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Using Padé approximations of Heine’s g-hypergeometric series we obtain new
irrationality measures for the values of the series ) .-, '/W,, where W, is a
Fibonacci or Lucas type arithmetical form satisfying the recurrence

VV)H»Z = rWn+l + SW;«” IS e @*
with initial values W, W, and ¢ € @*. © 2002 Elsevier Science (USA)
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1. INTRODUCTION AND RESULTS
Let W, be the arithmetical form
W, = Wy(r,s) = ad" + bp", neN, (1)
where

F+Vr?+4s F— V2 +4s
AR R R @
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Thus (W,) is a second-order recurrence sequence satisfying
Wiio =1W,oi1 + sW, vn e N. (3)

In the sequel we may suppose without a loss of generality that |o| > |f].
Let W,#0 for all n € N, then

W = W)=Y & @)
n=1 n

determines the meromorphic function W(¢), ¢t € C\{«""'/B"| n € N}
having the Mittag—Leffler expansion

e (Y
W(t):;lwn—a;ml; i (5)

o

B

where |o/B|" > |b/al.

Let | be an imaginary quadratic field, then we shall investigate some
arithmetical properties of the values of the function W, (1), ¢ € I*\{a"*!/
B"| n € N}, when (W,) is a Fibonacci or Lucas type solution of recurrence
(3) and r,s € @*. By the Fibonacci and Lucas type solutions we mean the
sequences (F,) and (L,), respectively, where

o — "
o—pB’

The Fibonacci (f;) and Lucas (/,) sequences, where

fO = Oa fl = 17 ﬁl+2 :ﬁl+l +fna

F, =

L,=d"+p"

lh =2, L =1, bpgr =l + 1,

are included into the Fibonacci and Lucas type sequence classes,
respectively.

Bézivin’s [3, 5] general theorems on linear independence imply irration-
ality results for the class of series (4), where

wclz, o] >1, a=p=1, bel"\{-"|necZ}, tc*\{ba"|ncZ}. (6)

On the other hand, Borwein [6,7] settling Erdos’ conjecture proved
quantitative irrationality of (4), when

weZ, lo|>1, a=p=1, beQ\{-"|nezZ}, t==x1. (1)
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In Bundschuh and Vaananen [8] and Matala-aho and Vadananen[14], (6) and
(7) are generalized to arbitrary number fields and in case (7) Borwein’s
irrationality measure 8.667 is improved to 4.311 in [8] and to 3.947 in [14].

André—Jeannin [1] proved the irrationality of the series ¥, 1|, when o and
f are given by (2) and

rez\{o},  teZ\{o}, i<,

thus including the Fibonacci sequence (f,) case. Linear independence
measures of g-exponential function and its derivatives in [8] imply an
irrationality measure 8.621 for the Fibonacci case of (4). Approximation
measure results in [14] give an irrationality measure 7.893 in all Fibonacci
type cases of W,.; where r € Z\{0}, if s=1, and r € Z\{0,£1,+2}, if
s=—1.

Prévost [17] considered also the Lucas type cases of (4) proving a measure
21.12 for W, 11, when r € Z\{0}, while the results of Vidninen [18] imply a
measure 47.33 in those cases.

The recent applications of Mahler’s [16] and Nesterenko’s [11,15]
methods give transcendence for several series similar to (4). Here we
mention the following trancendental series [11, 16]:

<1 s 1
;f_z Zfzw

n=1

as examples. About the transcendence character of series (4) it is known
that, if « and f§ are algebraic numbers satisfying «f = 1 and ¢ = 1, then series
(4) has transcendental value in the Lucas type case by Nesterenko’s results
[11,15].

We shall state Theorem 1 only in the case r > 0, because a(—r,s) =
—B(r,s) and B(—r,s) = —a(r,s) give W,(—r,s) = (=1)"W,(r,s). Thus the
relation W_, (t) = W, (—t) transfers the approximations from the case
r > 0 to the case r<0.

Let us set ¥ = R/d and s = S/d, where d,R € Z* and S € 7\{0}.

THEOREM 1. Let (W,) be given by (1), where d, R and S satisfy

. ds
R>‘dS|L—W, C:C(W)>0 (8)
with
72 3n2
F=f—3 D=3z
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and let t € I*\{o"'/(dB")| n € NY}. Then there exist positive constants C and
Ny such that

> |]v|—m(W)—Cloglog|N\/\/10g\N\7 (9)

<" M
;Wn_ﬁ

_ log(Jof*/ldS))

== D 10
log(lo|'/* /|dS]) o

Sfor all M,N € Zy with |N| = Ny.

First, we point out that our condition (8), e.g. in the Fibonacci type case
allows irrationality results for series (4) also in the cases like r =2, s =2
and r = 13, s = 6 which are not covered by the earlier investigations. In [14]
the cases r=4, s =2 and r>35, s = 6 are allowed.

Letr € Z\{0},if s = 1,and r € Z\{0,£1, 42}, if s = —1. Then in the case
of Fibonacci type sequences (F,) earlier irrationality measures 8.621, 7.893,
and 10.21 proved in [8, 14, 17], respectively, will be improved considerably.
In all the three papers cited the approximation formulae have connections to
Padé approximations of the g-logarithm series

ly(1) = i a

ot 1 — qn

In the first two papers considerations are done in number fields and also
the functional equation method, i.e. the iterations of the functional
equation

(1= 0)l(gt) = (1 = )l (1) — 1

of 1,() is used, while in the third paper only rational number field is used
without the use of functional equation method. Also in this paper we use the
Padé approximations of /,(z) (actually a more general g-series will be
studied) without functional equation method. Now the corresponding
functional equation

bla— )W (Bt)a) =a(t — o) W(t) + ¢t (11)

is used only to determine the analytic continuation (5) of series (4). Here we
consider the coefficients of the denominator polynomial more carefully and
the detailed study of the divisibility of the numbers F,, and the Fibonomials
enables us to get a sharp irrationality measure 2.874 in the Fibonacci
type case.
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THEOREM 2F. Let r € Z\{0}, if s =1, and r € Z\{0,+1, 42}, if s = —1,
and t € *\{o""'/B"| n € NY. Then there exists a positive constant Ny such
that
o) n M

r M N2 12
> % N'>|| , (12)

Sfor all M,N € Zy with |N|= Ny.

In the Lucas type case we need to transform divisibility questions of the
numbers L, to the divisibility of cyclotomic polynomials and via that the
earlier measures 21.12 by Prévost [17] and 47.33 by Vadndnen [18] will be
improved substantially.

THEOREM 2L. If'r,s,t are as in Theorem 2F, then there exists a positive
constant Ny such that

> N[, (13)

O M
2N

for all M,N € Z; with |N|= Ny.

To prove Theorems 2 we shall need the following common factor results,
which are known in the Fibonacci type case, see [9]. The Lucas type case
seems to be new.

THEOREM 3. Let r,s € Z\{0}, then

Fi- F|Fypy - Fryn VheN, nezZ" (14)
and
H,Hy o Hypyg) - -+ |Lii1 - Lign YVheN, neZ", (15)
where
Hy=Hy =1,  Hy=Li- Ly
2. ¢-FACTORIALS AND W-NOMIALS
Let

(bya), =1, (bya), = (b—a)(b—aq)...(b—aq"™"), neZ"
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and (a), = (1,a), be the g-series factorials, so, e.g. (¢), = (1 —¢)...(1 —
¢"). Further, the g-binomial coefficients are

ni_ (@,
k (q)k (q)nfk

satisfying

n n—1 n—1
o] e

and it is well known (see [2]) that (16) implies

K

Also we shall use the W-nomials (Fibonomials) defined by

ni |n _q n| wy---Ww,
0 n w ’ k w W]"-WkW]-~-W,,_k

for all k,n € N with 1<k<n — 1 for any recurrence sequence (3).
Let now r,s € @ satisfy (8), then D = 1> + 4s > 0 defines the (quadratic)
field KK = @(v/D) and its ring of integers Zj. Set

r+\/5 r—\/ﬁ
a: 2 ) ﬁ: 2 b

n
k

€ Zq) and degq[ ]:k(n—k), 0<k<n. (17)

w

then & = f and ﬂ_ =, i.e. « and f are field conjugates in K satisfying the
equation o> —ro. — s = 0.

We shall need several times the following special case of the symmetric
polynomial behaviour in conjugate points such that, for the completeness,
we shall include a proof of it.

LEMMA 1. Let P(x,y) € Z[x,y] be such that P(x,y)= P(y,x). Then
P(o,B) € Q and, if o, f € Z, then P(a,f) € Z.

Proof. Lety = P(a,f). By taking the conjugates and using the symmetry
we get

f:P(&vﬁ) :P(ﬁ,d) :P(Ot,ﬂ) =7

which shows that y € Q. If o, f € Zk, then y = P(o, ) e Zx " Q@ =2Z. 1
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By Lemma 1, F, and L, € Q for all n € N.

LEMMA 2. Let r,s € Z and let (F,) be a Fibonacci type solution of
recurrence (3). Then

m €Z VknelZ (0<k<n). (18)
F

Proof. When we set ¢ = f/a, then (16) shows that

n L n—1 n—1
M o k[k_ll +ﬁ"[ . ] (1<k<n—1). (19)
F F F

Now a, f§ € Z and by the definition {Z}

€ Q. Let us suppose that
F

—1
l"k ] €7 vk (0<k<n—1) (20)
F
for a given n. Then (19) shows that

K

proving (18) by induction. |1

€Zx  Vk (0<k<n)
F

Also we note another proof of Lemma 2 in [9].
LemMA 3. Let r € Z* and s € Z\{0} satisfy (8), then

o> 1 and a > |l (21)

Proof. Now d = 1 and so condition (8) implies

oc7r+\/r2+4s
=—

1 ¢ S 2% 52
> ISl = =z 4 4 [I8]7 = 25 + 5=+ 4s
2(II 3 \/I e

1( . K ) s
L= 5 |s|‘+—e)=|s|“.
2\ ]
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Thus
logo > clog|s| =0 (22)

because s € Z\{0}.
Now

X =

B r—rtds  (r—Vi?+ds)’
o r4+Vrt+4s —4s

and consequently x > —1 when s > 0. If s<0, then the assumption r > 1
is needed for x<1. The condition r > 1 follows from assumption (8) and
s € Z". Hence |x|<1. 1

LEMMA 4. Let r,s € Z\{0} and let (W,)) be a sequence defined by (1) such
that W, € Z\{0} for all n € N. Then there exist M,, € Z" such that

LCM[W,,..., W,]|M,  VneZ*,

and
Mn<|a|M(W)n2+0(n log n) if re Z*, (23)
with
M(F) =3/n%, M(L) =4/n°.
Proof. Let

D,(q) =LCM[l —gq,1 —¢*,...,1—¢"]

for which it is proved in [12] that

3
deg, D,(q) = ;nz + O(nlogn). (24)

Let us fix n€ Z" and d = deg, D,(q). For a given 1<i<n there exist a
polynomial B(q) € Z[q] such that

Du(q) = (1 - ¢')B(q). (25)
From (25) it follows that

¢'Du(1/q) = (¢ — 1)¢*'B(1/q) (26)
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and so
Dji(q) = ¢'Du(1/9) (27)
is a common multiple of 1 — ¢,1 —¢?,...,1 — ¢" and deg, D}(q) = d. Hence
Djy(q) = £Du(q). (28)

Suppose first that D¥*(q) = D,(g), which is equivalent to

Du(q) = " Du(1/q). (29)
By (25) we get
$Du(o/ ) = 28 - 05" 1B/ p) (30)

Let us denote
y=B'Dule/B),  x=(B—a)p" Blo/ ).
Using (29) it follows easily that
V=V K=K
giving the relation y = Fji, where 7,k € Z, proving the divisibility
Fily. (31)

Hence

LCM([F),..., F]|B* Dy(a/B). (32)

In the case D¥(q) = —D,(q) the proof goes similarly.
From [12] we get the estimate

35
IDa(q)| < gl O g > 1. (33)
Now r € Z" implies by (21) that o« > |B| and thus
3 5 3
LCMIF,, ..., F,] <| ||/ Bl FOU 108 — |z +Olrleen) (34

proving (23) in the Fibonacci type case.
From [4]—Démonstration du théoréme—we get another proof to

M(F) = 3/n?
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and a proof for
M(L) = 4/n°.

The proof of Bézivin needs slight modifications to get the upper bounds for
least common multiples in the form of (23). 1

Proof of Theorem 3. The divisibility property (14) for Fibonacci type
numbers is proved in [9].
Let us start from the Fibonacci type numbers

k_ pk
szaaig =p

kxk—l

= Il ®atx),  x=a/p (39)

—-B dlk,d>1

where @, = &4(x) is the dth cyclotomic polynomial. Thus, e.g.

F,---F, :[3<’21><p[2”/2]q§[3”/3] D,

:Ez(%ﬁ)[n/ﬂ&(a’ﬁ)ln/ﬂ - Ey(a, B), (36)
where E; = E(a, f) = p*© @y (a/p). It is known [9] that
Ei(y,x) = Ex(x,y), (37)
which implies
Ei(o,p) eZ VkeN (k=2) (38)

by Lemma 1. Also we have
Ex(o, )" OBy (o, )M B B) Far o Frw (39)

for all heN, ne€Z", where A(k) =0 or i(k)=1. First we note that
(36) and (39) give another proof of (14).
Now we have to look for a common factor of the products

Lh+1 b 'Lh+n, h S N, ne Z+. (40)
Clearly,
F.
Ly =of + g = (41)
Fy
Thus
F )
Lisy - Ly = 2050 220 (42)

Fr Fhyn
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Let us study the factors E; of (42), where 2<</<[n/2]. Let / be fixed and
define
vy = UN(Z) = #{Ll l|2L, h+ 1<L<h+l’l}

and
vp=uvp(l) =#{L| I|IL, h+1<L<h+n}

to denote the numerator and denominator exponents vy and vp of Ej in (42).
Because 2k + 1|L if and only if 2k + 1|2L it follows that

ov(2k +1) =vp(2k+1)=[n/(2k+1)] or [n/(2k+1)]+1. (43)

The even indexed E;, [ = 2k, has the exponent vy (2k) in the numerator at
least to [n/k] and vp(2k) in the denominator at most to [n/(2k)] + 1. If
vp(2k) = [n/(2k)] + 1, then there exist y = [n/(2k)] denominator index
intervals [L;, Ljy1 = L;+ 1], j=1,...,p, containing the indices L;+ k.
Thus there exist y+ 1 numerator indices 2L;, i=1,...,y+1, and y
numerator indices 2(L; + k), j=1,...,, such that

[12L; and [2(L; + k) =2L; +1 (44)
giving
UN(Zk) =22y4+ 1= UD(2k) + [n/2k]

Hence
UN(2k) — UD(2k> = [n/2k] (45)

in all the cases. By (42), (43) and (45) each product in (40) has the factor

k=1
Let us denote
Hm:Ll"‘L[m/2] and G::HVIH[n/Z]H[n/ﬂ
We shall prove that
H,Gyy(L)|Gu(L)  VneZ". (47)

Multiplication of the expressions
H, = Eévf[N/ﬂEﬁ[lN/Z]f[N/4]E£N/3]f[N/6] - oy,

G (L) = E£N/2]E£N/4]E£N/6] - Exv s (48)
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where N = [n/2], shows (47), which implies by induction that

GHG, (L) Vnez'. 1 (49)

3. PADE APPROXIMATIONS

The series

=B,
"2 10

n=0

=

is a special case of Heine’s g-series having the closed form (n,n) Padé
approximations constructed in [13].

LemMA 5 (Matala-aho [13]). Let

n n k
0i(2) :Zl . ¢ (Bg" ) (Cq),_ (=), (50)
k=0
and
n n (q)n(Bn n - n+1 Banrl i
Ry(z) = g i ©) +2;11+1 Z(; Cq2n+l ) z- (51)

Then there exists a polynomial P%(z) of degree <n such that
L (2 (2) = P(z) = Ry(2). (52)

Now we shall set
B=-b/a, C = By, q=p/a, z=1t/o.

Hence

W(e) = —(/(t/2) = ),
0.(1) = 0Ni/a).  Pult) = ' T (PH(1)2) — OF(1/2) (a + )
and

Ro(1) = a2 R¥ (1)) ) (a + ).

Thus we get the approximation formula

Qn(l) W(t) - Pn(t) = R,,(Z), (53)
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where
On(t) = Z Guitt = Z [Z] Wik1 -+ WZn—k(_S)(g)(_t)k» (54)
k=0 k=0 F
Pn(t) = Z pn,klka DPnk = Z qn,i/I/Vj (55)
k=0 ij=k
and
Rit) = (—abyee 7o 28, (0,
_ (), o (") (a,=bg" ), 11N (56)
0= G TR (e B, )

LEMMA 6. Letr,s € Z and let (W,) be a sequence defined by (1) such that
W, € Z for all n € N. Then

qnk €Z Vk,ne N (0<k<n). (57)
Proof. By Lemma 2 the Fibonomials in
n k
ke = l k] Wateor = Wani (=)0 (=D (58)
F

are integers. |1

LEMMA 7. Letr € Z\{0}, s € Z and let W, € Z for all n € N. Then there
exist G, = G,(W) € Z" such that

Gl qur Vk,ne N (0<k<n) (59)
and
Gn> |a|G(W)I12+O(n) lf Fe Z+, (60)

with

Proof. First, we note that

qnk = [Z] [zn; k] WI Wn(_s)(§)<_l)k' (61)
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In the Fibonacci type W = F cases the both Fibonomials in (61) are integers
by Lemma 2. Thus
G,(F)=F,---F,. (62)
Also we could use result (14) to prove (62).
In the Lucas type cases the W-nomials are not integers and thus we have

to look more carefully divisibility properties of Lucas type sequences.
Clearly, result (15) of Theorem 3 gives a common factor

Gu(L) = HyHpyp Hypay ..., Hpy =Ly Ly (63)
for the coefficients

Ln—k-H T LZn—k(_S) (Iﬁ) (_l)k' (64)
F

qnic =

n
k
So, in the Fibonacci and Lucas type cases we have (60) by (62) and
(63). 1
Now we set ¢ = u/v, where u,v € Z;\{0},

qn = DnMnGIIIQ,,(H/U), Pn = DnMnG,Ian(u/v)a

1y =0"M,G, 'R, (u/v) (65)
in order to get the numerical approximation forms

AW (u/v) =pn=rn,  qu, Pa €L VnEN (66)

by Lemmas 4-7.

LEMMA 8. Let r € Z*, s € Z and let (W,) be a sequence defined by (1)
such that W, € Z\{0} for all n € N. Then

(] < [ar| O/ M)~ G (W )+ O log ) (7

and

|rn|<|ﬁ|nz|a|(1/2+M(W)—G(W))n2+O(n log ) (68)
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Proof. Using (21), (23), (54), (60) and estimates for g-binomials from
[13] we get

" |n k
|qu| = V"M, G, Z[k] Wi -+ Wan i (=)&) (—u /)
k=0 F
< (I’l + l)maxﬂu"U}n22n|a|M(W)nz+0(n log n)—G(W)n*+0(n) | (69)
n(3n—=2k+1) 2k
max |uf"RTTT T g 2
0<k<n

Here
|s| = [p| <o

by (21) and thus (69) implies

lg| < |OC|(M(W)7G(W)+3/2)H2+O(;7 log n)

In the remainder r, the term S,(u/v) goes to the limit as n — oo. Thus
(21), (23), (56) and (60) give the following estimation:

_ bn i v G—l n VIZ—TSi’lil S
[a| = |abl V"M, G, B o |Sn(u/v)]

u 2n
i
< |ﬁ|n2 |a|0(n)+M(W)n2+0(n log }’l)*G(W)ﬂerO(}’l)Jrnz/z. 1 (70)

LEMMA 9. Let (W,) be a series defined by (1) such that W, € Z\{0} for
all n € N and abrst#0. Then

GnPni1 — Pndn1 70 YneZ®. (71)
Proof. By (53)—(56) we get

An = QnPn+1 - PnQn+l = RnQn+l - Rn+1Qn
P, (q)
=2 (—ab) B o 2 ! n Wiio - Wonsa. 1
( a ) ﬁ o (a7 —bq”“),,+1 n+2 2n+2

4. PROOF OF THEOREMS 1 AND 2

The following Lemma 10 may be proved analogously to theorem in [14].
However, here we need to use only the imaginary quadratic field [.
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LEMMA 10. Let ® € Candy > 1. Let
gn® — py = rn, qn, Pn €2y ¥YneN

be numerical approximation forms satisfying

nPn+1 — Pnqn+1 7 0, (72)
|qn| <yAn2+0(n log n) (73)

and
|Vn| <nyn2+0(n log n) (74)

for all n € N with some positive A and B. Then there exist positive constants C
and Ny such that

‘(p _%‘ S || 1+A/B)~C loglog NI/ /g IN] (75)

for all M, N € Zy with |[N| = Ny.
Thus 1 + 4/B + ¢ is an irrationality measure of @ for every ¢ € R".
Proof of Theorems 1 and 2. Let
c=c(W)=1/G+GW) - M(W)),
where
I+ GW) = M(W) >0,

which is the case at least when W = F or W = L.
First, we suppose r € Z" and s € Z\{0}. Condition (8) reads now as

PR
r>s|© — W (76)

and thus (22) gives
logo > clog|s|=0
yielding to

B=1+G(W)— M(W) —log|s|/log || > 0. (77)
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Clearly,
A=3+M(W)—-GW). (78)
Lemma 10 together with (77) and (78) gives

A+B
m(w) ===
2 —log s|/log o _ logla*/|s]

T 12+ G(W) — M(W) — logls|/logat log|a|"*/|s|

(79)

Suppose then that r = R/d and s = S/d, where d, R € Z" and S € Z\{0}.
Now the recurrence is

dW,i2 = RW, i1 + SW,,
where we set W, = V,,/d". The sequence (V) satisfies
Virz = RVyi1 +dSV,
and the corresponding series (4) is now

00 d’l
> G-

n=1

Replace then r, s and ¢ by R, dS and dt, respectively, in (4), (76) and (79) to
get Theorem 1.

Using the values for G(W) and M (W) given by Lemmas 4 and 7 we get
the numerical values

1 72

1/24+1/2-3/n> n*-3 36706

c(F)

and

1 372

= = =3.825819... .
1/2+1/6 —4/n> 272 — 12

c(L)

Note that, if s = £1, then m(W) = 2¢(W). In this case we get irrationality
measures
2n? 3n?

=2.87341... L)= =7.65163... . 1
3 ? m( ) 7'52—6
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Finally, we note that in the Fibonacci type cases the value ¢(F) = 1.437

gives irrationality results in more general framework than the previous value

o

F) = 1.974 in [14].
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