, we have by Stirling’s formula for the Γ-function that |Za(s)| = O
(
|t|1/2

)
as |t| → ∞. By the Phragmén–Lindelöf principle, there is a linear function g(σ) with 
g(1/2) = 1/2 and g(σε) = 0 such that

|Za(σ + it)| = O
(
|t|g(σ)

)
(7.2)
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for all 1/2 ≤ σ ≤ σε as |t| → ∞. Let T be a large parameter depending on X such that 
T → ∞ as X → ∞. Then

Na(X) = 1
2πi

∫
Re(s)=σε

|Im(s)|≤T

Za(s)
X2s

s
ds + O

(
X2σε

T

)

as X → ∞. We then apply the Residue Theorem to the rectangular path of integration 
with edges C1 =

[1
2 + iT, 1

2 − iT
]
, C2 =

[1
2 − iT, σε − iT

]
, etc. and obtain using (7.2)

that

Na(X) = X2

πV
+

∑
1/2<σj<1

τjX
2σj + O

(
X2+ε

T
+ T 1/2X

)

as X → ∞. The error term is minimized by choosing T = X2/3, which gives O
(
X4/3+ε

)
.

The above argument has the advantage to apply in the generality of the Fuchsian 
group setting. On the other hand, it will not produce optimal error terms. To see this, 
take Γ = SL(2, Z). Then the counting function N∞(X) is precisely the partial sum

N∞(X) =
�X�∑
n=1

n∑
a=1

(a,n)=1

1 =
�X�∑
n=1

φ(n)

for the Euler totient function φ. On the other hand, we have

Z∞(s) =
∑
n≥1

φ(n)
n2s = ζ(2s− 1)

ζ(2s) .

Then Z∞(s) has no poles in [1/2, 1), and, upon assuming the Riemann Hypothesis, there 
are no poles in (1/4, 1). Under the Riemann Hypothesis, we can improve our estimate to

N∞(X) = 3
π2X

2 + O
(
X1+ε

)
for any ε > 0. However, by way of algebraic manipulations involving the Möbius function, 
we have the well-known elementary estimate

N∞(X) = 3
π2X

2 + O(X lnX).

Moreover, Montgomery conjectured for the maximum order of magnitude of the remain-
der term

R∞(X) = N∞(X) − 3
π2X

2

that R∞(X) � X ln lnX should hold [Mon87].
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8. Proof of Theorem 4

By Theorem 3 and Weyl’s criterium for equidistribution mod 1 [Wey16], the statement 
of Theorem 4 is equivalent to

∑
c≤X

Sa

(⌈
kV

4π

⌉
,

⌈
kV

4π

⌉
, c, χ∞,k

)
= o (Na(X))

(for each k > 0) as X → ∞. This is established by comparing the asymptotics of (2.1)
and Theorem 5.
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