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REPRESENTATIONS OF INTEGERS BY CERTAIN 2k-ARY QUADRATIC

FORMS

DONGXI YE

Dedicated to my newborn nephew Haolin Li

Abstract. Suppose k is a positive integer. In this work, we establish formulas for for the number
of representations of integers by the quadratic forms

x2
1 + · · ·+ x2

k +m
(
x2
k+1 + · · ·+ x2

2k

)

for m ∈ {2, 4}.

1. Introduction

In the long history of number theory, one of the classical problems is to give an explicit formula
for the number of ways that one can express a positive integer n as a sum of 2k squares, that is,
the number of integral solutions of

x21 + x22 + · · ·+ x22k−1 + x22k = n,

which we denote by Rk(n). It is known from the theory of modular forms that in general,

Rk(n) = Δk(n) + Ek(n)
where Δk(n) is a divisor function and Ek(n) is a function of order substantially lower than that of
Δk(n). Formulas for Rk(n) in this fashion have been found and studied by various mathematicians.
For k = 1, 2, 3 and 4, i.e., sums of 2, 4, 6 and 8 squares, (reformulated) formulas for Rk(n) are
originally due to Jacobi [16],

R1(n) = 4
∑
d|n

(−4

d

)
,(1.1)

R2(n) = 8
∑
d|n

d− 32
∑
d|n

4

d,(1.2)

R3(n) = −4
∑
d|n

(−4

d

)
d2 + 16

∑
d|n

( −4

n/d

)
d2,(1.3)

R4(n) = 16
∑
d|n

d3 − 32
∑
d|n

2

d3 + 256
∑
d|n

4

d3(1.4)

where, here and throughout this work,
( ·
·
)
denotes the Kronecker symbol. The result for k = 5, i.e.,

sum of 10 squares, was due (without proof) in part to Eisenstein [12], and fully described (without
proof) by Liouville [19]. The results for 1 ≤ k ≤ 9 were all proved by Glaisher [13]. In around
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1916, this classical problem was “completely” solved (without proof) by Ramanujan [28], [29, Eqs.
(145)–(147)]. To state Ramanujan’s result, we need the well-known Dedekind eta function

η(τ) := q1/24
∞∏
j=1

(1− qj)

where, here and throughout this paper, τ denotes a complex number with positive imaginary part
and q = e2πiτ . For brevity, throughout this work, we write ηm for η(mτ) for any positive integer
m. In addition, we define χD(·) to be the Kronecker symbol

(
D
·
)
, and define σk(n), σ

∞
k,χD

(n) and

σ0
k,χD

(n) to be the divisor functions

σk(n) =
∑
d|n

dk,

σ∞
k,χD

(n) =
∑
d|n

χD(d)d
k,

σ0
k,χD

(n) =
∑
d|n

χD(n/d)d
k

with the convention that they are defined to be 0 if n is not a positive integer. Now we reformulate
and summarize Ramanujan’s result in Theorem 1.1 below.

Theorem 1.1 (Ramanujan). Suppose k is a positive integer. Then there are unique rational
numbers cj,k depending on j and k such that

Rk(n)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
− 2k

Bk

(
(−1)k/2σk−1(n)− (1 + (−1)k/2)σk−1(n/2) + 2kσk−1(n/4)

−1 + 2k

)
if k is even,

− 2k

Bk,4

(
σ∞
k−1,χ−4

(n) + (−1)(k−1)/22k−1σ0
k−1,χ−4

(n/4)

1 + δk,1

)
if k is odd

+
∑

1≤j≤(k−1)/4

cj,kaj,k(n)

where, here and throughout this paper, δ·,· denotes the Kronecker delta, Bk is the kth ordinary
Bernoulli number, Bk,4 is the kth generalized Bernoulli number of order 4 defined via

t

e4t − 1

4∑
j=1

χ−4(j)e
jt =

∞∑
n=0

Bn,4
tn

n!
,

and the numbers aj,k(n) are defined via

∞∑
n=0

aj,k(n)q
n =

η10k2

(η1η4)4k
× (η1η4)

24j

η48j2

.

Theorem 1.1 was proved first by Mordell [23] utilizing the theory of modular forms. An elemen-
tary proof was given by Cooper in [10] by making skillful use of Ramanujan’s 1ψ1 formula.

In recent work [11], Cooper, Kane and the author extended Ramanujan’s results and determined
equivalently the number of integral solutions of

x21 + · · ·+ x2k + p
(
x2k+1 + · · ·+ x22k

)
= n
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for p ∈ {3, 7, 11, 23} along the “divisor function + lower order term” fashion. Motivated by the
work of Ramanujan, and Cooper et al., in this work we aim to establish analogous formulas for the
number of representations of integers by the quadratic forms

x21 + · · ·+ x2k +m
(
x2k+1 + · · ·+ x22k

)
for m ∈ {2, 4}.

This work is organized as follows. In Section 2, we state our main results, and as illustrations,
we also present some examples that follow from the general case we obtain. Proofs will be given
in Section 3. In the last section, we conclude this work with some remarks, which explain the
existence of these Ramanujan-Mordell type formulas.

2. Statement of Results

Let us denote by r(1kmk;n) the number of integral solutions of the equation

x21 + · · ·+ x2k +m
(
x2k+1 + · · ·+ x22k

)
= n.

The main results of this work are summarized in the following theorem.

Theorem 2.1. Suppose k is a positive integer.

(1) Let �2 be defined by

�2 =

{
k−1
2 if k is odd,

k−2
2 if k is even.

Then there are unique rational numbers cj,k,2 depending on j and k such that

r(1k2k;n)

=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
− k

Bk,8

(
2σ∞

k−1,χ−2
(n) + 2(−8)(k−1)/2σ0

k−1,χ−2
(n)

1 + δk,1

)
if k is odd,

− k

Bk

(
(−1)

k
2 σk−1(n)− (−1)

k
2 σk−1

(
n
2

)− 2
k
2 σk−1

(
n
4

)
+ 8

k
2 σk−1

(
n
8

)
2

k
2
−1(2k − 1)

)
if k is even

+

�2∑
j=1

cj,k,2aj,k,2(n)

where χ−2, σk(n), σ
∞
k,χ−2

(n) and σ0
k,χ−2

(n) are as defined in Section 1, and Bk,8 is the kth

generalized Bernoulli of order 8 defined via

t

e8t − 1

8∑
j=1

χ−2(j)e
jt =

∞∑
n=0

Bn,8
tn

n!
,

and the numbers aj,k,2(n) are given by

∞∑
n=0

aj,k,2(n)q
n =

(η2η4)
3k

(η1η8)2k
×

(
η1η8
η2η4

)8j

.

(2) Let �4 be defined by

�4 =

{
k − 2 if k is odd,

k − 1 if k is even.

Then there are unique rational numbers cj,k,4 depending on j and k such that

r(1k4k;n)
3



=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

2σ∞
0 (n)− 2σ∞

0

(
n
2

)
+ 4σ∞

0

(
n
4

)
if k = 1,

− k

Bk,4

⎛
⎝ (−1)

k+1
2 σ∞

k−1(n)− (−1)
k+1
2 σ∞

k−1

(
n
2

)
+ 2σ∞

k−1

(
n
4

)
−(−1)

k+1
2 σ0

k−1(n) + 2k−1σ0
k−1

(
n
2

)− 22k−1σ0
k−1

(
n
4

)
⎞
⎠ if k ≥ 3 and k is odd,

− k

Bk

(
(−1)

k
2 σk−1(n)− (−1)

k
2 σk−1

(
n
2

)− 2kσk−1

(
n
8

)
+ 4kσk−1

(
n
16

)
2k−1(2k − 1)

)
if k is even

+

�4∑
j=1

cj,k,4aj,k,4(n)

where the divisor functions σk(n), σ
∞
k,χ−4

(n) and σ0
k,χ−4

(n) are as defined in Section 1, and

the numbers aj,k,4(n) are given by

∞∑
n=0

aj,k,4(n)q
n =

(η2η8)
5k

(η1η24η16)
2k

× (η1η4η16)
4j

(η2η8)6j
.

For k = 1, 2, 3 or 4, Theorem 2.1 gives the following analogues of (1.1)–(1.4).

r(1121;n) = 2
∑
d|n

(−2

d

)
,(2.1)

r(1141;n) = 2
∑
d|n

(−4

d

)
− 2

∑
d|n

2

(−4

d

)
+ 4

∑
d|n

4

(−4

d

)
,(2.2)

r(1222;n) = 4
∑
d|n

d− 4
∑
d|n

2

d+ 8
∑
d|n

4

d− 32
∑
d|n

8

d,(2.3)

r(1242;n) = 2
∑
d|n

d− 2
∑
d|n

2

d+ 8
∑
d|n

8

d− 32
∑
d| n

16

d+ 2a1,2,4(n),(2.4)

r(1323;n) = −2

3

∑
d|n

(−2

d

)
d2 +

16

3

∑
d|n

( −2

n/d

)
d2 +

4

3
a1,3,2(n),(2.5)

r(1343;n) = −2
∑
d|n

(−4

d

)
d2 + 2

∑
d|n

2

(−4

d

)
d2 − 4

∑
d|n

4

(−4

d

)
d2(2.6)

+ 2
∑
d|n

( −4

n/d

)
d2 − 8

∑
d|n

2

( −4

n/2d

)
d2 + 64

∑
d|n

4

( −4

n/4d

)
d2 + 6a1,3,4(n),

r(1424;n) = 4
∑
d|n

d3 − 4
∑
d|n

2

d3 − 16
∑
d|n

4

d3 + 64
∑
d|n

8

d3 + 4a1,4,2(n),(2.7)

r(1444;n) =
∑
d|n

d3 −
∑
d|n

2

d3 − 16
∑
d|n

8

d3 + 256
∑
d| n

16

d3 + 7a1,4,4(n)− 12a2,4,4(n).(2.8)

The formula (2.1) was proved by Shen [31]. The formula (2.2) was due in part to Ramanujan [7,
Entry 25(i), (iii), p. 40], [8, Entry 18, p. 152]. The formulas (2.3) and (2.4) were stated without
proof by Liouville [20, 21] and proved by Pepin [26, 27], Bachmann [6], and Alaca et al. [1] . The
formulas (2.5), and (2.6)–(2.8) are due to Alaca et al. [2] and Alaca et al. [3, 4, 5], respectively.
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Now if we consider the generating function of r(1kmk;n), we note that

∞∑
n=0

r(1kmk;n)qn = (θ(τ)θ(mτ))k

where θ(τ) is Ramanujan’s theta function defined by

(2.9) θ(τ) =
∞∑

n=−∞
qn

2
=

η52
η21η

2
4

where the η-quotient representation after the second equality is due to Jacobi [16]. In view of that

r(1kmk;n) is the nth Fourier coefficient of (θ(τ)θ(mτ))k and the η-quotient representation (2.9),
Theorem 2.1 is equivalent to the following theorem.

Theorem 2.2. Suppose k is a positive integer. Let Ek(τ) be the normalized Eisenstein series of
weight k on SL2(Z) defined by

Ek(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n)q
n.

(1) Let �2 be as defined in Theorem 2.1(1). Let Fk,2(τ) be defined by

Fk,2(τ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
E∞

k,χ−2
(τ) + (−8)(k−1)/2E0

k,χ−2
(τ)

1 + δk,1
if k is odd,

(−1)
k
2Ek(τ)− (−1)

k
2Ek(2τ)− 2

k
2Ek(4τ) + 8

k
2Ek(8τ)

2
k
2 (2k − 1)

if k is even,

where E∞
k,χ−2

(τ) and E0
k,χ−2

(τ) are Eisenstein series of weight k on Γ0(8) with character

χ−2 defined by

E∞
k,χ−2

(τ) = 1− 2k

Bk,8

∞∑
n=1

σ∞
k−1,χ−2

(n)qn

and

E0
k,χ−2

(τ) = δk,1 − 2k

Bk,8

∞∑
n=1

σ0
k−1,χ−2

(n)qn,

and let x2 = x2(τ) be defined by

x2(τ) =

(
η1η8
η2η4

)8

.

Then there are unique rational numbers cj,k,2 depending on j and k such that

(2.10) (θ(τ)θ(2τ))k = Fk,2(τ) + (θ(τ)θ(2τ))k
�2∑
j=1

cj,k,2x
j
2.
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(2) Let �4 be as defined in Theorem 2.1(2). Let Fk,4(τ) be defined by

Fk,4(τ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

(
E∞

1,χ2
(τ)− E∞

1,χ2
(2τ) + 2E∞

1,χ−2
(4τ)

)
if k = 1,

1

2

⎛
⎝(−1)

k+1
2 E∞

k,χ−2
(τ)− (−1)

k+1
2 E∞

k,χ−2
(2τ) + 2E∞

k,χ−2
(4τ)

−(−1)
k+1
2 E0

k,χ−2
(τ) + 2k−1E0

k,χ−2
(2τ)− 22k−1E0

k,χ−2
(4τ)

⎞
⎠ if k ≥ 3 and is odd,

(−1)
k
2Ek(τ)− (−1)

k
2Ek(2τ)− 2kEk(8τ) + 4kEk(16τ)

2k(2k − 1)
if k is even,

where E∞
k,χ−4

(τ) and E0
k,χ−4

(τ) are Eisenstein series of weight k on Γ0(4) with character

χ−4 defined by

E∞
k,χ−4

(τ) = 1− 2k

Bk,4

∞∑
n=1

σ∞
k−1,χ−4

(n)qn

and

E0
k,χ−4

(τ) = δk,1 − 2k

Bk,4

∞∑
n=1

σ0
k−1,χ−4

(n)qn,

and let x4 = x4(τ) be defined by

x4(τ) =
(η1η4η16)

4

(η2η8)6
.

Then there are unique rational numbers cj,k,4 depending on j and k such that

(2.11) (θ(τ)θ(4τ))k = Fk,4(τ) + (θ(τ)θ(4τ))k
�4∑
j=1

cj,k,4x
j
4.

3. Proof of Results

This section is devoted to proving Theorem 2.2. The proof hinges on the following preliminary
results.

Lemma 3.1. Let Ek(τ), E
∞
k,χ−2

(τ), E0
k,χ−2

(τ), E∞
k,χ−4

(τ) and E0
k,χ−4

(τ) be as defined in Theorem

2.2. Then under the transformation τ → τ + 1
2 , the following identities hold.

When k is even,

Ek

(
τ +

1

2

)
= −Ek(τ) + (2k + 2)Ek(2τ)− 2kEk(4τ);

when k is odd,

E∞
k,χ−2

(
τ +

1

2

)
= −E∞

k,χ−2
(τ) + 2E∞

k,χ−2
(2τ),

E0
k,χ−2

(
τ +

1

2

)
= −E0

k,χ−2
(τ) + 2kE0

k,χ−2
(2τ),

E∞
k,χ−4

(
τ +

1

2

)
= −E∞

k,χ−4
(τ) + 2E∞

k,χ−4
(2τ),

E0
k,χ−4

(
τ +

1

2

)
= −E0

k,χ−4
(τ) + 2kE0

k,χ−4
(2τ).
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Proof. The proofs are similar to that of [11, Lemma 3.2], so we omit the details. �

Lemma 3.2. Let ordz(f) denote the order of vanishing of f(τ) at z. Let Fk,2(τ) and Fk,4(τ) be as
defined in Theorem 2.2. Then we have

ord1/2 (Fk,2) =

{
1
2 if k is odd,

1 if k is even,
(3.1)

ord1/2 (Fk,4) =

{
2 if k is odd,

1 if k is even.
(3.2)

Proof. By the well-known transformation formulas for Let Ek(τ), E
∞
k,χ−2

(τ) and E0
k,χ−2

(τ), see e.g.,

[17] and [30, pp. 79–83], and Lemma 3.1, we can deduce that for k odd,[
E∞

k,χ−2
(τ) + (−8)(k−1)/2E0

k,χ−2
(τ)

]∣∣∣
k

(
1 0
2 1

)

= (2τ + 1)−k

[
E∞

k,χ−2

(
1

2
+

−1

4τ + 2

)
+ (−8)(k−1)/2E0

k,χ−2

(
1

2
+

−1

4τ + 2

)]

= (2τ + 1)−k

{
− E∞

k,χ−2

( −1

4τ + 2

)
+ 2E∞

k,χ−2

( −1

2τ + 1

)

+ (−8)(k−1)/2

[
−E0

k,χ−2

( −1

4τ + 2

)
+ 2kE0

k,χ−2

( −1

2τ + 1

)]}

=
i2k

81/2
E0

k,χ−2

(
τ

2
+

1

4

)
− 2i

81/2
E0

k,χ−2

(
τ

4
+

1

8

)

+
i81/2(−8)(k−1)/2

4k

[
E∞

k,χ−2

(
τ

2
+

1

4

)
− E∞

k,χ−2

(
τ

4
+

1

8

)]
= Cq1/4 +O(q1/2)

for some nonzero constant C as τ → i∞. For k = 2,

[−E2(τ) + E2(2τ)− 2E2(4τ) + 8E2(8τ)]

∣∣∣∣∣
2

(
1 0
2 1

)

= (2τ + 1)−2

[
− E2

(
1

2
+

−1

4τ + 2

)
+ E2

(
1 +

−1

2τ + 1

)

− 2E2

(
2 +

−1

(2τ + 1)/2

)
+ 8E2

(
4 +

−1

(2τ + 1)/4

)]

= (2τ + 1)−2

[
E2

( −1

4τ + 2

)
− 5E2

( −1

2τ + 1

)

+ 2E2

( −1

(2τ + 1)/2

)
+ 8E2

( −1

(2τ + 1)/4

)]

= 4E2 (4τ + 2) +
12

πi(2τ + 1)
− 5E2 (2τ + 1)− 30

πi(2τ + 1)

+
1

2
E2

(
τ +

1

2

)
+

6

πi(2τ + 1)
+

1

2
E2

(
τ

2
+

1

4

)
+

12

πi(2τ + 1)
7



= 4E2 (4τ + 2)− 5E2 (2τ + 1) +
1

2
E2

(
τ +

1

2

)
+

1

2
E2

(
τ

2
+

1

4

)
= Cq1/2 +O(q)

for some nonzero constant C as τ → i∞, and for k ≥ 4 and even,[
(−1)

k
2Ek(τ)− (−1)

k
2Ek(2τ)− 2

k
2Ek(4τ) + 8

k
2Ek(8τ)

]∣∣∣
k

(
1 0
2 1

)

= (2τ + 1)−k

[
(−1)

k
2Ek

(
1

2
+

−1

4τ + 2

)
− (−1)

k
2Ek

(
1 +

−1

2τ + 1

)

− 2
k
2Ek

(
2 +

−1

(2τ + 1)/2

)
+ 8

k
2Ek

(
4 +

−1

(2τ + 1)/4

)]

= (2τ + 1)−k

[
− (−1)

k
2Ek

( −1

4τ + 2

)
+ (−1)

k
2 (2k + 2)Ek

( −1

2τ + 1

)

− (−1)
k
2 2kEk

( −1

(2τ + 1)/2

)
− (−1)

k
2Ek

( −1

2τ + 1

)

− 2
k
2Ek

( −1

(2τ + 1)/2

)
+ 8

k
2Ek

( −1

(2τ + 1)/4

)]

= −(−1)
k
2 2kEk(4τ + 2) + (−1)

k
2 (2k + 2)Ek(2τ + 1)− (−1)

k
2Ek

(
τ +

1

2

)

− (−1)
k
2Ek(2τ + 1)− 2−

k
2Ek

(
τ +

1

2

)
+ 2−

k
2Ek

(
τ

2
+

1

4

)
= Cq1/2 +O(q)

for some nonzero constant C as τ → i∞. Together with the fact that the width of 1
2 of Γ0(8) is 2,

the above observations conclude (3.1).
Making use of corresponding transformation formulas of E∞

k,χ−4
(τ) and E0

k,χ−4
(τ) and Lemma

3.1 together with the fact that the width of 1
2 of Γ0(16) is 4, we can prove (3.2) in a similar fashion,

so we omit the details. �
Lemma 3.3. If f(τ) =

∏
d|N ηrdd for some positive integer N with k = 1

2

∑
d|N rd ∈ Z, with the

additional properties that ∑
d|N

drd ≡ 0 (mod 24)

and ∑
d|N

N

d
rd ≡ 0 (mod 24),

then f(τ) satisfies

f

(
aτ + b

cτ + d

)
= χ(d)(cτ + d)kf(τ)

for every

(
a b
c d

)
∈ Γ0(N). Here the character χ is defined by Jacobi symbol χ(d) =

(
(−1)ks

d

)
where s =

∏
d|N drd.

Proof. See Gordon and Hughes [14], or Newman [24, 25]. �
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Lemma 3.4. Let a, c and N be positive integers with c|N and gcd(a, c) = 1. If f(τ) =
∏

d|N ηrdd
satisfies the conditions of Lemma 3.3 for N , then the order of vanishing orda/c(f) of f(τ) at the
cusp a/c is

N

24

∑
d|N

gcd(c, d)2rd
gcd(c,N/c)cd

.

Proof. See Biagioli [9], Ligozat [18] or Martin [22]. �

Proof of Theorem 2.2. Let m ∈ {2, 4}. Let �m be as defined in Theorem 2.1. Consider the functions

fm(τ) =
Fk,m(τ)

(θ(τ)θ(mτ))k xm(τ)�m
and gm(τ) =

1

xm(τ)
.

Both fm(τ) and gm(τ) are analytic on the upper half plane H. Employing the transformation
formulas for Ek(τ), E

∞
k,χ−2

(τ), E0
k,χ−2

(τ), E∞
k,χ−4

(τ) and E0
k,χ−4

(τ), see e.g., [17] and [30, pp. 79–

83], and Lemma 3.3 we may verify that both fm(τ) and gm(τ) are invariant under Γ0(4m) and(
0 1

−4m 0

)
. Therefore, both fm(τ) and gm(τ) are invariant under Γ0(4m)+, the group obtained

from Γ0(4m) by adjoining its Fricke involution

(
0 1

−4m 0

)
. Let us analyze the behavior at τ = ∞.

By observing the q-expansions, we find that fm(τ) has rational coefficients, and

fm(τ) =
1 +O(q)

(1 +O(q))kq�m(1 +O(q))�m
= q−�m +O(q−�m+1).

Therefore fm(τ) has a pole of order �m at ∞. Similarly, we note that gm(τ) has a simple pole at
τ = ∞. It implies that there exist rational constants a1,k,m, . . . , a�m,k,m such that the function

hm(τ) := fm(τ)−
�m∑
j=1

aj,k,mgm(τ)j

has no pole at τ = ∞, that is,

hm(τ) = a0,k,m +O(q) as τ → ∞
for some constant a0. Let us consider the behavior of hm(τ) at τ = 1

2 . By Lemma 3.2, we have

ord1/2(Fk,m) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
2 if m = 2 and k is odd,

1 if m = 2 and k is even,

2 if m = 4 and k is odd,

1 if m = 4 and k is even.

Moreover, by Lemma 3.4 together with the η-quotient representation (2.9) of θ(τ),

θ(τ) =
η52
η21η

2
4

,

we can compute that

ordcm (θ(τ)θ(mτ)) =

⎧⎪⎨
⎪⎩

1
2 if m = 2 and cm = 1

2 ,

1 if m = 4 and cm = 1
2 ,

0 if m = 4 and cm = 1
4 ,

9



and

ordcm(xm) =

{
−1 if m = 2 or 4 and cm = 1

2 ,

0 if m = 4 and cm = 1
4 .

Here cm denotes a cusp of Γ0(4m). It is clear that ordcm(Fk,m) ≥ 0 for m = 4 and cm = 1
4 . Thus

we summarize that

ordcm(hm) = 0 if m = 2 or 4 and cm = 1
2 ,

and

ordcm(hm) ≥ 0 if m = 4 and cm = 1
4 .

Since the set of inequvalent cusps of Γ0(4m)+ is {∞, 1
2} if m = 2, or is {∞, 1

2 ,
1
4} if m = 4, it

follows that hm(τ) is holomorphic on X(Γ0(4m)+) = Γ0(4m)+\H, and thus hm(τ) is a constant,
that is, hm(τ) ≡ a0,k,m. Moreover, since ord1/2(hm) = 0, hm(τ) does not vanish at 1

2 and thus
a0,k,m �= 0. Therefore, we have

fm(τ) =

�m∑
j=0

aj,k,mgm(τ)j ,

which is equivalent to

Fk,m(τ) = (θ(τ)θ(mτ))k
�m∑
j=0

aj,k,mx�−j
m = (θ(τ)θ(mτ))k

�m∑
j=0

bj,k,mxjm,

where bj,k,m = a�m−j,k,m. Equating the constant term shows that b0,k,m = 1. Now take bj,k,m =
−cj,k,m to complete the proof. �

4. Concluding Remarks

In this section, we conclude this work with some remarks on the essence of existence of (2.10)
and (2.11), and an explanation of why the upper indices of the sums on the right hand sides of
(2.10) and (2.11) cannot be improved further based on the functions xm(τ) we use.

(1) The essence of existence of (2.10) and (2.11) is that for l ∈ {2, 4}, X(Γ0(4m)+) is of genus
zero, and the function 1

xm(τ) is a Hauptmodul of X(Γ0(4m)+), i.e., a generator of the

function field C(X(Γ0(4m)+)). Since the function
Fk,m(τ)

(θ(τ)θ(mτ))k
is in C(X(Γ0(4m)+)), and

the locations of poles of it are the same as the locations of zeros of 1
xm(τ) , then

Fk,m(τ)

(θ(τ)θ(mτ))k

is a polynomial in xm(τ).
In general, for a positive integer m, we may obtain identities for (θ(τ)θ(mτ))k similar to

(2.10) and (2.11) if we could construct a function Fk(τ) by a linear combination of Eisen-

stein series of weight k such that Fk(τ)
(θ(τ)θ(mτ))k

is invariant under some genus zero discrete

subgroup Γ of SL2(R), and could construct a generator ψ(τ) for the function field C(X(Γ))
such that the locations of zeros of ψ(τ) are the same as that of (θ(τ)θ(mτ))k.

(2) We now explain that with the Hauptmodul 1
xm(τ) we use in this work, the upper indices �m

cannot be improved any further, i.e., cannot be smaller. From the proof of Theorem 2.2,
we can first note that for k fixed, the size of �m is determined by the order of vanishing of
the function Fk,m(τ) at 1

2 ; the higher the order is, the smaller �m will be. Then according
to the proof of Lemma 3.2, ord1/2(Fk,m) is directly related to the definition of Fk,m(τ) as a
linear combination of Eisenstein series. Thus it is natural ask whether one could redefine
Fk,m(τ) to have higher order at 1

2 . In our cases, this is impossible. For example, for m = 2,

and k ≥ 4 and even, first we know that (θ(τ)θ(2τ))k and x2(τ) are modular forms of weight
10



k on Γ0(8) with trivial character by Lemma 3.3. Then we must have Fk,2(τ) be a linear
combination of Eisenstein series of weight k on Γ0(8) with trivial character, thus we must
have

Fk,2(τ) = C1Ek(τ) + C2Ek(2τ) + C3Ek(4τ) + C4Ek(8τ)

for some constants C1, . . . , C4 since Ek(mτ) for m ∈ {1, 2, 4, 8} are linearly independent
Eisenstein series of weight k on Γ0(8) with trivial character and the dimension of the space
spanned by such Eisenstein series is 4. According to the proof of Lemma 3.2, in order to
have ord1/2(Fk,2) ≥ 1, we must have C4 = 0. In addition, since x2(τ) is invariant under

Γ0(8)
+, then

Fk,2(τ)

(θ(τ)θ(2τ))k
must also be invariant under Γ0(8)

+. Following such modularity,

we can deduce that C1 = 0 and C2 = 2−k/2C3, and thus we have

Fk,2(τ) = C3

(
2−k/2Ek(2τ) + Ek(4τ)

)
.

However, similar to the proof of Lemma 3.2, we can show that the order of vanishing of
2−k/2Ek(2τ)+Ek(4τ) at

1
2 is 0. This demonstrates our claim for the case m = 2, and k ≥ 4

and even. For the cases m = 2 and k = 2, and m = 2 or 4 and k = 1, the formulas we
obtained do not involve any lower order term. For the other cases, similar arguments can
be applied by the facts that
(i) the space of Eisenstein series of weight 2 on Γ0(16) is spanned by mE2(mτ) − E2(τ)

for m|16 and m �= 1, and
∑∞

n=1

(−4
n

)
σ1(n)q

n;
(ii) the space of Eisenstein series of even weight k ≥ 4 on Γ0(16) is spanned by Ek(mτ)

for m|16 and
∑∞

n=1 χ−4(n)σk−1(n)q
n;

(iii) the space of Eisenstein series of odd weight k ≥ 3 on Γ0(8) with character χ−2 is
spanned by E∞

k,χ−2
(τ) and E0

k,χ−2
(τ);

(iv) the space of Eisenstein series of odd weight k ≥ 3 on Γ0(16) with character χ−4 is
spanned by E∞

k,χ−4
(mτ) and E0

k,χ−4
(mτ) for m|4.
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