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We show that for a real quadratic field F the dihedral congruence primes with

respect to F for cusp forms of weight k and quadratic nebentypus are essentially the

primes dividing expressions of the form ek�1
þ � 1 where eþ is a totally positive

fundamental unit of F . This extends work of Hida. Our results allows us to identify a

family of (ray) class fields of F which are generated by torsion points on modular

abelian varieties. # 2002 Elsevier Science (USA)
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1. INTRODUCTION

Let F ¼ Qð
ffiffiffiffi
D

p
Þ denote a real quadratic field of discriminant D > 0. Let

wD denote the corresponding quadratic character. Let SkðD; wDÞ denote the
cusp forms of weight k52, level D and nebentypus wD. A cusp form f 2
SkðD; wDÞ is said to be primitive if it is a normalized newform that is a
common eigenform of all the Hecke operators.

In [Hid98], Hida characterized the primes of congruence between f
and f � wD as f varies through all primitive elements in SkðD; wDÞ in terms
of the primes dividing ek�1

þ � 1 where eþ is a totally positive fundamental
unit of F .

The starting point of this paper was the following question: can the
primes of congruence between f and f � w be similarly characterized for
arbitrary even quadratic characters w that are ‘factors’ of the nebentypus wD?
In the first part of this paper we answer this question affirmatively. This time
the answer involves expressions of the form ek�1

þ � 1 where eþ is a totally
positive fundamental unit of the real quadratic field Fw corresponding to w.
As in [Hid98] we work under certain technical assumptions of ordinarity
and absolute irreducibility and do not elaborate upon this here.
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Hilbert’s twelfth problem asks whether one can generate the (ray) class
fields of a given number field explicitly, for instance by the torsion points on
an abelian variety, or by the values of a modular function. The case where
the base field is Q or an imaginary quadratic field is classical. For more
general CM fields some partial results due to Shimura and Taniyama are
available [Shi99]. However, for many years the next simplest case, that of
real quadratic fields, defied treatment. Then, in the early 1970s Shimura
[Shi71, Shi72] invented a beautiful method to explicitly generate the (ray)
class fields of real quadratic fields via torsion points on certain modular
abelian varieties. His method has since been extended by other authors
[DY73, Koi76, Oht77].

In the second part of this paper, we further extend Shimura’s method
using our characterization of ‘dihedral congruence primes’ in the first part.
We show that by considering congruences in a systematic way with twists
that are not necessarily the full nebentypus we can, at least in principle,
generate explicitly infinitely many (ray) class fields of the same real
quadratic field by Shimura’s method. We say ‘in principle’ since, as we shall
see in the text, our results are subject to the phenomenon of extra twisting.
We also prove some results which combine Hida’s theory of families of
ordinary modular forms with Shimura’s method, further increasing its
scope.

2. DIHEDRAL CONGRUENCE PRIMES AND
FUNDAMENTAL UNITS

We start with some notation which is more general than that used in the
Introduction. Let F ¼ Qð

ffiffiffiffi
D

p
Þ denote an arbitrary quadratic field of

discriminant D. Let

wD : ðZ=jDjZÞ
 ! f�1g

denote the quadratic character corresponding to F =Q. Let SkðjDj; wDÞ denote
the cusp forms of weight k52, level jDj and nebentypus wD. Let
f 2 SkðjDj; wDÞ be a primitive cusp form; i.e., a normalized newform that is
a common eigenform of all the Hecke operators. Note that there are no
oldforms in the space SkðjDj; wDÞ since the conductor of wD is equal to the
level jDj.

Let C denote the field of complex numbers. Recall that f has a Fourier
expansion

f ¼
X1

n¼1
aðn; f Þqn; ð2:1Þ
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where aðn; f Þ 2 C for all n51. Let %QQ � C denote the subfield of algebraic
numbers. It is well known that the aðn; f Þ are algebraic integers. Let } be a
prime of %QQ of residue characteristic p. f is said to be ordinary at } if aðp; f Þ
is a }-adic unit. (Warning: it is possible for f to be ordinary at some }
above p but not at another prime }0 above p.)

Consider the factorization D ¼ D1D2 of D into two fundamental
discriminants D1 and D2. We allow the case D1 ¼ D and D2 ¼ 1. Let wD1

denote the quadratic character of conductor jD1j and let F1 ¼ Qð
ffiffiffiffiffiffi
D1

p
Þ

denote the corresponding quadratic field. Throughout this paper we shall
assume that

F1 is a real quadratic field :

The cusp form f � wD1
is again a primitive element of SkðjDj; wDÞ. We will

call a prime } of %QQ a dihedral congruence prime for f with respect to F1 if
there is a congruence f � f � wD1

mod }. By a slight abuse of notation we
sometimes call the prime p of Q lying under } a dihedral congruence prime
as well.

In this section, we will describe the set of ordinary dihedral congruence
primes with respect to F1 of the primitive elements of SkðjDj; wDÞ in terms of
the fundamental units of F1. This generalizes a result of Hida [Hid98] where
the case F1 ¼ F was treated. We start with the following theorem:

Theorem 2.1. Let p be a prime such that ðp; 2DÞ ¼ 1. Let f be a

primitive element of SkðjDj; wDÞ and assume that k � 1c0 mod p � 1. Suppose

that f satisfies a congruence of the form

f � f � wD1
mod } ð2:2Þ

for a prime } of %QQ over p. Suppose also that f is ordinary at } and that the

mod } Galois representation attached to f is absolutely irreducible. Then

* p splits in F1,
* q splits in F1 for each prime qjD2, and
* p j NF1=Qðe

k�1
þ � ð�1ÞaÞ,

where eþ is a totally positive fundamental unit of F1 and a is an integer

depending on F1 and D2 described in (2.10).

Proof. We remark that the condition p j NF1=Qðe
k�1
þ � ð�1ÞaÞ is indepen-

dent of the choice of the totally positive fundamental unit eþ.
We make the convention that all number fields K are subfields of %QQ. Here

and below we will write } for the prime of the number field K which lies
under the prime } of %QQ. Let Kf denote the Hecke field of f . It is the
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number field generated by the Fourier coefficients of f . Let Kf ;} denote the
completion of Kf at }.

For a subfield N of %QQ write GN for Galð %QQ=N Þ. Let

rf :GQ ! GL2ðKf ;}Þ

denote the Galois representation attached to f constructed by Eichler and
Shimura for k ¼ 2 and by Deligne for k52. Note that rf is irreducible,
unramified outside Dp and is characterized by

Trðrf ðFrob‘ÞÞ ¼ að‘; f Þ

for all primes ‘[Dp. Moreover,

detðrf Þ ¼ ok�1
p wD;

where op :GQ ! Z

p is the cyclotomic character.

By choosing a GQ-stable lattice we may assume that the representation rf
takes values in GL2ðOf ;}Þ where Of ;} is the ring of integers of Kf ;}. By
reducing mod } we obtain the mod } representation attached to f , namely

%rrf :GQ ! GL2ðFÞ;

where F ¼ Of ;}=} is the residue field. By hypothesis, %rrf is absolutely
irreducible. In particular, it is independent of the choice of lattice made above.

Congruence (2.2) along with the absolute irreducibility of %rrf implies that

%rrf � %rrf � wD1
;

where we are now thinking of wD1
as a Galois character with values in

�1 � F
. Write H1 ¼ GF1
for simplicity. Under the absolute irreducibility

of %rrf it is well known that there is a character f :H1 ! %FF



such that

%rrf ¼ Ind
GQ

H1
ðfÞ:

Let s denote the non-trivial element of GalðF1=QÞ. Extend s to an element
of GQ and continue to denote this element by s. The condition of absolute
irreducibility implies that

f=fs;

where fs is the conjugate character defined by fsðhÞ ¼ fðshs�1Þ for all
h 2 H1. Moreover, we have

%rrf jH1
�

f 0

0 fs

 !
: ð2:3Þ
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Let Gp � GQ denote the decomposition group at } and Ip the inertia
subgroup. Let p be the prime of F1 lying under }. Let Hp, Ip, denote the
decomposition and inertia subgroups of H1 at }.

Since aðp; f Þ is a }-adic unit a theorem of Deligne says that the
restriction of rf to Gp is reducible. More precisely, we have

rf jGp
�

d *

0 e

 !
ð2:4Þ

for characters d, e :Gp ! O

f ;}. Moreover, it is known that e is unramified.

There is an exact sequence

1 ! F 

1 F 


1þ ! A

F1
!
½ ;F1�

H ab
1 ! 1

where ½ ; F1� is the Artin map. Composing f with the Artin map allows us to
think of f as a continuous finite-order Hecke character

f : F 

1 =A


F1
! %FF



:

Let c be the finite part of the conductor of f. Denote by f once more the
associated Dirichlet character of conductor c:

f : ðOF1
=cÞ
 ! %FF



:

Now (2.3) shows that

f � fs ¼ ok�1
p wD ð2:5Þ

on H1. Since we have assumed that k � 1c0 mod p � 1 we see that ok�1
p =1

and therefore at least one of f or fs is ramified at p. On the other hand, by
comparing (2.3) and (2.4) on Hp ¼ H1 \ Gp we see that exactly one of f or
fs is ramified at p. By relabelling, if necessary, we may assume that f is
ramified at p and that fs is unramified at p.

This forces p to split in F1. Indeed if p were inert then, since the conductor
of fs is cs and p j c, one would have p ¼ psjcs, contradicting the fact that fs

is unramified at p.
For a prime ljc, let us write fl for the component of the Dirichlet

character f at l. We now describe the possibilities for the components fl
using (2.5) in various cases.

First, assume that D1 ¼ D so that D2 ¼ 1. This case has already been
treated by Hida but we repeat the argument here for completeness. In this
case (2.5) gives

ffs ¼ ok�1
p ð2:6Þ
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on H1 since wD is trivial on H1. We conclude that fpf
s
p ¼ ok�1

p . Since fs
p ¼ 1

we have fp ¼ ok�1
p . Also, since the following diagram commutes:

we see that fps ¼ 1. Thus, f ¼ fpfps ¼ ok�1
p has conductor p and is given

by the map

ðOF1
=pÞ
 ! %FF



; x/xk�1:

Since fðeþÞ ¼ 1 we see that pjNF1=Qðe
k�1
þ � 1Þ, as desired.

Let us now consider the case in which D1=D so that D2=1. Since wD1

becomes trivial when restricted to H1, (2.5) shows that

f � fs ¼ ok�1
p � wD2

ð2:7Þ

on H1. Note that since the conductor of wD2
is D2OF1

we obtain fp ¼ ok�1
p

and fs
p ¼ 1 as before.

We now prove that q splits in F1 for each q jD2. Let N be the prime to p
part of the Artin conductor of %rrf . It is known (see for instance [Car89] or
[DT94]) that N divides the level of f . Thus, if eq denotes the exponent of q
dividing N then eq ¼ 1. On the other hand,

eq ¼
X1

i¼0

1

½I0 : Ii�
dimðV =V Ii Þ;

where V is a model for %rrf over %FFp and Ii denotes the ith ramification
group at q. This shows that V I0=0 since otherwise eq52. Let ða; bÞ 2 V
denote a non-zero vector fixed by I0 ¼ Iq. Let q be a prime of F1 lying
over q. Let Iq denote the inertia subgroup at q. Then for h 2 Iq � H1

we have

rðhÞ
a

b

 !
¼

fqðhÞ 0

0 fs
qðhÞ

 !
a

b

 !
¼

a

b

 !
:

Since at least one of a or b is non-zero, either fq ¼ 1 or fs
q ¼ 1. Now (2.7)

yields the relation

fq � f
s
q ¼ wq; ð2:8Þ
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where we have written wq for ðwD2
Þq. This shows that exactly one of fq or fs

q

is trivial. Since the following diagram commutes:

we deduce that q ¼ qqs must be split in F1.
The above argument shows that for any prime q of F dividing D2

either

fq ¼ wq and fqs ¼ 1 ð2:9Þ

or

fq ¼ 1 and fqs ¼ wqs :

Now

1 ¼ fðeþÞ ¼ fpðeþÞ � fpsðeþÞ �
Y

qjD2
fqðeþÞfqsðeþÞ ¼ ok�1

p ðeþÞ
Y

qjD2
wqðeþÞ;

where q in these products denotes the prime of F lying over q at which (2.9)
holds. This shows that ek�1

þ � ð�1Þa mod p, where

a is the number of primes q dividing D2 for which wqðeþÞ ¼ �1: ð2:10Þ

Hence, we have pjNF1=Qðe
k�1
þ � ð�1ÞaÞ. ]

As already remarked, Theorem 2.1 was proved by Hida [Hid98] in the
situation where wD1

¼ wD is the full nebentypus. In this case, k is even and so
the condition that k � 1 is not a multiple of p � 1 is superfluous since p is an
odd prime. Also in this case, a ¼ 0 and the conclusion of the theorem
pjNF1=Qðe

k�1
þ � 1Þ may be checked to be equivalent to pjNF1=Qðe

k�1 � 1Þ
where e is a fundamental unit for F1.

In [Hid98] Hida also establishes a converse: he shows that if ðp; 6DÞ ¼ 1;
p splits in F ¼ Qð

ffiffiffiffi
D

p
Þ and pjNF =Qðek�1 � 1Þ where e is a fundamental

unit of F , then for every prime } of %QQ lying over p, there is a primitive
element f 2 SkðD; wDÞ such that f is ordinary at }, the mod } Galois
representation attached to f is absolutely irreducible and f �
f � wD mod }. We now establish a converse to Theorem 2.1. Our result
includes Hida’s converse. Like Hida we avoid the prime p ¼ 3 when k ¼ 2;
in fact, a study of the space S2ð37; w37Þ shows that the converse is false for
p ¼ 3 and k ¼ 2.
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Theorem 2.11. Let p be a prime such that ðp; 2DÞ ¼ 1. Let k52 be such

that k � 1c0 mod p � 1 and assume that p=3 if k ¼ 2. Suppose that

* p splits in F1,
* q splits in F1 for each prime q jD2, and
* p j NF1=Qðe

k�1
þ � ð�1ÞaÞ,

where eþ is a totally positive fundamental unit of F1 and a is defined as in

(2.10). For each prime } of %QQ lying over p there is a primitive element

f 2 SkðjDj; wDÞ such that f is ordinary at }, the mod } Galois representation

attached to f is absolutely irreducible and f satisfies the congruence

f � f � wD1
mod }:

Proof. The proof is similar to the one given in [Hid98] and uses Hida’s
theory of families for ordinary forms.

Fix a prime p for any prime of %QQ lying over p. Let

c ¼ p
Y

qjD2
q;

where q in this product denotes a prime of F1 over q and p is the prime of F1

lying under }. Let Fp denote the field with p elements. Consider the
Dirichlet character

ff : ðO=cÞ
 ! %FF


p

whose components are fp ¼ ok�1
p =1 and fq ¼ wq for each q dividing c.

Under the hypothesis on eþ we have ff ðeþÞ ¼ 1.
We claim that by choosing f1 to be the sign character f1;n at exactly one

infinite place n of F1 we can ensure that

ff ðuÞf1ðuÞ ¼ 1 ð2:12Þ

for all units u of F1. Let e be a fundamental unit of F1. If e is totally positive
then e 2 heþi, hence ff ðeÞ ¼ 1. Then for any infinite place n of F1 we have
ff ðeÞf1;nðeÞ ¼ 1. If e is not totally positive then e2 2 heþi, hence
ff ðeÞ 2 f�1g. Choose n such that f1;nðeÞ ¼ ff ðeÞ. Furthermore, we have
ff ð�1Þ ¼ ð�1Þk�1wD2

ð�1Þ, hence ff ð�1Þf1;nð�1Þ ¼ 1. Since e;�1 generate
the units of F1 this establishes the claim.

Let #OOF1
denote the pro-finite completion of OF1

and let
U ðcÞ ¼ 1 þ c #OOF1

� #OO


F1

. Let F

1;1 ¼ ðR
Þ2 and let F 


1;1þ ¼ ðR

þÞ

2. Then we
have an inclusion of finite groups

O

F1
=ð #OO



F1

 F


1;1Þ=U ðcÞ 
 F 

1;1þ+F 


1 =A

F1
=U ðcÞ 
 F


1;1þ; ð2:13Þ
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where the index is the class number of F1. Condition (2.12) shows that the
characters ðff ;f1Þ give rise to a character on the smaller subgroup in
(2.13). Extending this character to a character of the larger group we obtain
a finite-order Hecke character f : F 


1 =A

F1
! %FF



p of conductor cn. Now let

f1 ¼
X

a�O
fðaÞqNF1=Q

ðaÞ

be the theta series attached to f where f here is thought of as a
multiplicative function on the integral ideals of F1 which vanishes on those
ideals that meet c. Then (see [Miy89, Theorem 4.8.3])

f1 2 S1ðjDjp; wDo
k�1
p Þ:

Moreover, %rrf1
� %rrf1

� wD1
so that f1 � f1 � wD1

mod }.
Now aðp; f1Þ ¼ fðpÞ þ fðpsÞ where s is the non-trivial element in

GalðF1=QÞ. Since fðpÞ ¼ 0 and fðpsÞ is a root of unity we see that f1 is
ordinary at }. Therefore, f1 sits in a Hida family (see, for example, [Hid93,
Chap. 7] where the prime power level is treated) whose weight l member is a
}-ordinary element

fl 2 SlðjDjp; wDo
k�l
p Þ:

The form f ¼ fk 2 SkðjDjp; wDÞ then almost satisfies the desired properties of
the form in the conclusion of the theorem. It is }-ordinary by construction,
%rrf is absolutely irreducible since f=fs, and f � f � wD1

mod } since f
and f1 have the same mod } Galois representation.

We say ‘almost’ in the sentence above since f has p in its level. But, as we
now show, we may assume that f 2 SkðjDj; wDÞ by replacing f with a }-
ordinary primitive form g 2 SkðjDj; wDÞ with the same mod } Galois
representation as f . Indeed, when k53, there is an isomorphism

Sord
k ðjDjp; wDÞ ¼ Sord

k ðjDj; wDÞ;

where the superscript denotes the subspace of }-ordinary forms. This
isomorphism is well known: it follows from the fact that a (p-new) primitive
form g 2 SkðjDjp; wDÞ has pth Fourier coefficient satisfying aðp; gÞ ¼
�pðk�2Þ=2 (see [Miy89, Theorem 4.6.17]) and so is not ordinary at } if
k53.

When k ¼ 2 the above argument fails. We use instead the following
argument which will require the additional hypothesis that p=3. Recall that
f ¼ op and fs ¼ 1 on Ip. Thus (2.3) shows that

%rrf jIp �
op 0

0 1

 !
ð2:14Þ
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since Ip ¼ Ip � H1. The behaviour of %rrf on Ip described by (2.14) above
along with [Ser87, Proposition 3] shows that the Serre weight of %rrf is
kð %rrf Þ ¼ 2. By [Rib94, Theorem 3.3], %rrf arises from S2ðG1ðDÞÞ. Actually,
Ribet’s theorem requires p55, but the part of the theorem that we need
(namely the equality of the sets N1 and N3 in his notation) is valid even for
p ¼ 3. Now Carayol [Car89, Proposition 3] (or [Rib94, Theorem 1.3]) shows
that %rrf arises from a form g 2 S2ðD; wDÞ. The result of Carayol is valid only
for p55 and it is here that we use the hypothesis that p=3. Note that the
form g continues to be }-ordinary since if it were not a theorem of Fontaine
[Edi92, Theorem 2.6] would say that %rrg is irreducible on Gp whereas we
already know that %rrg � %rrf is reducible on Gp ¼ Hp � H1. ]

Here is some numerical data to illustrate Theorems 2.1 and 2.11. These
data were compiled with the aid of the modular forms calculator HECKE

written by W. Stein, available at http://modular.fas.harvard.edu.
We restrict to the case where D ¼ D1D2 is the product of two primes

congruent to 1 mod 4 with wD1
ðD2Þ ¼ 1. Thus D is positive and therefore

k52 is even.
Column 2 lists the odd primes which split (or ramify) in Qð

ffiffiffiffi
D

p
Þ and

which divide the norm of ek�1
þ;D � 1 for a totally positive fundamental unit

eþ;D of Qð
ffiffiffiffi
D

p
Þ. Let eþ;Di be an analogous unit for Qð

ffiffiffiffiffi
Di

p
Þ for i ¼ 1; 2. Since

Di � 1 mod 4, the norm of a fundamental unit of Qð
ffiffiffiffiffi
Di

p
Þ is �1.

Consequently, eþ;Di is a square and a ¼ 0 in (2.10). Thus, in columns 3
and 4 we list the odd primes which split (or ramify) in Qð

ffiffiffiffiffi
Di

p
Þ and which

divide the norm of ek�1
þ;Di

� 1 for i ¼ 1; 2. Column 5 lists the primes dividing
the discriminant of the Hecke algebra.

As predicted by our theorems every prime (which is prime to 6D) that
occurs in columns 2–4 also occurs in column 5 as a dihedral congruence
prime (actually the Hecke discriminant only shows that it occurs as a
congruence prime).

Column 6 gives the dimension of SkðD; wDÞ partitioned according to GQ-
orbits of primitive forms. When there is only one orbit then the dihedral
congruence primes arise because of the phenomenon of extra twisting as we
shall explain in Section 3 (see Tables I and II).

Some large factors (denoted by p or q if they are known to be prime and
by n if they are possibly composite) appear in the tables below. These factors
are not important for our purposes but for completeness we list them:

p145 ¼ 3423792162108426353056857548769671099

p689 ¼ 1205496111864022253479367

p793 ¼ 2324195671211370589

p901 ¼ 129196963641464623

q901 ¼ 3328968195415999986013

p205 ¼ 22723708823

q205 ¼ 10385895568903051794474791759280258119944561



Lev

145
205
221
305
377
445

689
793

901

Lev

145
205

221
305
377
445

689
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p221 ¼ 1111523239622632157524576477637325711959616179045094404902744467611

n305 ¼ 4436763773764945764125473776802353195620339527347665991905424185596744

716324578735032837424267253963633270020217800106601076493292511

n377 ¼ 1876202351613287283244648137810920543235177403807980793620358397680811

01025161812558333395576383481646527023327932899249379830433647245293

n445 ¼ 3224436219733814792283346896639607247598031655094559161261403635371203

4793111416481558721792767801541177433501952526413311801057982504835047

7643350341530765668934687352182447455102808460902080151411156518591825

2079019336741673799776789635959904734162618260610249518728525290488076

7778989128094469958650252961877988629802849160025713185539918807610307

52020723081

n689 ¼ 6070327714830186706749485036618749511762723694879284371336442785678951

1239105893899357835608128380317552388371450463885173842876252580207040

3608958918988949017429708613516955449668899409076858297085496580573387

7804099511080151049894236222022096789063195996843013014533835391507245

7061381.
TABLE I

Dihedral Congruence Primes for S2ðD; wDÞ

el eþ; D eþ; D1
eþ; D2

Hecke discriminant Orbits

¼ 5 � 29 3 5 2 3 5 17 12 ¼ 4 þ 4 þ 4
¼ 5 � 41 2 13 41 59 853 20 ¼ 20
¼ 13 � 17 3 2 3 5 7 13 733 20 ¼ 4 þ 4 þ 6 þ 6
¼ 5 � 61 3 13 2 3 7 13 23 61 1459 35201 28 ¼ 28
¼ 13 � 29 3 5 2 3 5 29 109 2089 24551 32 ¼ 32
¼ 5 � 89 37 5 2 3 5 7 4057

10187892099374809
44 ¼ 44

¼ 13 � 53 3 7 2 3 7 13 107 1123 p689 60 ¼ 60
¼ 13 � 61 3 3 3 13 2 3 13 61 691

9525232953521 p793

68 ¼ 8 þ 60

¼ 17 � 53 3 5 7 2 3 5 7 11 3923 p901 q901 80 ¼ 8 þ 72

TABLE II

Dihedral Congruence Primes for S4ðD; wDÞ

el eþ; D eþ; D1
eþ; D2

Hecke discriminant Orbits

¼ 5 � 29 3 193 5 7 2 3 5 7 193 p145 44 ¼ 44
¼ 5 � 41 4099 2 3 5 11 41 1259

2273 2447 4099 p205 q205

60 ¼ 60

¼ 13 � 17 3 67 2 3 7 13 19 67 p221 60 ¼ 60
¼ 5 � 61 3 13 127 2 3 5 11 13 61 89 127 n305 92 ¼ 92
¼ 13 � 29 3 5 7 2 3 5 7 29 467 2027 n377 104 ¼ 104
¼ 5 � 89 3 7 37 5

1000003
2 3 5 7 17 37 73

1000003 n445

132 ¼ 132

¼ 13 � 53 211 3 7 13 2 3 5 7 13 31 41 67
211 81569 137491 n689

188 ¼ 188
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Two final remarks about the numerical data are in order. First, within the
limits of the tables, Theorem 2.11 is valid when p ¼ 3 and k ¼ 2. However,
as already mentioned, there are counterexamples, for instance when the level
is 37. Second, although in this paper we have not investigated what happens
at the odd primes dividing D, the data above shows that analogs of our
results are likely to be true for such primes as well.

In Theorems 2.1 and 2.11 we assumed that k � 1c0 mod p � 1. This
condition is vacuously true if D > 0 since in this case k is even and p is odd.
When k is odd this condition may fail for some odd primes p smaller than k.
However, the following proposition shows that the conclusions of Theorems
2.1 and 2.11 remain essentially the same even in this case.

Proposition 2.15. Let p be an odd prime with ðp; 2DÞ ¼ 1. Let } be a

prime of %QQ lying over p. Let k52 be an integer satisfying

k � 1 � 0 mod p � 1:

Then, there is a primitive }-ordinary form f 2 SkðjDj; wDÞ with %rrf absolutely

irreducible and f � f � wD1
mod } if and only if

* p splits in F1,
* q splits in F1 for each prime qjD2,
* the integer a defined in (2.10) is even, and,
* condition (2.16) holds.

Proof. The proof is similar to the proofs of Theorems 2.1 and 2.11 and
so we only outline the differences.

Assume that f is a primitive }-ordinary form satisfying the hypotheses
of the proposition. Then as in the proof of Theorem 2.1 we obtain a Hecke
character f of F1 but this time both its components fp ¼ ok�1

p ¼ 1 and fps

are trivial. In particular, we cannot use our old argument to show that p
splits in F1. But we can work around this. Let f1 be the theta series attached
to f. Since f has prime to p conductor cn with c ¼

Q
q, the form f1 2

SkðjDj; wDÞ has level prime to p. Assume towards a contradiction that p is
inert in F1. Let rf1

be the Galois representation attached to f1 by Deligne
and Serre [DS74]. Since both %rrf1

and %rrf ¼ IndðfÞ have the same traces on
the Frobenius element at ‘[Dp, namely

að‘; f1Þ ¼
fðlÞ þ fðlsÞ if ‘ ¼ lls splits in F1;

0 if ‘ ¼ l is inert in F1;

(

we have that %rrf1
� %rrf . Since f has prime to p conductor, %rrf is unramified at

p. Since f is }-ordinary we have Trð %rrf ðFrobpÞÞ=0. On the other hand, this
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trace is aðp; f1Þ ¼ 0 since we assumed that p was inert in F1. This is a
contradiction, so p must split in F1.

The argument that each qjD2 splits in F1 proceeds as before, and the
computation just above (2.10) shows that ð�1Þa ¼ 1 so that a must be even.

Since p ¼ pps in F1 we have aðp; f1Þ ¼ fðpÞ þ fðpsÞ=0. Thus, since f is a
character of the larger group in (2.13), with c ¼

Q
qjD2

q now, the following
condition holds automatically:

The character
Y
qjD2

wq sgnn extends to a character f

of the larger group in ð2:13Þ satisfying fðpÞ þ fðpsÞ=0:

ð2:16Þ

Conversely, suppose that p and each qjD2 splits in F1, and that a is
even. Then as in the proof of Theorem 2.11 we may construct a character
ff of conductor c ¼

Q
qjD2

q whose components are fq ¼ wq for each q

dividing c. This time we set fp ¼ 1. As before we may choose a character f1
of F 


1;1 such that the pair ðff ;f1Þ extends to a Hecke character f of F1.
Again the associated theta series f1 has level prime to p, that is
f1 2 S1ðjDj; wDÞ.

Since p splits in F1 by assumption we have aðp; f1Þ ¼ fðpÞ þ fðpsÞ.
Condition (2.16) implies that we can choose f so that the corresponding
theta series f1 is }-ordinary.

The rest of the proof, namely considering the weight k member of
the Hida family to which f1 belongs and then lowering p from its level,
proceeds exactly as before to yield a form f 2 SkðjDj; wDÞ with the desired
properties. ]

3. EXTRA TWISTS

In this section, we describe the relevance of extra twists to the
construction of dihedral congruence primes. Let us fix a primitive form
f 2 SkðjDj; wDÞ of weight k52 and let Kf denote the Hecke field of f .

Lemma 3.1. Let g 2 AutðKf Þ be an element of order 2. Let Kg
f denote the

fixed field of g.

(1) If } is a ramified prime in Kf =K
g
f then

(2) Conversely, if } satisfies (3.2) and the ring generated by the

Fourier coefficients of f is the maximal order in Kf then } is a ramified

prime in Kf =K
g
f .

f g � f mod }: ð3:2Þ
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Proof. Let Of denote the maximal order of Kf and let Oðf Þ � Of denote
the order generated by the aðn; f Þ. Let Og

f denote the maximal order of Kg
f . If

} is ramified in Kf =K
g
f then g 2 Ið};Kf =K

g
f Þ, the inertia subgroup at }.

Thus,

gðxÞ � xmod } ð3:3Þ

for all x 2 Of . In particular, this holds for all x ¼ aðn; f Þ 2 Oðf Þ and (3.2)
follows. This proves the first statement.

Conversely, if } satisfies (3.2) then (3.3) holds for all x 2 Oðf Þ and, under
our hypothesis on Oðf Þ, for all x 2 Of . This implies that g fixes } so that }
is not a split prime. Moreover, } is not an inert prime, for if it were one
would have the absurdity that g is the generator of the extension of residue
fields yet is trivial mod }. Thus } must be ramified. ]

Let g 2 AutðKf Þ be of arbitrary order and let w be a Dirichlet character
that takes values in Kf . We say that f has an extra twist or simply a twist by
ðg; wÞ if

f g ¼ f � w:

The prototype of an extra twist for f is ðc; wDÞ where c denotes complex
conjugation on the CM field Kf and wD is the nebentypus.

If f has a twist by ðg; wÞ and

f has no complex multiplication; ð3:4Þ

then w is uniquely determined by g, in which case we denote it by wg. We
assume that f satisfies condition (3.4) for the rest of this paper.

Now suppose f has a twist by ðg; wgÞ. Then

wgD ¼ wDw
2
g :

Since wD takes values in f�1g we see that wgD ¼ wD. Thus wg is necessarily a
quadratic character and g has order 2. It may be checked that wg ¼ wD1

for a
unique fundamental discriminant D1 such that D ¼ D1D2 is a product of
fundamental discriminants.

The first part of Lemma 3.1 shows that each prime } that divides the
different of Kf =K

g
f is a dihedral congruence prime for f with respect to F1.

The moral is that extra twists for f are directly responsible for the
occurrence of dihedral congruence primes for f . In particular when there is
only one Galois orbit in SkðjDj; wDÞ then all dihedral congruence primes arise
from extra twists (see the tables in the previous section for examples of
spaces with one orbit).
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4. CLASS FIELDS OF REAL QUADRATIC FIELDS

In this section, we use Shimura’s method (see [Shi71, Chap. 7, Shi72]) to
generate (ray) class fields of real quadratic fields explicitly in terms of torsion
points on certain abelian varieties defined over these fields.

Shimura’s method has already been studied in various different contexts
by other authors [DY73, Koi76, Oht77] and is in principle well understood.
However, a new feature of our study is that by considering in a systematic
way congruences with twists that are not necessarily the full nebentypus we
can, at least in principle, generate explicitly infinitely many class fields of the
same real quadratic field by this method.

We start with some class field theoretic preliminaries. Let K denote
a real quadratic field. Let m be a modulus for K. Recall that the ray class
field modulo m is a finite abelian extension RCFðmÞ of K of conductor
dividing m, which is maximal with respect to this property: if L is another
finite abelian extension of K whose conductor divides m then L � RCFðmÞ.

Write m ¼ mfm1 where mf is supported at finite places of K and m1 is
supported at infinite places of K. Let

Km ¼ fa=b j a; b 2 OK ; ðaÞ; ðbÞ relatively prime to mf g;

Km;1 ¼ fa 2 Km ja � 1 ðmod mÞg:

Here the condition a � 1 ðmod mÞ means the following: for each finite p

dividing mf , we require that vpða� 1Þ5vpðmf Þ, and for each real prime p

dividing m1, we require a to be positive at this place.
Let IK denote the group of fractional ideals of K. Write ImK for

the subgroup of IK generated by all the primes not in mf . Let PK denote
the subgroup of principal ideals of K. Let i : K
 ! PK denote the map
x/ðxÞ. The class group of K is ClðKÞ ¼ IK=iðK
Þ; in fact, one may check
that ClðKÞ ¼ ImK =iðKmÞ for any modulus m. The ray class group of conductor
m is

RCGðmÞ ¼
ImK

iðKm;1Þ
:

There is an exact sequence

1 !
iðKmÞ
iðKm;1Þ

! RCGðmÞ ! ClðKÞ ! 1:

This shows that the class number hK of K is a factor of the order of the ray
class group of conductor m. To compute the full order consider the
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following commutative diagram with exact rows:

where Um;1 ¼ O

K \ Km;1. By the snake lemma we get the exact sequence:

1 !
O

K

Um;1
!

Km

Km;1
!

iðKmÞ
iðKm;1Þ

! 1:

Now there is an isomorphism:

Km

Km;1
ffi ðOK=mf Þ


 

Y

p1jm1
R
=R


þ ¼: AðmÞ:

Putting things together we see that the order of the ray class group modulo
m, which is also the degree over K of the ray class field of K modulo m, is

jRCGðmÞj ¼
2rMhK

u
; ð4:1Þ

where r is the number of infinite places in m1, M is the order of ðOK=mf Þ

,

and u is the order of the subgroup of AðmÞ generated by the units.
Let now D be the discriminant of a quadratic field. Write D ¼ D1D2 and

assume as usual that F1 :¼ Qð
ffiffiffiffiffiffi
D1

p
Þ is a real quadratic field. Let f 2

S2ðjDj; wDÞ be a primitive form and suppose that f has a twist by ðg; wD1
Þ

where g denotes an element of AutðKf Þ and wD1
is the quadratic character of

conductor D1. We assume that f satisfies condition (3.4).
Let } be a prime of %QQ which divides the different of Kf =K

g
f . Then as

explained at the end of Section 3, } is a dihedral congruence prime for f as
in (2.2). Let p be the residue characteristic of }. To put us in the context of
Theorem 2.1 assume that:

* ðp; 2DÞ ¼ 1,
* f is ordinary at },
* %rrf is absolutely irreducible.

The proof of Theorem 2.1 shows that we may then write

%rrf ¼ Ind
GQ

H1
f

for a character f :H1 ! %FF


p with associated Dirichlet character f of the form

ff ¼ op

Y
qjD2

wq;
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where p is a split prime of F1 lying under } and q is a split prime of F1 lying
over qjD2. Moreover, since ff ð�1Þ ¼ �1 we see that f1ð�1Þ ¼ �1 so that
f1 is trivial at one infinite place n of F1 and non-trivial at the other. Thus, f
cuts out a cyclic extension N of F1 of degree

½N : F1� ¼ p � 1

and conductor pð
Q

qÞn.
Let en be the fundamental unit of F1 with respect to n. For a prime ideal l

of F1 let dl;n denote the order of en modulo l. Let mf ¼ c ¼ p
Q

q and
m1 ¼ n and let m ¼ mfm1. Using formula (4.1) above one computes that
the degree of RCFðmÞ, the ray class field of F1 modulo m, over F1, is

½RCFðcnÞ : F1� ¼
ðp � 1Þ

Q
qjD2

ðq� 1ÞhF1

lcmljcðdl;nÞ
: ð4:2Þ

Let Af denote the abelian variety attached to f . Af is defined over Q, is
simple over Q, and comes equipped with a map

i : Kf+EndðAf Þ �Q:

Here iðaðn; f ÞÞ acts as the nth Hecke operator on Af and so is defined over Q.
Let w ¼ wD1

denote the Atkin–Lehner involution of level D1. Note that

f jw ¼ cf � wD1

for a constant c of absolute value 1 which lies in F1. Since f has a twist by
ðg; wD1

Þ we see that w induces an involution of Af which is defined over F1.
The Atkin–Lehner action and the Hecke action do not commute but satisfy
instead the well-known relation

w 8 iðaðn; f ÞÞ ¼ iðaðn; f ÞgÞ 8 w: ð4:3Þ

Now set Bf ¼ ð1 þ wÞAf . Then Bf is an abelian sub-variety of Af defined
over F1 of half the dimension of Af . Further, since ws ¼ �w we see that
Bs
f ¼ ð1 � wÞAf . Thus, Af ¼ Bf þ Bs

f and the intersection of Bf and Bs
f is

contained in Af [2]. Moreover (4.3) shows that there is a map

i : Kg
f+EndðBf Þ

and similarly for Bs
f .

Write } again for the prime of Kf lying under the prime } of %QQ. Since }
is prime to 2, one can write

Af ½}� ¼ R� S;
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where

R ¼ Bf \ Af ½}�; S ¼ Bs
f \ Af ½}�:

Let Og
f be the ring of integers of Kg

f . Assume that Oðf Þ ¼ Of is the full
ring of integers of Kf . One can always replace Af by an isogenous abelian
variety which satisfies this assumption (see the discussion in [Shi71, pp. 198–
199]). Then one may check that R ffi S ffi Og

f =} ffi Of =}. Moreover, we
see that GF1

acts on R by f and on S by fs. Fix Pf , respectively, Qf , be a
generator of R, respectively, S, as an Og=}-module. Then, for each h 2 GF1

,
we have

Ph
f ¼ fðhÞ � Pf Qh

f ¼ fsðhÞ � Qf :

We summarize the discussion above by stating the following theorem.

Theorem 4.4. Let the notation and assumptions be as above. The class

field N of conductor pð
Q

qÞn and degree p � 1 can be explicitly generated

over F1 by adjoining the coordinates of the torsion point Pf to F1.

In general, N is too small to be the ray class field of conductor pð
Q

qÞn:
However, we have the following theorem:

Theorem 4.5. Let the notation and assumptions be as in Theorem 4.4.
Suppose also that F1 has class number 1 that D2 is divisible by only one prime

q, and that the fundamental unit en 2 F1 generates all of ðOF1
=qÞ
. Then N ¼

F1ðPf Þ is the ray class field modulo pqn.

Proof. Note that 1 ¼ ff ðenÞf1ðenÞ � �en mod p. This says that
dp;n 2 f1; 2g. Since hF1

¼ 1 and dq;n ¼ q� 1, formula (4.2) shows that

½RCFðpqnÞ : F1� ¼ p � 1 ¼ ½N : F1�:

Since N � RCFðpqnÞ they are equal. ]

Theorems 4.4 and 4.5 show that, at least in principle, it is possible to
generate infinitely many (ray) class fields of the same real quadratic field F1

by adjoining torsion points on modular abelian varieties.
For the purposes of illustration we summarize the method in a concrete

situation.
Let F1 be a fixed real quadratic field of prime discriminant D1 congruent

to 1 modulo 4. This is compatible with the class number 1 hypothesis made
in Theorem 4.5, the only known obstruction to the class number being 1
coming from genus theory. Let D2 be a prime congruent to 1 mod 4 such
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that there is an f 2 S2ðD; wDÞ of level D ¼ D1D2 such that

f has a twist by ðg; wD1
Þ for some g 2 AutðKf Þ: ð4:6Þ

Then for each prime } of %QQ dividing the different of Kf =K
g
f such that

* p is prime to 2D,
* aðp; f Þ is a }-adic unit, and,
* %rrf is absolutely irreducible,

one can generate a class field of F1 modulo pqn by adjoining a }-torsion
point on the modular abelian variety Bf . Here, p and p are the primes of F1

and Q lying under }, q is a split prime above D2 and n is an infinite place
of F1.

If F1 has class number 1 and D2 is chosen so that

heni7ðOF1
=qÞ
 ð4:7Þ

is surjective then the above class field is the ray class field modulo pqn.

Corollary 4.8. Let the notation be as above. If there are infinitely

many pairs ðD2; f Þ satisfying (4.6) above, then infinitely many class fields of F1

can be generated by adjoining torsion points on modular abelian varieties.

If F1 has trivial class number and there are infinitely many pairs ðD2; f Þ
satisfying (4.6) and (4.7) then infinitely many of these class fields are ray class

fields.

We now give an example to illustrate Corollary 4.8. Let F1 ¼ Qð
ffiffiffiffiffi
13

p
Þ.

Then hF1
¼ 1. Further, there is only one dihedral congruence prime for F1

namely p ¼ 3. Thus ½N : F1� ¼ 2. Let p3 be a split prime of F1 lying above
p ¼ 3. For the first twelve primes D2 satisfying the conditions of Corollary
4.8 we list in column 2 the order of the class field of F1 of conductor cn,
where c ¼ p3qD2

with qD2
a split prime of F1 lying above D2. In case this

number depends on the infinite place n we write one value for each infinite
place. In column 3 we indicate whether the class field N is the ray class field.
In column 4 we give the dimension of the space S2ðD; wDÞ partitioned
according to Galois orbits. When there is just one orbit then the (ray) class
field N can be generated over F1 by Shimura’s method described above
(Table III).

5. HIGHER WEIGHTS

One of the limitations of Shimura’s method is that the underlying
modular form f should have weight 2 since only in this case can one
associate an abelian variety to f . As a consequence, the set of split primes p



TABLE III

Modular (Ray) Class Fields of F1 ¼ Qð
ffiffiffiffiffi
13

p
Þ.

Conductor c jRCFðcnÞj N ¼ RCFðcnÞ? Orbits

p3q17 2 Yes 20 ¼ 4 þ 4 þ 6 þ 6
p3q29 2 Yes 32 ¼ 32
p3q53 4/8 No 60 ¼ 60
p3q61 4/8 No 68 ¼ 8 þ 60
p3q101 4/8 No 116 ¼ 116
p3q113 2 Yes 132 ¼ 132
p3q157 2 Yes 180 ¼ 180
p3q173 4/8 No 200 ¼ 200
p3q181 2 Yes 208 ¼ 208
p3q233 4/8 No 272 ¼ 272
p3q257 4/8 No 300 ¼ 300
p3q269 2 Yes 312 ¼ 312
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that occur in the conductors of the class fields is finite since the residue
characteristic of these primes must divide NF1=Qðeþ � 1Þ where eþ is a totally
positive fundamental unit of F1.

In [Shi71, p. 211] Shimura observes that there is some numerical evidence
connecting cusp forms of higher weight to the class field theory of real
quadratic fields. To the best of our knowledge this connection has not been
pursued in the literature, except for the recent work of Hida [Hid98], where,
incidentally, the author was not directly concerned with generating class
fields by torsion points on modular abelian varieties.

In this section, we observe that Shimura’s weight 2 method can be
combined with a key idea introduced into the subject in [Hid98], namely the
use of Hida families, allowing us to consider f 2 SkðjDj; wDÞ for arbitrary
weight k52. This allows us, in principle, to construct (ray) class fields whose
conductors are divisible by p for an infinite set of split primes p. These
primes are essentially the split primes p whose residue characteristics divide
NF1=Qðe

k�1
þ � 1Þ as k varies through all integers. We insert the modifier ‘in

principle’ in the sentence above since the success of the method depends as
usual on the occurrence of extra twists.

We start by illustrating the method in the situation D1 ¼ D so that
F1 ¼ F ¼ Qð

ffiffiffiffi
D

p
Þ. That is we first consider dihedral congruence primes with

respect to the full nebentypus.
Let p be a prime such that ðp; 2DÞ ¼ 1. Choose pjp and nj1 places of F

such that p is a split prime. Assume that dp;n is odd. Write dp;n ¼ k � 1 for an
even integer k52. Then ek�1

n � 1 mod p.
Let } be a prime of %QQ lying over p. Then by Theorem 2.11 (in this case

already proved by Hida) there exists a primitive modular form fk 2 SkðD; wDÞ
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with

fk � fk � wD mod }:

Let f2 2 S2ðDp; wDo
k�2
p Þ be the weight 2 member of the Hida family to which

fk belongs. Since f2 � fk mod } we see that f2 satisfies a congruence similar
to the one above. As usual this implies that there is a character f of GF of
order ðp � 1Þ=ðk � 1Þ and conductor pn. In particular, N , the cyclic
extension of F cut out by f, has degree ðp � 1Þ=ðk � 1Þ over Q and
conductor pn. On the other hand, if hF ¼ 1 then (4.2) shows that

½RCFðpnÞ : F � ¼
ðp � 1ÞhF

dp;n
¼
p � 1

k � 1
:

We conclude that N ¼ RCFðpnÞ.
Let us now assume that

f2 � wD ¼ f g
2 ð5:1Þ

for some g 2 AutðKf2
Þ of order 2. Then applying Shimura’s method to f2

(which no longer has nebentypus wD but this is of no matter) we can generate
N ¼ RCFðpnÞ explicitly by adjoining a torsion point on a modular abelian
variety. We summarize what we have proved:

Theorem 5.2. Let F ¼ Qð
ffiffiffiffi
D

p
Þ be a real quadratic field of class number

1. Let p be a prime such that ðp; 2DÞ ¼ 1. Let pjp be a split prime of F and n
be an infinite place of F such that dp;n is odd. Then under (5.1) the ray class

field of F modulo pn can be generated explicitly by adjoining to F a torsion

point on a modular abelian variety.

Let us now describe the method without the restriction F1 ¼ F made
above. Thus, we consider dihedral congruence primes with respect to the
real quadratic field F1 ¼ Qð

ffiffiffiffiffiffi
D1

p
Þ for cusp forms in SkðjDj; wDÞ where D is an

arbitrary quadratic discriminant with D1jD.
Again let p be a prime satisfying ðp; 2DÞ ¼ 1. Let pjp and nj1 be places of

F1 with p being a split prime. Again define k52 by k ¼ dp;n þ 1. This time k
is not necessarily even. We therefore assume that k � 1c0 mod p � 1 so that
we may apply Theorem 2.11. Since dp;n ¼ ðk � 1Þ j ðp � 1Þ this assumption is
equivalent to the assumption that

dp;n ¼ k � 1=p � 1: ð5:3Þ
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In any case we have ek�1
n � 1 mod p. In particular,

ek�1
þ � 1 mod p; ð5:4Þ

where eþ is a totally positive fundamental unit of F1.
Let D2 denote an arbitrary fundamental discriminant such that each qjD2

splits in F1. Fix a prime qjq for each qjD2. Assume that D2 has been chosen so
that the integer a in (2.10) satisfies

a � 0 mod 2: ð5:5Þ

Conditions (5.3)–(5.5) show that the hypotheses of Theorem 2.11 are
satisfied.

Let } be a prime of %QQ lying over p. By Theorem 2.11 there exists a }-
ordinary primitive form fk 2 SkðjDj; wDÞ with

fk � fk � wD1
mod }:

The methods used in Section 2 imply that there is a character f of GF1
of

order

n :¼ dðp � 1Þ=ðk � 1Þ;

with d ¼ 1 or 2 depending on whether ðp � 1Þ=ðk � 1Þ is even or odd, and
conductor pð

Q
qjD2

qÞn. In particular N , the cyclic extension of F1 cut out by
f, has degree n over F1 and conductor pð

Q
qjD2

qÞn.
Let f2 2 S2ðjDjp; wDo

k�2
p Þ be the weight 2 member of the Hida family to

which fk belongs. Then f2 also satisfies a congruence of the form

f2 � f2 � wD1
mod }:

We make the usual hypothesis of extra-twisting. Assume that

f2 � wD1
¼ f g

2 ð5:6Þ

for some g 2 AutðKf2
Þ. Then we have the following theorem:

Theorem 5.7. Let F1 ¼ Qð
ffiffiffiffiffiffi
D1

p
Þ be a real quadratic field and let D2 be a

quadratic discriminant such that each qjD2 splits in F1. For each qjD2 fix a

prime qjq. Assume that (5.5) holds. Let p be a prime such that ðp; 2D1D2Þ ¼ 1.
Let pjp be a split prime of F1 and n an infinite place of F1. Assume that

dp;n=p � 1:

Under (5.6) the class field N of F1 modulo pð
Q

qjD2
qÞn can be generated

explicitly by adjoining to F1 a torsion point on a modular abelian variety.
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Again, the cyclic extension N of F1 may be too small to be the ray class
field of conductor pð

Q
qÞn. Let us therefore assume that D2 is divisible by

only one prime q and that the split prime qjq of F1 satisfies

lcmðdp;n; dq;nÞ ¼ ðk � 1Þðq� 1Þ=d;

where d ¼ 1 or 2 depending on whether ðp � 1Þ=ðk � 1Þ is even or odd. Also
assume that hF1

¼ 1. Then by (4.2) we have

½RCFðpqnÞ : F1� ¼
ðp � 1Þðq� 1Þ
lcmðdp;n; dq;nÞ

¼ n

so that N ¼ RCFðpqnÞ. We have:

Theorem 5.8. Let F1 ¼ Qð
ffiffiffiffiffiffi
D1

p
Þ be a real quadratic field of class number

1. Let q be a split prime of F1 lying over q such that wqðeþÞ ¼ 1. Let p be a

prime such that ðp; 2qD1Þ ¼ 1. Let pjp be a split prime of F1 and n an infinite

place of F1. Assume that

dp;n=p � 1 and lcmðdp;n; dq;nÞ ¼ dp;nðq� 1Þ=d;

where d ¼ 1 or 2 depending on whether ðp � 1Þ=dp;n is even or odd. Then under

(5.6) the ray class field N of F1 modulo pqn can be generated explicitly by

adjoining to F1 a torsion point on a modular abelian variety.
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